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Abstract

In this paper we investigate the queueing model for the traffic congestion
in Bangkok. We refer the traffic in' a crossing as the flow of jobs, the traffic
time in the crossing as those of the service time in a queueing system. The
traffic consists of two kinds of flows, main and secondary ones. Furthermore
we define a traffic controller as a server in the queueing system. At the instant
of service completion (cars passed the crossing) in the main flow, the controller
is continuously busy as long as there is any job in the main flow. As soon as
the controller finds the main flow empty, however, he takes another job in the
secondary flow (control of against flows). The service time of job is assumed to
be a random variable with exponential distribution. As regards taking services
in the secondary flows, two models are considered. In the first model the server
returns to the main flow immediately after a single job whether there is a job or
not in the main flow, while in the second model he keeps on taking another job
until he finds any job present in the main flow upon termination of each job of
secondary flow. By taking a job the server utilizes a part or all of his idle time
for additional job in the secondary flow.

For each of the models above, the stationary distribution of the system size
and that of the waiting time are obtained

1 Introduction

We consider the queueing system where the controller takes another kind of job of
secondary flow immediately after he becomes idle at the instant of service completion
for the main flow . Upon termination of the secondary flow’s service he returns to
serve the main flow. If any job is present in the main flow upon termination of main
flow’s service, the controller keeps for giving his service to each job, that is, the system
operates as an ordinary queue. The M/G/1 queue with secondary service system have
been studied by Levy and Yechiali [2] and Osawa and Doi [3].

To investigate the traffic congestion in Bangkok we consider the GI/M/1 queue
with the secondary system’s service whose length is assumed to be an exponentially
distributed random variable.

With regard to the system above, following two models are considered here.
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(Model 1.) Immediately after a single job of secondary flow, the controller returns
to the main flow and becomes ready for his service. If there is any job kept waiting
during the service of secondary flow, the controller begins to serve at once in the main
flow. Otherwise he waits for the first job to arrive at the main flow.

(Model 2.) Unless the controller finds any job present in the main flow upon
termination of a job of secondary flow, he keeps on taking another job of secondary
flow. When the controller finds any Job in the main flow upon termination of a
single job or several jobs in the secondary flow, he begins to serve in the main flow
immediately.

While the controller is away from the main flow by taking a secondary flow’s service,
he provides the secondary flow with the service as an additional work. Thus the server
utilizes the idle time. Let the idle time of the controller be the elapsed time during
which he sojourns with no main work for him in the main flow waiting for the first job
to arrive, then there can be no cases for the controller in Model 2 to possess his idle
time.

We can apply this queue to control the traffic congestion in Bangkok. Here, we
consider a crossing which have a main flow and secondary one. Arrivals to this crossing
are assumed to be the generally distributed. The length of service times for the
main flow or secondary one can be assumed to be exponentially distributed random
variables. A controller (a signal or a policeman) is controlling the traffic congestion
for the crossing.

2 Definition and Notations

We consider the GI/M/1 queue where the inter-arrival times are assumed to be
independent and identically distributed (ii.d.) random variables with distribution
function A(z). Further define

i =f zdA(z) < +oo,
AU

als] = fom e **dA(z) for Re s> 0.

The service times are i.i.d. random variables with common exponential distribution
1 —e™#*. If at the instant of service completion the server finds the system empty
he leaves for  a secondary flow’s service whose duration is a random variable with
exponential distribution 1 — e™*. On the other hand as long as any job is present
in the system upon termination of a service, the server continues to give his service
to each job as an ordinary queue. Upon termination of a secondary flow’s service,
in Model 1, the server immediately returns to the system and becomes ready for his
service, while in Model 2 the server keeps on taking another secondary flow’s service
with common distribution until he finds any job kept waiting upon return from the
secondary flow’s service. The following quantities are introduced:;

A
p:;(l,
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We define the following random variables for the instant of the n-th arrival, say t,,
in our queueing system ;

0 ; if the server is on secondary service at time ¢,
L= : : : :
1; if the server is not on secondary service at time t,,

&, = the number of jobs in the system just before the instant ¢,.

Then the processes {Z,¢} = {(Z,,&,);n = 1,2, - -} are homogeneous Markov chains.
In Model 1, the process, say {Z,£}1, processes the state space Si;

51 ={(’U,j);fu =051 = 0’1’2’...},

however, in Model 2, the state (1,0) is unable to exist because of successive secondary
flow’s services, and therefore the state space of the process {Z,£}; is

SZ = Sl v {(1:0)}

For these processes we use common notations, besides {Z, £} and S, with respect to
the stationary transition probabilities and their generating functions;

pu,v(i:j) — P{Zn+1 = v:&n-Fl — len —] u,gﬂ —1 1,}
((u,i),(u,j) £ Srn o 1:2: G ')1

Quilsi)=F 7Bl lwiesu—01
=0

for |z| < 1, where, in Model 2, we assume that p;,(0, ) = 0 for convenience. From
the expressions of the transition probabilities given in the following sections, it follows
easily that both chains {Z, £} are irreducible and aperiodic. On the assumption that
the steady state in our queue exists, we consider the system of equations for the
stationary probabilities;

Tyj = Z%z‘?ﬂv(i:j) = Z mip(i,3)  ((v,7) € S), (2)
i=0 i=0
where m,; = 1511 P{Z, = u,&, = i} for (u,i) € S and we take, in Model 2, mp = 0

for convenience.
Define the waiting time, say W,, as the elapsed time between the instant the
job arrives at the system and the instant the server begins to serve him. Using the
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stationary distribution {m,j; (v, 7) € S}, we deduce that the distribution function F(z)
of the waiting time are given by

T10 (z=0).

i Yooy e P (pa) /(e — 1) pdz + mpoe " vdz @

+ 30 mosmes T A fen T (pa)t (5 = 1) uda x> 0),

where f % g is convolution of two functions f and g.
Further we introduce the following notations;

’ﬂ'jZ’.'Toj‘“i”ﬂ'lj (j=0,1,2,---), .
L = the mean system size just before the instant of ajob's arrival,

W = the duration during which a job sojourns in the system.
Note that
E(W)=E(W,) +1/u.

Let ¢ denote the solution of the equation

(=alp(l-¢), 0<(<l (4)

It should be noted that such a unique solution ( exists if and only if p < 1. Evaluate
a(z) =alu(l —z)]at z=1—4 and z =0,

a(l —d) = ay,
a(0) = by.

3 The Analioic ofModel |

As already noted the process {Z, £}, is the Markov chain with state space Sy. In a
usual manner its transition probabilities are given as follows;

. Jo" e (uy) T (i +1 — j)ldA(y) (i+127#0),
pll(iaj) = (5)
Jo J e (pt) filpdt(1 — e =9)d A(y) (5 =0),

jﬂ I ve vtdte=(¥=1)
[y — O /G +1-5)ldAly)  (i+1>j#0),
por(i, j) = : : (6)
f fo ye ¥idt [ e A (puy )i/l
pdr (1 — e~ W=t=")dA(y) (=20

P / f e~ (ut) filudte™ 0 d A(y), (7)
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Jy"edA(y) | (=i+1),
poo(i, ) = [y veat fﬂy_t e AT (uT) /il : (8)
pdre™ 0= dA(y) (i=0),
Puu(t, §) =0 : (otherwise) (9)

for non-negative integers i. From (5)~(9) we derive the generating functions Q,, (2;7)
for |z| <1, =0,1 and (v,3) € S;

Zj_la{lu'(l o z)] (.7 T 11 21 e ')7
Qu(z7j) = ‘ (10)
(1 —a[p(l = 2)])/(1 - 2) - f(2) (4 =0),
) Jf(z)zj_l (3:1323)1
Qol(z;j): (l—ag)/(lﬁz)—al/(l—-z—é’) g (11)
AL el e (=)
@10(2;0) = f(2), (12)
&oo(2;0) = (a1 — 0 f(2))(1 — z — d), (13)

where f(z) = {ag—a[u(1-2)]}/(1—2—6). Note that the generating functions @ilz: 5)
given as above are analytic inside the unit circle. If |1 —6] < 1, using I’ Hosplta.l’
rule, we find that f(1 —d) = a;/d and that

Qu(1-6;0) = (1 — ag — a1)/5, : : (14)
a1 (1 — )i~ (i 20

Qu(l—4;j) = (15)
(1—-ao—a1—as)/d (j=0),

Qro(l = 5;0) = a1/5, : (16)

Quol1 = 6;0) = as/d. ' (17)

These equations @,,(1 — d;j) are utilized for obtaining the statmna,ry distribution of
the process {Z, £} in the case of ag + § = 1.

In order to derive the stationary distributions in Model 1, we now consider the
system of equations (2). When v = 0, from (8), equations (2) are written by

Toj; = TMoj—1Q0 (J' =12,-- ')a
and thus we have

To; = cag (=125, (18)
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where ¢ = mgo. Therefore the first term of the right hand side of equations (2) is given

by

Zﬂ'oipw(’i;j) = cQov(@0; ) ((v,7) € S1).

=0

By using the equation (1), we rewrite (5) as follows;

bit1-j (14+12>37#0),

pll(ﬁ.?j) = i :
Ek:H—l bk Al (J = 0):

where r; = p19(1,0). Then the system of equations (2) for my; and me become

?Tlo—’)fa-f—szlz Z by, — ;)

k=i+1

=T ZWIJT +Zbkzﬂ—lu

=0 k=1 =0

M=+ Z T1ibiv1—j =12

i=j—1

c= _CQUO(GU;O) + Z'n’rlﬂ"i,

=0

where v; = cQo1(ao; 7). If we define

i ;
:Zﬂli (j=0:1127”')7
1=0

then we have, from (19) and (21},

Do =10 — (L — Qoo(ae; 0)) + Zmbkﬂ-

Summing the equations for my; from ¢ = 0 to i = j yields

P;=¢;+ Z Prbrri-j

k=j—1

where we use the equation

9 7 Z’ch — c(1 — @oo(a0;0)).
k=0
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Let the vectors p, g and a matrix B be defined by

SP= (pD:p1:p2: o ')7
q= (90191192:"‘)1

by by O

by b1 by

Bl e ) (24)

then we deduce from (22) and (23) that these vectors satisfy

p=4q+pB. : (25)

Now we use the method of Matriz-Geometric Solution [1]. Then we have the following
stationary distributions. for the Model 1.

Theorem 1.
If p<1and ag+d # 1 then we obtain the stationary distributions as follows:

m = (1= )¢ + (1 — O{A = ao)ed — (1 - O)FH/(L = ¢ +5),
L=¢/(1=¢)+ (ao—0)/{(1 —an)(1 —¢+ )}
where &= (1 —ap —a; —9)/f(C).

4 The Analysis of Model 2

In this section we deal with Model 2. We have the following transition probabilities:
pu(i, 1) = f e (uy) T TdAGY) - ((+125#0), (26)
0

por(2,5) = /glm _/gy ve dte W= u(y — )} /(i 4 1 — 5)ldA(y)
(i+125+#0) (27)

pulis0)= [ [ ey fitudrdaly (29)
S e ¥dAly) (j=i+1)

poo(2.7) = 5 ‘ (29)
o ¥ vertds [ v ()i filpdrdAly) (G =0)

Dl =10 (otherwise). (30)

In the same way of Model 1 we have the following theorem.
Theorem 2.
If p <1 and ap+ 0 # 1 then we obtain the stationary distributions as follows:

mi=1-0¢ + 1= O{1 - a)ay - 1=} (1-¢-3),
L=¢/(1-¢)+(a0—¢)/{1 —an)1—(—8)}.
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5 Numerical Example
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We consider the case that the inter-arrival time has B, or M. Let the mean inter

arrival rate be equal to 1 and the mean service rate be equal to 1.1 — 2.0. Fig.1 and
Fig.2 shows the behavior of I for Model 1. From Theorem 1 and Theorem 2 we make
out the fact that the mean queue length of Model 2 is greater than that of Model 1.
Hence we see in the crossing the controller may pass

flow if the main flow is idle.

only one car from the secondary

! 35
18F
Ln 15t \
5 PRy
i \ Tl e=1a
a %, e — e
10 R 10k SR i
\_.__“ u=1.1
= ki
\ 5 o
: \\. e u=14
,\’\___ u=1.4 ,\ --:?5__ il
S e e R LI TR
£ u=2.0 — — . S
“———;-ﬁ_(d&‘ [ !
: : 5 0ni : 3 .0 1.5 Oedinary
0 0.5 k. 1.0 1.5 Og{lner:!mer; 0 0.3 z auIel}.:aer)
Fig. 1. Mean gueue size in Model 1; TFig. 2. Mean queue size in Model 1;

E,/M/1 queue with 1=1.0.
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