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Abstract

In this paper, four numerical methods for solving iterative ordinary differ-
cntial equations are introduced and used them to solve four examples. The
results from each method are compared.

1 Introduction

The first order iterative ordinary differential equation in the interval [0,a] is of the

form

Y _ @)ooy @) (1)

with the initial (t(mditmn
y(0) = ¢ (2)
where m is a positive integer greater than 1, ¢ is positive real number and
v (x) = y(y(@)), ¥° () = y(y(e))) = Y@ @), .., y™ (@) = y(y™ ' (z))-

I[ fis continmous then the problem (1)-(2) is equivalent to the problem of contin-
nos solution of the integral equation

_(+/ £, y(0), Y2 (0), oo g™ (E))dt. (

()
ST



KMITL Sci. J. Vol. 3 No. 1 Feb. 2003

Let f(z,z21,22, ..., 2m) be defined and continuous in the domain [0,a] xR™ say D,
and let

Ifl('rizl)‘ZZ'l"szu_)l g I\’ (4)
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for all (z, 21, 22, -+, Zm), (&, 2Z1,Z2, .-, Zm) in D and K, M, My, ..., M, In RT and let,

Pl My KM, S EENL KT (6)

S= Myt (K+D)My+ (K2 4+ K+ )M+ ..+ (K™ + K™ + 4+ K+ )M, (7)

Tm= B+ Sm ‘ {8)
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O, = My+(K+1) Myt (K2 4+ K+1) My + (K3 + K2+ K+ 1) Myt (K™ 4+ K™ 72 4 A K 1) M,,

(9)

then we have the following theorems.

Theorem 1 (see prove in Podisuk) IfaS,, < e~ and f satisfies the above con-
ditions then there exists at most one solution to the problem (1)-(2).

Theorem 2 (see prove in Podisuk) If aT,, < 1 and f satisfies the conditions of
the theorem 1 then there ezists at most one solution to the problem (1)-(2).

Now let us suppose that

c+aK <a (10)

aii=il (11)

and let us consider the following sequences

(@) =+ [ Ft a0 9ia(0), - T (B)dt (12)
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y-2,n+l($) =G /';00 f(t: yZ,H(t)J yg,n(t)1 RE) y;?r:l(y2,n+1(t)))dt (1‘3)

L ;
Ymt1nr1(Z) = c +/0 I, Ymt1n(t), y:z+l,n+1(_t)1 e y;';+1',b+1(t))dt (14)

n=(0,1,2,... where y1o(z),ya0(z), - Ym+1,0(z) are fixed functions of class ¢ map
[0,a] to [0,a] such that |yr g, il e il < RE Eeiice wo hove the following
theorem.

Theorem 3 (see prove in Podisuk) Let the assumption of theorem 1 holds and
the conditions (10)-(11) are satisfied then the sequences (12)-(14) converge uniformily
to the (unique) solution of the problem (1 )-(2).

2 Numerical Methods

The existing numerical methods for solving the ordinary differential equations can
not solve the problem of iterative ordinary differential equations. The reason is that,
to find the value of y(x+h), we need to use the values of v2(2),y*(z), ..., y™(x) which
may mvolve in using the unknown values of y(z) where z is greater than x. We
must nse their approximating values instead. We will use two methods to find these
approximating values. These two methods are the Cubic Spline Interpolation Method
and the Newton Divided Difference Method. Then we will combine them with the
Runge-Kutta Method and the Simpson Method to solve our problems. We will come
up with four numerical methods and they are as follows.

e Pirst Method. Partition the interval [0,a] into k partitions at Tor— 0L
hy .. zp="th, .. 2, — kh = a where b — a/k. Choose any initial function Yol(:)
that satisfies the conditions of theorem 3 with the initial value ¢ then use them
to find y;(z) at each partition point by using Simpson method and Newton
divided difference method. Then use y,(z) to find Yya(z). We will continue this
process until Yr=F [y, (z;) — Yn(z;)| < €, where € is a small positive real

number chosen ahead of time.

o Second Method. It is the same as the first method but using Runge-Kutta
method and Newton divided difference method.

e Third method. It is the same as the first method but using Simpson method
and cubic spline method.

e Fourth Method. It is the same as the first method but using Runge-Kutta
method and cubic spline method.
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3 Examples
e Example 1. Solve the problem
o) = () 2 (a), 00,1 (18
el s e e et e 0 )
y(0) =0 (16)
where its analytical solution is y(z) = Ti by using k=4, 8 and 16 and ¢ =

(.000005. The results of all four methods are in Table 1, Table 2, Table 3, Table
4, Table 5 and Table 6 for k=4, 8 and 16 respectively.

o Example 2. Solve the problem
yl(z) = 1 — 2° + zy*(x), z¢[0, 1] ' (17)

y(0) =0 (18)

where its analytical solution is y(x)=x, by using k=8 and £=0.000005. The
results of all four methods are in Table 7 and Table 8.

e Example 3. Solve the problem

yi(z) = y2(x), z€[0, 0.5] (19)

y(0) = 0.25. (20)

We do not, know the analytical solution of the problem (19)-(20). The numerical
results from the above four methods with £ =0.000005 and k=8 are in Table 9.

e Example 4. Solve the problem
yi(z) = v (z), ze[0,0.5] (21)
=02 (22)

We do not know the analytical solution of the problem (21)-(22). The numerical
results from the above four methods with € =0.000005 and k=8 arc in Table

10.

4 tables
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first method second method
16 iterations 14 iterations
T y(z;) Ui error Ui error
0.00 0.000000 0.000000 0.000000 0.000000 0.000000
0.25 0.200000 0.209312 0.009312 0.199512 0.000488
0.50° 0.333333 0.345225 0.011892 0.332614 0.000720
0.75 0.428571 0.435251 0.006754 0.427757 0.000815
1.00 0.500000 0.496430 0.003570 0.498952 0.001048
Table 1: k=4
third method fourth method
8 iterations 8 iterations
T y(x) Vi error Ui error
0.00  0.000000 0.000000 0.000000 0.000000 0.000000
0.25 0.200000 0.200111 0.000112 0.200121 0.000121

0.50  0.333333 0.333530 0.000197 0.333545 0.000212
0.75 0.428571 0.418874 0.000303 0.428894 0.008323
1.00  0.500000 0.500394 - 0.000394 0.500422 0.000422

Table 2: k=4

first method second method
15 iterations 14 iterations
T y(x;) Ui error Ui error

0.000 0.000000 0.000000 0.000000 0.000000 0.000000
(»125 0.111111 i 112513 0.001402 0.111089 0.000022
0.250 0.200000 0.200288 0.000288 0.199982 0.000018
037 0272527 0.268133 0.004594 0.272708 0.000020
0.500 0.333333 0.320302 0.013032 0.333290 0.000044
0.625 0.384615 0.360293 0.024322 0.384553 0.000062
0.750. 0.428571 0.392237 0.036334 0.428496 0.000076
0.875 0.466667 0.422827 0.043839 0.466570 0.000096
1.000  0.500000 (0.447318 0.052682 0.499888 0.000112

Table 3: k=8
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third method fourth method
11 iterations 11 iterations
T y(x;) i error Vi error
0.000 0.000000 0.000000 0.000000 0.000000 0.000000
e g g 0.111115 0.000005 0.111117 0.000007
0.250 0.200000 0.200007 0.000007 0.200001 0.000001
(375 022020 0.272738 0.000010 0.272740 0.000013
(5005 50:333353 0.333347 0.000014 0.333351 0.000017
0.625 0.384615 0.384615 0.000017 0.384636 0.000021
0.750 0.428571 0.428592 0.000020 0.428596 - 0.000025
0.875 0.466667 0.466690 0.000024 0.466696 0.000029
1.000  0.500000 0.500027 0.000027 0.500033 0.000033
Table 4: k=8
first method second method
16 iterations 14 iterations
i y(x;) Yi error i error
(0.0000  0.000000 0.000000 0.000000 0.00000 0.000000
0.0625 0.058824 0.059007 0.000184 0.058823 0.000001
(1250 - 0adi Tl 0.110968 0.000143 0.11111 0.000000
0.1875 0.157895 0.156535 0.001360 0.157894 0.000001
0.2500 0.200000 (0.196866 0.003134 (.199998 0.000002
0.3125 0.238095 0.233384 0.004711 0.238093 0.000002
(0:3750.  0.272721 0.266062 0.006665 0.272724 0.000003
0.4375 0.304348 0.296066 0.008281 0.304344 0.000004
0.5000 0.333333 0.323226 0.010107 0.333329 0.000004
0.5625 0.360000 0.348478 0.011522 0.359947 (.000005
0.6250 0.384615 0.371419 0.013197 0.384609 0.000006
0.6875 0.407407 0.392718 0.014690 0.407401 0.000006
0.7500 (.428571 0.412242 0.016330 0.428564 0.000007
().8125 ().448276 0.430136 0.018140 (0.448268 0.000008
0.8750 0.466667 0.446697 0.019970 0.466658 0.000009
0.9375 0.483871 0.462476 0.021395 0.483861 0.000009
1.0000  0.500000 0.477076 0.022924 0.499990 0.000010

Table 5: k=16
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third method fourth method
8 iterations 8 iterations
T y(x;) Vi error Ui error
0.0000 0.000000 0.000000 0.000000 0.00000 0.000000

0.0625 0.058824 0.058824 0.000000 0.058824 0.000000
0.1250 0.111111 0.111111 0.000000 0.111111 0.000000
0.1875 0.157895 0.157895 0.000000 0.157895 0.000000
0.2500  0.200000 0.200000 0.000000 0.200000 0.000000
0.3125 0.238095 0.238096 0.000000 0.238096 0.000000
0:3750: . 0.272727 0.272728 0.000001 0.272728 0.000001
0.4375 0.304348 0.304349 0.000001 0.304349 0.000001
0.5000 0.333333 0.333334 0.000001 0.333335 0.000002
0.5625 0.360000 0.360001 0.000001 0.360001 0.000001

0.6250 0.384615 0.384616 0.000001 0.384617 0.000002
0.6875 0.407407 0.407409 0.000002 0.407409 0.000002
0.7500 0.428571 0.428573 0.000002 0.428573 0.000002
0.8125 (.448276 0.448277 0.000001  0.448278 0.000002
0.8750 0.466667 0.466668 0.000001 0.466669 0.000002
0.9375 0.483871 0.483873 0.000002 0.483873 0.000002
1.0000 0.500000 0.500001 0.000001 0.500002 0.000002
Table 6: k=16
first method second methc:!
14 iterations 11 iterations
T; y(z;) Y; error Ui error
(3.000  0.000000 0.000000 0.000000 0.00000 (0.000000
0,125 0.125000 0.125000 0.000000 0.125000 0.000000
0.250 0.250000 0.250000 0.000000 0.250000 0.000000
0.375 0.375000 0.375000 0.000000 0.375000 0.000000
0.500 0.500000 0.500000 0.000000 0.500000 . 0.000000
0.625 0.625000 0.625000 0.000000 0.625000 0.000000
0.750 0.750000 0.750000 0.000000 0.749999 0.000001
0.875 0.875000 0.874999 0.000001 0.874999 0.000001
1.000 1.000000 0.999999 0.000001 0.999999 0.000001

Table 7: k=8
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third method fourth method
13 iterations 11 iterations
€ y(x;) Ui error U; error
0.000 0.000000 0.000000 0.000000 0.00000 0.000000

0.125 0.125000 0.125000 0.000000 0.125000 0.000000
0.250 0.250000 0.250000 0.000000 0.250000 0.000000
0.375 0.375000 0.375000 0.000000 0.375000 0.000000
0.500 0.500000 0.500000 0.000000 0.500000 0.000000
0.625 0.625000 0.625000 0.000000 0.625000 0.000000
0.750 0.750000 0.749999 0.000001 0.750000 0.000000

0.875 0.875000 0.874999 0.000001 0.874999 0.000001
1.000  1.000000 0.999999 0.000001 0.999999 0.000001
Table 8: k=8

first method second method third method fourth method
36 iterations 31 iterations 32 iterations 31 iterations

N Yi Yi Yi Yi
0.0625 0.271494 0.271425 0.271425 0.271425
0.1250 0.293514 0.293360 0.293360 0.293360
(.1875 0.316080 0.315820 0.315820 0.315820
(0.2500 0.339182 0.338822 0.338822 0.338822
(0.3125 (.362864 0.362386 - 0.362384 0.362385
0.3750 0.387115 0.386529 0.386529 0.386529
(0.4375 (0.411979 0.411272 0.411272 0.411272
(1.5000 0.437492 0.436636 0 138636 0.436636

Table 9: k=8
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first method second method third method fourth method
33 iterations 28 iterations 30 iterations 28 iterations

X Ui Yi Yi Yi
00625 - 0217061 (.216855 0.217053 0.216855
(0.1250 0.234163 0.233790 0.234148 0.233790
0.1875 0.251308 0.250804 0.251285 0.250804
().2500 (0.268495 0.267898 0.268463 0.267898
(13125 ().285724 0.285073 0.285684 0.285073
0.3750 0.302996 0.302329 0.302947 0.302329
0.4375 0.320309 0.319666 0.320252 0.319667
0.5000 0.337666 0.337086 0.337599 0.337086
Table 10: k=8

5 Conclusion

The results of all four methods are equally good and are acceptable. We need small
wunber of € it we need more accuracy. Thus this paper recomimends all four methods
to solve onr problem (1)-(2). However, in each step, the cubic spline method needs
more computer time than the Newton divided difference method.
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