A Branch-and-Bound Algorithm for Natural Language
Database Query Using Metadata Search

Veera Boonjing

‘Mathematics and Computer Science
King Mongkut's Institute of Technology Ladkrabang
Ladkrabang, Bangkok 10520 Thailand
kbhveera@kmitl.ac.th

Abstract. This paper presents a branch-and-bound algorithm to process free-
text natural language database queries based on the metadata search approach.
The approach uses a metadata reference dictionary represented in a semantic
graph of enterprise databases. User words, query cases, information models,
and database values are vertices of the graph. The paper concludes with
possible extensions to offer a full capability of free-text natwral language
database queries.

1 Introduction

Available results [1] to the problem of free-text natural language database queries
have been mostly disappointing. They restrict the syntax of the query or require
predefined templates. Therefore, the metadata search approach [2] has been
developed as a solution to the problem. The approach employs a metadata reference
dictionary represented in a semantic graph of enterprise databases. User words, query
cases, information models, and database values are vertices of the graph. The branch-
and-bound algorithm interprets a query based on its extracted keywords,
corresponding to vertices of the graph. Because keywords may correspond to several
-vertices of the graph, there could be several different interpretations for the query.
The algorithm efficiently searches for the best interpretation for the query.

The remainder of this paper is organized as follows. Section 2 describes the metadata
reference dictionary. Section 3 describes the branch-and-bound algorithm. The
analysis of the algorithm is given in Section 4. Section 5 concludes with a summary
of an incorporation of interactive learning and case-based reasoning into the
approach.

24 ‘ KMITL Sci. J. Vol. 3 No. 1 Feb. 2003

2 The Metadata Reference Dictionary

The metadata search approach employs the Metadatabase model [3] as a basis to form
the reference dictionary. The benefits of employing the Metadatabase model include
its extensibility [3, 4] and its capability to incorporate rules [5, 6, 7] and to support
global query processing across multiple databases [8]. The Meatadata model serves as
a core structure of the reference dictionary. By using the Two-Stage Entity-
Relationship (TSER) modeling method [9], the core structure is expanded to include
three additional layers: database values, user-words, and cases and to form an
integrated structure of the entire reference dictionary.

A computer-integrated manufacturing (CIM) database is used as an example to
demonstrate contents of the reference dictionary. It consists of three systems: an order
entry system, a shop floor control system, and a process planning system. Its
information models created by using the Two-Stage Entity-Relationship (TSER)
method. They become metadata instances stored in certain meta-entities and meta-
relationships. The reference dictionary also includes database values, user words, and
cases stored along with these information models.

A graph G is a graph <V, E>, where sets V and E are defined on the reference
dictionary. In particular, V is a set of vertices of five types: subjects, entities,
relationships, attributes, and values; and E is a set of their connection constraints
(owner-member and peer-peer associations). Owner-member constraints belong to
two types: subject-(sub)subject-entity/relationship-attribute-value and subject-
attribute. Peer-peer constraints belong to three types: entity-entity, entity-relationship,
and relationship-relationship.

In the reference dictionary of CIM database, the subgraph of G for order processing
system is as shown in Figure 1. In this subgraph, S ORDER_PROCESSING - S
ORDER-E PART — I opsl_100 part_id — V PZ1 shows owner-member constraint of
the type subject - (sub) subject - entity/relationship — attribute - value and E PART - E
ORDER_ITEM - E ORDER - E CUSTOMER shows peer-peer constraint of the type
entity - entity. The owner-member of the type subject - attribute for this subgraph is
shown in Figure 2.

KMITL Sci. J. Vol. 3 No. 1 Feb. 2003

S ORDER_
PROCESSING

8 ORDER S CUSTOMER
E PART E ORDER_ITEM E ORDER E CUSTOMER
| opsl_ 10\ f_’ ; ;
PART_ ID

Figure 1: The subgraph of G for order processing system

S ORDER
PROCESSING

S ORDER § CUSTOMER

| opsl_90
| opsi_100 (cusT_NAME?
L (V John Smith)

Figure 2: The subgraph of G for order processing system

25

26 KMITL Sci. J. Vol. 3 No. 1 Feb. 2003

To demonstrate the interpretation procedure based on the graph G, consider Query 1:
“Which customers placed orders on PZ1? Just give me their names.” Suppose
keywords (words and phrases matching some entries in the reference dictionary or
some vertices in graph G) and their recognized vertices (a set of G vertices matching
keywords) for this query are as shown in Table 1.

Table 1.Keywords and their recognized vertex sets for query 1

Keyword Vertex Set
CUSTOMERS {E CUSTOMER }
ORDERS {S ORDER}
PZ1 {V opsl_100|PZ1,
V ppsl_54|PZ1,
V sfel_11|PZ1,
V sfcl 5|PZ1}
NAMES {l opsl 90}

The followings are possible query images generated from Table 1.

Ql 1: { E CUSTOMER, S ORDER, V ops|_100|PZ1, | ops|_90 }
Ql 2: { E CUSTOMER, S ORDER, V pps!_54|PZ1, | opsl_90 }
QI 3: { E CUSTOMER, S ORDER, V sfcl. 11|PZ1, | opsl_90 }
Ql 4: {E CUSTOMER, S ORDER,, V sfcl_5|PZ1}, | opsl_90 }

- Table 2 shows example of semantic paths for recognized vertices of QI1. Note that
there are two semantic paths for the recognized vertex V opsl 100|PZ1. A semantic
domain for a semantic path spans all members of the semantic domain. For example,
the.semantic domain for the semantic path (E CUSTOMER) spans all attributes
belonging to this entity and all values belonging to these attributes.

Table 2. Recognized vertices and their semantic paths,

Recognized Vertex Semantic Path
E CUSTOMER { (E CUSTOMER) }
S ORDER { (S ORDER, E PART),

(S ORDER, ORDER_ITEM),

- (S ORDER, E ORDER)}

V opsl_100|PZ1 ~ {(VPZT, I opsl_100, E PART) }
{(VPZ1,10psl 100, E ORDER ITEM)}
NAMES {(I'opsl 90, E CUSTOMER)}

KMITL Sci. J. Vol. 3 No. 1 Feb. 2003 27

Based on the semantic paths in Table 2, two feasible graphs (FG11 and FG12) for QI
are determined (Figure 3 and 4). The connected feasible graph CFG111 and its query
graph QG111 for the feasible graph FG11 are determined as shown in Figure 5 and 6.

S ORDER

" l““; T [y e |f’ﬁ“""'" s ‘
E PART E ORDER_ITEM | E ORDER !ECUSTOMER J

L \—_..ki Li,,f, ettt o e | PEL e ey _‘ Bl i ST
| opsl_100 ¢ 1opsl_90 N
PART_ID SCUST_NAME ~

Figure 3: The feasible graph FG11 for QI1.

S ORDER

Bl

E PART E ORDER_ITE : E ORDER | E CUSTOMER
iy EERINE i kel l i _J

| opsl_10 (| opsl_90)
PART_ID CUST_NAME

<'|:21

Figure 4: The feasible graph FG12 for QI1.

28 KMITL Sci. J. Vol. 3 No. 1 Feb. 2003

S ORDER

E ORDER_ITEM

E ORDER |—— E CUSTOMER

Bt vl 5o "_
| opsl_100 (| opsi_90)
PART_ID CUST_NAME
B =
PZ1
Figure 5: The connected feasible graph CFG111 for FG11.
| |
E PART L E ORDER_ITEM E ORDER E CUSTOMER
| | |
|
| opsl_100 (| opsl_90
F’AR_I_&D CUST__iVAME>
PZ1

Figure 6: The query graph QG111 of CFG111.

Following the procedures described above, all feasible graphs and query graphs for
Query 1 are determined as shown in Figure 7.

KMITL Sci. J. Vol. 3 No. 1 Feb. 2003 29

[T oo |

FG11 1 FG12 FG

A A A
QG111 QG121 QG211 QG311 QG411. QG421 QG431 QG432
Z2=6 256 Z= PAEH L= =17 =17 Z=7

Figure 7: The query graph enumeration procedure for Query 1.

3 The Branch-and-Bound Algorithm

The problem of the branch-and-bound search algorithm is to determine the best query
graph (interpretation) among all possible query graphs for a natural language query.
The best query graph is the one requiring minimum traversal on the structure of
reference dictionary (see [10, 11] for a justification of the objective function). This
criterion is used to develop the objective function for the search: the cost (z) of a
query graph, measured by the count of its edges. Since a query graph is a tree, its cost
is [V| - 1 where V is the vertex set of the query graph. . Costs of enumerated query
graphs for Query 1 are shown in Figure 7. The best query graphs for this query is a
query graph with cost z = 6.

The search problem is an optimization problem with objective function z(t) where t 1s
a terminal vertex (a query graph). The problem is to minimize z(t) with respect to
graph G. An evaluation function LB(v) finds the lower bound for an intermediate
vertex v (a query image or a feasible graph), so that the search could either fathom all
paths starting with v or pick the most promising v to explore further. This lower
bound of a vertex indicates the best minimum-cost query graphs that could be
obtained if the vertex is picked to explore further. :

A lower bound of a query image is calculated based on (1) the number of its value
vertices, (2) the number of its attribute vertices, and (3) the number of its
entity/relationship implied vertices (entity/relationship vertices implied from
recognized vertices). The' calculation is under the condition that only

30 KMITL Sci. J. Vol. 3 No. 1 Feb. 2003

entity/relationship implied vertices are included in an entity/relationship solution path
(1.e., all entity/relationship implied vertices are connected). It first creates a base set of
entity/relationship vertices — the base set includes all entity/relationship vertices and
all entity/relationship vertices implied from subjects. It then sets the number of
counted vertices to 0. For each attribute or value vertex, it increases the number of
counted vertices by 1 and determines all entity/relationship vertices it belongs to. If
there does not exist any of these entity/relationship vertices in the counted
entity/relationship set, then increase number of counted vertices by 1 (i.e., implied
adding a new entity/relationship vertex to the base set). Otherwise if there does not
exist any of these entity/relationship vertices in the base set, increase the number of
counted vertices by 1 and add them to the counted entity/relationship set. Thus,
e LB(v) = |base set (query image)| + the number of counted vertices —1 if v is a
query image: or
e ° LB(v) = (total number of its value, attribute, and entity/relationship vertices) -1 if
v is a feasible graph.
When lower bounds of all query images and feasible graphs in Figure 7 are
calculated, the complete search graph for Query 1 is shown in Figure 8.

|
QG121 | [OGEH‘
o

Ll

Figure 8: The complete search graph for Query 1.

With a standard branch-and-bound algorithm [12; 13] and the evaluation function LB
(), the implicit search graph for Query 1 is as shown in Figure 9.

KMITL Sci. J. Vol. 3 No. 1 Feb. 2003 31

|
ROOT |
LB=1 l

[Fo j FG12
| LB=§ LB=6J
St [ge il Lot
v
OG1H‘ /osm1J
=6 =6

Figure 9: The implicit search graph for Query 1.

Since there exist two minimum-cost query graphs (QG111 in Figure 6 and QG121 in
Figure 10) for Query 1. However, they are equivalent according to the following

definition.

A query graph 1 is equivalent to a query graph 2 if the following conditions satisfy.

(W)

Entity/relationship solution path of query graph 1 is equal to entity/relationship
solution path of query graph 2.

A set of attribute vertices of query graph 1 is equivalent to a set of attribute
vertices of query graph 2.

An attribute set 1 is equivalent to an attribute set 2 if (1) | attribute set 1| = |
attribute set 2| and (2) for every element of attribute set 1, there exists one and
only one element of attribute set 2 that is equal to (both have the same attribute
vertex and the same entity/relationship vertex the attribute belongs to) or is
equivalent to (both have the same domain) it.

A set of value vertices of query graph 1 is equivalent to a set of value vertices of
query graph 2.

A value set 1 is equivalent to a value set 2 if (1) | value set 1| = | value set 2| and
(2) for every element of value set 1, there exists one and only one element of
value set 2 that is equal to (both have the same value vertex, attribute vertex, and
entity/relationship the attribute belongs to) or is equivalent to (both have the same
value and domain) it.

According to this definition, query graph QG111 is equivalent to QG121. Therefore,
one of them can be removed. Suppose QG121 is removed, the QG111in Figure 6 is
the final interpretation of Query 1. This interpretation is then mapped to the following
SQL query. See [2] for mapping rules.

32 KMITL Sci. J. Vol. 3 No. 1 Feb. 2003

SELECT DISTINCT CUSTOMER.CUST_NAME, PART .PART_ID
FROM ORDER_ITEM, PART, ORDER_HEADER, CUSTOMER
WHERE ORDER_ITEM.PART_[D=PART.PART_ID and
ORDER_ITEM.CUST_ORDER_ID=ORDER_HEADER.CUST_ORDER_I
D and ORDER_HEADER.CUST_ID=CUSTOMER.CUST_ID and
(PARIEPARTSID =PZ1Y)

R e B e
E PART e ORDER_ITEM—J E ORDER E CUSTOMER
o E L
| opsl_100 (| opsl_90)
PART_ID CUST_NAME

o

Figure 10: The query graph QG121 of FG12.

4. Analysis

The analysis of the branch-and-bound algorithm is conducted as follows. A correct
- SQL statement 1s defined by precise database objects (entities/relationships or tables,
attributes or columns, and data base values) and operators. Relaxing the SQL
statement by allowing users to use their words/phrases (user-words) to refer to
database objects will cause synonyms (where many user-words refers to the same
database object) and homonyms (where a user-word refers to many database objects).
Synonyms and homonyms introduce the first class of ambiguity called impreciseness.
Suppose only synonyms exist, we need a reference dictionary that can be used to map
a natural language query containing user-words to the correct SQL statement. The
proposed dictionary can be used to accomplish this task. However, there could be
homonyms in the reference dictionary. This causes multiple combinations of database
objects. The task is to find the best combination. Intuitively, the best combination is
the combination that its database objects can be connected without introducing any
intermediate database objects. Therefore, the core method uses the “closeness of
database objects” as a criterion to choose the best combination. The closeness of a
database object combination is measured by counting a number of connections
connecting databases objects of that combination.

KMITL Sci. J. Vol. 3 No. 1 Feb. 2003 ; 33

Until now we have assumed that natural language queries are complete, i.e., there
exists a combination of database objects referred to in queries that can be connected
without introducing any other database objects. However, we cannot expect users to
provide such complete information for all queries. We call this class of ambiguity
“incompleteness.” Therefore if a query is incomplete in this sense, we need to connect
database objects of the query by introducing some intermediate database objects. The
graph G of the reference dictionary serves this task. Since homonyms exist in the
reference dictionary, a query may have multiple combinations of database objects
corresponding to it and database objects in each combination need to be connected.
This increases the complexity of the problem, i.e., we need to enumerate all possible
combinations, connect their databases objects, count a number of connections for each
combination, and look for the best combination — the combination having the fewest
connections.

Obviously, the branch-and-bound algorithm can deliver at least one SQL solution to
any natural language query containing only one recognized keyword. Therefore, the
“necessary condition” to assure an SQL solution exists for a natural language query is
that it contains at least one recognized keyword. However, there could be many SQL
solutions for such a natural language query. But the more in the number of recognized
keywords for a natural language query, the more number of its SQL solutions can be
decreased. Therefore, the minimally sufficient set of recognized keywords for the
natural language query that can give a single, correct SQL solution for it constitutes
the “ sufficient condition.” In other word, the core method will generate a correct
answer as a simple SQL statement if the natural language query contains a complete
set of keywords from which, and only from which, a single SQL statement can be
constructed to answer the query correctly.

5. Conclusion

The branch-and-bound algorithm is capable of processing free-text natural language
inputs under certain conditions (the necessary and sufficient conditions). The
necessary condition' is the text input contains at least one recognized keyword (a
keyword found in the reference dictionary). The sufficient condition is the text input
contains a complete set of keywords from which, and only from which, a single SQL
query can be constructed to answer the query correctly.

The branch-and-bound algorithm provides a good basis for immediate extensions to
develop the full capability of free-text natural language query. These extensions
include two significant research opportunities: interactive learning and case-based
reasoning.

The purpose of interactive learning is to walks users to the kind of feedback it needs
to identify the correct solution for a query. Its tasks are to interact with users to
confirm the results with them, to ask them for its information needed, and to ask them
to pick their intended solution. These tasks need good dialogues controlling overall
interacting process. Therefore, the future research suggestion is in designing such

34

KMITL Sci. J. Vol. 3 No. 1 Feb. 2003

controlled dialogues for this interactive learning. The interactive learning also
includes interaction with users to acquire new user-words.

The

case-based reasoning interprets natural language queries by finding and using the

most similar past case. If a perfectly matched case for a query does not exist but there
exists a case for the query that is significantly similar (say at least 60%), the case-
based reasoning must modify (reuse) the case solution (query graph) to obtain a
solution. Therefore, the basic challenge here is how to modify the case solution to

obtain the solution for the query.

References

(9]

10.

11.

1

Androutsopoulos, L, Ritchie, G.D., and Thanisch, P. 1995. Natural language
interfaces to databases — An introduction, Journal of Natural Language
Engineering Vol. 1 No. 1: pp. 29-81.

Boonjing, V. and Hsu C. 2002. Metadata Search: A New Approach to Natural Language
Database Interfaces. Proceedings IASTED International Conference on Information
Systems and Databases. Tokyo, Japan.

Hsu, C. Bouziane, M, Ratter, L. and Yee, L. 1991, Information Resources Management in
Heterogeneous, Distributed Environments: A Metadatabase Approach. IEEE Trans. on

Software Engineering Vol. 17 No. 6: pp. 604-625.
Hsu, C. 1996. Enterprise Integration and Modeling: the Metadatabase Approach. Boston:

Kluwer Academic Publishers.
Bouziane, M. and Hsu, C. 1993. A Rulebase Model for Data and Knowledge Integration in
Multiple Systems Environments. J. Artificial Intelligence Tools Vol.2 No.4: pp. 485-509.
Bouziane, M. and Hsu C. 1997. A Rulebase Management System Using
Conceptual Modeling. J. Artificial Intelligence Tools Vol.6 No.1: pp. 37-61. :
Babin, G. and Hsu C. 1996. Decomposition of Knowledge for Concurrent
Processing. IEEE Trans. Knowledge and Data Engineering Vol.8 No.5: pp. 758-
172.
Cheung, W. and Hsu, C. 1996. The Model-Assisted Global Query System for Multiple
Databases in Distributed Enterprises. ACM Trans. on Information Systems Vol. 14 No. 4
pp. 421-470.
Hsu, C. Tao Y., Bouziane M., and Babin G. 1993. Paradigm Translations in Integrating
Manufacturing Information Using a Meta-Model: the TSER Approach. J._Information
Systems Bngineering Vol.1 No.1: pp325-352.

Johnson, J.A. 1995. Semantic Relatedness. Computers Math. Applic, Vol. 29
No.5: pp. 51-63.
Wald, J.A. and Sorenson. 1984. Resolving the Query Inference Problem using
Steiner Trees. ACM Transactions on Database Systems Vol. 9 No. 3: pp. 348-
368. :
Kumar, V. 1987. Branch-and-Bound Search. In S.C. Shapiro (ed), Encyclopedia of

Artificial Intelligence. New York: Wiley-Interscience.
Nau, D.S. Kumar, V. and Kanal, L. 1984. General Branch and Bound, and its Relation to

A* and AO*. Artificial Intelligence Vol.23: pp.29-58.

