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Abstract

This paper considers synchronization queues (or synchronization nodes) with
two input flows and finite or infinite buffers. There is one flow of tokens for each
buffer, called a stream. Each stream is assumed to be a point process with finite
intensity. Tokens are held in the buffer until one is available from each flow and
a group-token is instantaneously released as a synchronized departure. In this
paper, we review the system state and the output processes of synchronization
queues.
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1 Introduction

This paper concerns some synchronization queues (or synchronization nodes) consisting
of two buffers with finite or infinite capacities. At a synchronization queue, tokens
arrive on distinct input flows and are stored. There is one flow for each buffer. The
flow of tokens to each buffer is called a stream, and is assumed to be a point process
with finite intensity. Tokens are held in the buffers until one is available from each flow.
As soon as this happens, one token from each buffer is taken to form a group-token
which is instantaneously released as a synchronized departure. Therefore, at least one
buffer has no tokens at any instant and tokens in the other buffers are held in each
buffer until one is available from each stream.

A synchronization queue having two input flows forms a so-called double-ended
queue (see Srivastava and Kashyap, 1982). A good example of this case is the taxi cab
problem where taxis or passengers form two different queues to wait for each other.
The another is seen in the assembly-like queue as a kitting problem (see for example
Bhat, 1986; Hopp and Simon, 1989; Latouche, 1981; Lipper and Sengupta, 1986; Som,
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Wilhelm and Disney, 1994; Takahashi, Osawa and Fujisawa, 1998, 2000). The almost
of works on such problems have focused on the system state process. In addition, such
queueing models appear in various areas, for instance, parallel processing, database
concurrency control, flexible manufacturing systems, communication protocols and on.

Considering queueing networks with synchronization nodes, the output flow from
such a node forms the input flow to the other node. Hence, studying output processes of
synchronization queues or nodes seem to be very important. Som, Wilhelm and Disney
(1994) and Takahashi, Osawa and Fujisawa (1998, 2000) investigated the distribution
of time intervals during consecutive synchronized outputs from a synchronization node
with two input flows. Prabhakar, Bambos and Mountford (2000) and Osawa (2001)
studied the output process of general synchronization queues with some input flows.
In this paper, we introduce their results for the system state and output processes of
the synchronization queues.

The rest of paper is organized as follows. In the next section, the mathematical
model and notation used in the paper is introduced to describe the system state of
synchronization queues. Further, the system state processes are considered for syn-
chronization queues with Poisson, PH-renewal and general streams. Moreover, the
output processes are discussed for synchronization queues with two finite or infinite
buffers. By applying conservation law, relations between the stationary distributions
of the system state at an arbitrary point in time, just prior and after arrival time and
an output point in time are discussed.

2 Model description and notation

We consider a synchronization queue with two buffers labeled as 1, 2. The ith buffer,
i =1.2. has a random flow called stream i and the capacity i; where I < oo, that is,
the capacity of buffer may be finite or infinite. Arriving tokens are held in the buffers,
until one is available from each stream. Therefore, at least one buffer is always empty.
By arriving to stream ¢ when only buffer i is empty, exactly one token is taken from
each buffer and forms a group to be released as a synchronized departure.

Let @i(t) be the number of tokens held in buffer i at time ¢. Since exactly one
buffer is empty at any instant by definition of the synchronization operation, the state

space of {Q(t)} is
S={Jj=0nh)|0<ji<K;, jija=0}.
For i = 1,2, we also define A
Si={jeES|ji=0and j, #0fork#i},
then we have § = & U S, U {(0.0)}. Define
Z(t) = Qu(f) — Qa(t), (1)

the system state process can be represented by one-din.ensional process {Z(t)}. That
is, if Z(t) > (<) 0, there are no tokens at buffer 2 (1), and tokens at buffer 1 (2) have
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to wait for arrivals of paired tokens to buffer 2 (1). The rest case Z(f) = 0 means that
both buffers are empty at time t.

Stream ¢ is assumed to be a point process IV;, and a probability space for {Z )} N
and N, is denoted by (@, F, P). We also assume that the point process NV; has finite
intensity A; = E{N;(0,1]}, where the expectation is taken with respect to P, and has
jumps at time ¢;,, where N;({t}) =0 for ¢ # ¢, , and

dean e R e e e B (2)

path wise for each i = 1,2. In addition, these processes are assumed to be all simple and
the superposed point process Ny + N is also simple. We refer the above synchronization
quete as

Gl /I‘L'l Jr.Gz/I\'g,

where G; means the corresponding point process NN; is arbitrarily distributed.

3 System state processes

In this section we deal with the system state processes { Z(t)} of synchronization queues
(nodes) with finite buffers, that is, G1 /A + G /K5 where K; and K, are finite. Note
that —K, < Z(t) < K. In this case, if Z(t) = K, (—K3), tokens arriving to buffer
1 (2) are blocked and rejected. We considm the stationary process {Z(t)} and the
stationary distribution {p(k)} where p(k) = P[Z(t) = k], —K; < k < K.

3.1 Poisson arrivals

Consider a synchronization queue with two Poisson streams, i.e., M;/K; + M, /Ko,
where stream 1 and 2 are Poisson arrivals of rates A; and A, respectively. We then
observe that {Z(t)} becomes a birth-death process and get the balance equation for

{p(k)}

AMp(=K;) = Aop(— K, + 1)
(Al -+ Ag)p(k) = )\gp(k il 1) + Alp(k == 1), —-Ky < k< Ky,
/\2P(I(1) = Alp(.ﬁ.’l = 1)

These are rewritten by
Aop(k) = Mp(k — 1), K, +1< k< K.

Theorem 1 For M;/K, + M,/ K, the stationary distribution of the system state
process 15 given by

p(k) = p*p(0), — K, <ik < Ky, (3)
where 3 .
1 TR
e i b0 =
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Note that {Z(t)} is time-reversible (see Osawa, 1985), that is, the relation p(k)q(k, k') =
p(A)q(k', k) for any states & and &’ which means

Pl Zlty =k -2 =k = B2 —k, Z{)— k], foranyit it

where ¢(-,:) are transition rates.

3.2 Poisson and PH-renewal arrivals

Suppose that streams 1 and 2 form a Poisson process of rate A; and a PH-renewal
process with interarrival time distribution of phase type having representation (a, T'),
respectively. This queue is represented by M /K, +PH/K,. We assume that the matrix
T is of finite order m and ae = 1 where e is a column vector with all its components
equal to unity.

For this model, the system state is represented by {(Z(t), J(t))} where Z(t) was
defined by (1) and J(f) is the phase state of the arrival process of stream 2 at time 7.
Then the process {(Z(t), J(t))} is a Markov process with the state space

{(k,j) | —Ry <k <Ky, 1<j<m}.
and a generator matrix @ is given by
B, MI O
Tle: A T @

SO ST e AL N )
@ o A AT O

O Toa Al AII O
(9] Toa A]_ A].I
O =T T

where I and O are the identity and zero matrices of order m, respectively, By =
Pl T =N T and A = J=4\T
Denote the stationary probabilities for {(Z(t), J(t))} by

k=R A e = (o ] sk <Ryl €9 <m,
and these are partitioned as
i (Gl TG e (= 1m0 (), o e () )

where (k) = (p(k. 1), p(k,2). -+ .p(k,m)) is the probability vector. Then = is solved
by the equation w€ = 0 which is given in block matrix form

(=53 By + w(—L, + 1) T = 0,

k=DM T+nm(R)A +m(k+ D)\ T=0—-K,+1<k<Kk;—1,
() — DA I+ ()T = 0.
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Theorem 2 (Neuts, 1981). For M/K, + PH/K,, the stationary distribution of the
system state process is given in matriz geometric form as follows:
k

k) =m0 R —K, <k< K, -1,
n(K)) = wO)R™ ™ (=AT™).
where R is the rate matriz for the M/PH/1 queue defined by
R = MM -T-)ea)™".

Remark 1 For following two cases of synchronization queues M/K, + M/K, and
M/K, + PH/K, which one buffer has infinite capacities, it is well-known that the
above results are available;

e p<1, K; =ccand K; < oo,
e p>1, Ki < coand Ky = o0.

Remark 2 Neuts (1981) also studied the stationary distribution of the system state
for a synchronization queue PH; /K + PH,/K,. Further, for a synchronization queue
M/K, + GI/K,, Srivastava et al. (1982) studied the stationary distribution {p(k)}
by using a supplementary variable method. However, their expressions of p(k) are
complicated.

3.3 General streams

In this section, we discuss the system state process of synchronization queues with two
general streams and finite buffers, G, /K + G2/k5. Suppose that {Q(t)}, N; and N,
are jointly stationary and ergodic, then we can define Palm probability measures P
and P, of P with respect to N} and Nj, respectively. Further, define

p(k) = P[Z = k], p; (k) = P[Z =k], pf(k)=P[Z ' =k]. i=1, 2,

where Z = Z(0), Z° = Z(07), Z° = Z(0t) and 07 is just prior time 0. It follows
that {p(k)}, {p;y (k)} and {p; (k)} are stationary distributions of the system state at
an arbitrary point in time, just before and just after time points of N;, respectively.
The expectation with respect to P; is denoted by F; for i = 1 and 2.

We now consider the relationship between distributions of the system state at arrival
points in time of both streams. Define

X(t) {HMB% 1< k< K
Fa Y —— :
Lizw<ys SR

Applying the rate conservation law to X(¢), N; and N, (see Miyazawa, 1983, and
Miyazawa and Yamazaki, 1992) yields

E[X;(0)] = 3 X { Ei[X1(07)] — Ei[X,(0)]] . e
k=1

where X (%) is a derivative of Xy (t) at t.
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Theorem 3 (Osawa, 2001). The relation between distributions of the system state
Just before arrival points in time of both streams is given by

Apy (k) = Aapy (K + 1), ~Ky k<K - 1. (5)

Proof. Note that X} (t) =0 a.s. P for all k and ¢, then E[X}(0}] = 0.
For 1 < k < K, since

B0 = Bla 2k, EBEDRO)=RIZ =k, =12

(4) is equivalent to

0 = M{A[Z 2k]-RlZ 2k} +0{R[Z >k]|-B[Z" >k]}. (6
Here, using the relation |

{Z' >k}={Z >k-1}as P and {Z° >k} ={Z >k+1}as B,
(6) is rewritten as
0 = M{R[Z 2k]-B[Z 2k-1]}+%{BlZ 2k]-B[Z 2k+1]}

= —Awpy (k= 1) + Aapy (K).

Similarly, for —K, < k < —1, we get
0 = M{P[Z <k]|-R[Z <k]}+0M{R[Z <k]-B[Z" <k]}

= M{PlZ <k]-R[Z <k-11}+0{R[Z <k]-PR[Z <k+1]}

= Aipi (k) = dopy (K + 1)
Therefore, the theorem holds. =]
Corollary 4 The relation between distributions of the system state just after arrival
points in time of both streams is gwen by

ot = Npl(k=1), | —EirisheT

Remark 3 Suppose that stream 1 forms a Poisson arrival of rate A;, then PASTA
(Poisson Arrivals See Time Average) property says p; (k) = p(k) for — Ky < k < K,
and thus (5) is rewritten as

py(k) = pp(k—1), —HK,+1<k<k,
py(=h32) = 1—p+pp(ky).

Further, in a synchronization queue M /K, + M/K,, we have

p1 (k) = p3 (k) = p(k), —RL, < k<R,
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4 OQutputs from queues with infinite buffer

Let N, be the output process of the synchronization queue. Then we have

Na({t}) = Ni({t)1ze-)<oy + Na({t})1iz0-)501

where ¢~ is just prior time ¢t and 14 is an indicator function of a set A.

In this section we are interested in the output process of a synchronization queue
with a finite and an infinite capacity buffers. We consider a synchronization queue
G/K; + Gz/o0, that is, buffer 2 has an infinite capacity. Suppose that the synchro-
nization operation starts at time 0 and the system is empty at that time, i.e., all buffers
are empty.

Theorem 5 (Prabhakar, Bambos and Mountford, 2000).  For the synchro-

nization queue G1/Ki+ Gy /o0, if buffer 1 has a stream with intensity less than that of
strearn 2, i.e.. \; < A2, the output process converges strongly to the process Nj.

Proof. Using theory of point processes, since A; < A2, then there is a finite random

time 7 such that
Ny (0,7 +t] < N2(0,7 + 1] 5o

Thus we have

QT+ 1) > No(0, 7 + 8] — N1 (0, 7 +t >0, t>0
which means buffer 2 can never be empty after 7. Therefore we get
Ny({t}) = Mi({t}) a.s. P, t>T,

This implies that buffer 2 has nothing to do with the output instants after 7. From
this observation and synchronization operations, the theorem is obtained. (=

Remark 4 The more general results for the output process of a synchronization
queue with some finite or infinite capacity buffers have been shown by Prabhakar et
al. (2000) and Osawa (2001).

Remark 5 In a queue Gy /I + Gafoo with A; > Ay, there exists the stationary
distribution and the output process seems to be complicated.
5 Outputs from queues with finite buffers

In this section. we consider outputs from a synchronization queue with two finite
buffers. G /K| + G/ I\y.
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5.1 System state at output point in time

We now define a Palin probability measure P, of P with respect to Ny and distributions
{p7(k)} and {pF(k)} where

=Rl = k) = =Pz =], -, < k< K.
Note that {p7(k)} and {pj (k)} mean stationary distributions of the system state just
hefore and just after time points of Ny, respectively. We also denote the expectation
with respect to Py by Ey. '

We study the system state at an output point in time and derive its relationship
with-ones at arrival time points. For our purpose, define the residual arrival time U;(#)
of stream ¢ and the residual output time D(#) at time £:

Us(t) Z(t) > 0,
D)= Ui(2) Z(t) <0,
max(U7(t), Uy(2)), Zit) =10

Denote the intensity of point process Ny by Ay = E{N4(0,1]}, then Ay is the output
rate. Let DY = D(0F) be the output interval, where 0t and D¥ mean time just after
an output, we then have

; A Eile D7 77—, L
B o . ] T (7)
AlEl[C‘_eD ,Z— = nl-f]., —11'2 < k S —1.,

from the ergodicity of the process. By setting § = 0 in (7) and using (5), we have the
following theorem.

Theorem 6 (Osawa, 2001).  Relations between stationary distributions {py (k)}
and {p; (k)} are giwen by

\ ‘)—-(1,) it Aipl-(ﬁ i 1) = /\Bp;(]")1 1 S 'l“ S I\.-'lr
AP A (k) = Xpg (B +1);  —Ba<k<-L

Further, the output rate Ay satisfies
Aa = M{1 —pT(I0)} = Ao{l — p5 (=R}

Remark 6 Suppose that stream 1 forms a Poisson arrival of rate A;, then using
PAST A property yields

R Aip(k = 1), 1<k <Ky,
Aapg (k) = { Xip(k). —-h, <k < -1,

Moo= M{1—p(Ay))
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5.2 Output interval

Denote the stationary distribution of the output interval by Fy(r) = PJ[D-‘_ < x]. Since

toy ATl
D" = Hbe ZE a.s. Py,
max(ty1,ta1). o =lor 1

where ¢; | and t,, have been defined by (2), we have

Ay — Ay
Fux) = Y Pu[Np(0,2]> 0|27 = k| pz (k) + 3 Pu[Ni(0,2] > 0|27 = k] pz(k)
k=2

k=—2
+ Py [Ni(0,2] > 0, Ny(0,0] > 0,2 = 1]
+ Pa [Ni(0.2] > 0. Ny(0,2] > 0,27 = -1]. (8)

Suppose that both streams are renewal point processes with distribution function
G;(x) of the arrival time, i = 1,2. Then (8) becomes

o f\'-_]

I
Fo(x) = Go(x) Y pz (k) +Gi(x) Y py(k)
k=2

k=-2

+ Gy(x) Py[U; < 2]p3 (1) 4+ Gi(2)Py[Uy < &) pg (=1). (9)
Remark 7 Ina queue M, /K| + M,/L\,, since

1-— ; 4 :
e s e
Ol e )
Fy(x) can be calculated by (9). Som et al. (1994) derived Fy(x) by a direct calculation.
For M/K, + PH/R,, the stationary distribution {p7 (k)} is given by

k=1

vr(0)R e, ik < o,

i ,l.f = i
P (k) { vm(0)R e, SR

where v = A /Ay, Applying this result, it is shown that Fy(x) has a PH distribution
with some representation. Takahashi et al. (2000) derived it by a direct calculation.

5.3 Remaining output time
Let. D = D(0). D = D(07) and F(x) = P[D < z], then we should note that F(x)
is the stationary distributions of the remaining output time at an arbitrary point in
tie. We consider the relationship between F(x) and F,{x). For our purpose. define

‘{"( ) 1{3[{)>L‘}(:'_HD(”. 1 S k § I\.—j.

{ f. — —
- A_ =
1{zm§k}f'_ﬁum- =h s =l

Applying again the rate conservation law to X{(¢). N, and Ny, we have the following
lemima,
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Lemma 7 Forl<k<K;,
0B[22 Z = k] = SN Flenl 75 — k1 AP (7 > k)
BT g k] (10)
For —K, <k < —1,
9E[e P, Z < k]

—MEs[e7?. 27 = k4 1)+ M{B[Z” < R
Ble”™ 7 <k )] (11)
Proof. Since D'(t) = —1 on {Z(t) > k}, by the rate conservation law to XZ(t), N,
and N, for 1 < k < K, we have
BE[e™2,Z > k] = M{Bi[e®® .27 > k- Efe*®, 2" > K]}
X {Bale™®® ,Z7 > k] = Ed{e_BD+,Z+ >k},
=it 0 > k- Bile @2 mn s ke
B SH-BE 7 > ki),
= “MEe?? 2 =k-1]}
DABIZE >h] - B2 2 > k],

(1
where we should note that D™ = D" on {Z > 1} a.s. P, and D™ = 0 on {Z >
1} a.s. Py. Using (7) and Lemma 6, (12) becomes (10).

In the same way, for —I, < k < —1, we have (11).

o

O

Remark 8 For k= I, and — K5, (10) and (11) are rewritten as follows:
8B[eP,Z = 1] =| —AiBile P27 =Ky — 1]+ MBiZ = ki),
0E[eP, 2 = ~I,] = —MaBEy[e 2,727 = — K, + 1] + MPi|Z = —Fy).
Lemma 8
0B’ Zi—0] — MNE[P Zi =0+ B2 2
vl e S L s s S
Proof. Define 7
Xo() = Ygigeaye 29,
and apply the rate conservation law to X¢(¢), N, and N,. Then we have
BE[e2,Z2=0] = NAE[e"2, 2 =0/ - Bie™" . 2" = q)}
S ) s T e
= B2 s B2 g =]
N e
= MEB\[e?? Z =0]+ B2 .27 =0
e s s e e
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Let Fi?(z) be the stationary excess time distribution of F,(z). ;From the above
arguments, we have the following result.

Theorem 9 (Osawa, 2001). In the synchronization queue G1/K; + Go/ Ky with
finite capacity buffers, the stationary distribution of the residual output time at an
arbitrary point in time s equivalent to Fd(,e)(;r;).

Proof. For j=11n (10) and j = —1 in (11), we have

9E[e®P,Z > 1] = MEJl - S oA Bl =t 7 0],
BB G S e S e

Using these equations and (13), we get
OB 2] = NBl— e 7 sl e N =Ble™® 2 =1}
+ NEBfI- 2,720 < 3 {ng(=1) - Bl P, 20 = 1]}

S Bl R

Since we now have

E[(‘_QD] = AdEd

l—e“"'D+-i
e

the theorem holds. |
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