KMITL Sci. J. Vol.6 No.2a May — Dec. 2006

CONSISTENCY CHECK OF CLASS DIAGRAM AND SEQUENCE
DIAGRAMS USING B-METHOD

*
Waitaya Sricharunrat ' and Wiwat Vatanawood”

Department of Computer Engineering, Faculty of Engineering,
Chulalongkorn University, Pathumwan, Bangkok, THailand.

ABSTRACT

This paper proposes a systematic mean of consistency check for UML class diagram and its related
sequence diagrams representing the critical scenarios using B-Method. The B-Method is a formal
specification modeling which is used to describe the semantics of system in terms of mathematical
notations — set theory and first-order predicate logic. In our approach, a class diagram and its related
sequence diagrams are formally translated into B Abstract Machine (BAM) using a set of our
translation rules. Qur translation rules generate the semantics of both structural and behavioral
properties of the UML class diagram and sequence diagrams.

This paper focuses on two parts. Firstly. the formalization of the UML class diagram - a
collection of classes and their relations such as association. aggregation. composition. generalization or
inheritance. is investigated and defined for the structural property. Sccondly. the formalization of UML
sequence diagrams — a collection of scenarios which illustrate the major interactions between related
classes as to achieve a specific goal. is defined for the behavioral property and verified against their
original structure in class diagram. Moreover. we formally define the complex operations within the
critical sequence diagrams by exploiting the calling-called dependency between class operations from
Hung Ledang’s work. The formal specitication in BAM is finally generated and verified by B-Toolkit.

KEYWORDS: UMIL.. Class Diagram. Scquence Diagrams. B-Method. Formal Specifications
Modeling. B Abstract Machine

1. INTRODUCTION

UML, (Unified Modeling Language) is the language used to analyze and design soltware system. Both
developers and users usually prepare a UML class diagram and its related sequence diagrams (o
describe the structural and behavioral properties of the target software system. Practically. they have to
finish a large number of UML class diagrams and sequence diagrams and the verification of the UMI,
diagrams must be tediously conducted to walkthrough the consistency among the diagrams. An
alternative of the systematic approach to deal with these problems is to exploit the formal specifications
modeling to ease the consistency checking. The formal specification modeling is a formal deseription
of a software system in terms of mathematical notations as to help prove of syntactical and semantic
correctness [1]. Therefore. both developers and users understand the software system model in the
same way. [2]. [3]

This paper proposes an approach to formally deline class diagram and sequence diagrams into
formal specifications called BAM (B Abstract Machinc). Firstly. the approach will translates all
attributes of classes from class diagram and relationships among those classes. Secondly. such
approach will translate operations of class diagram from critical scenarios of sequence diagrams. Our
approach applies Hung Ledang’s Calling-Called Dependency concepts on how to build the hicrarchical
structure of the related class operations [4]. [5]. The result of the translation in BAM statements helps
to check the consistency of software system which is represented by class diagram and scquence
diagrams.

This paper is organized as follows. Section 2 presents overview of backgrounds. Section 3
explains overview of our purposed scheme. while a case study of cash money transfer bank will be

*
Corresponding author.
E-mail: Waitaya.Si@Student.chula.ac.th. wiwat/@chula.ac.th

KMITL Sci. J. Vol.6 No.2a May — Dec. 2006

described in section 4. Section 5 illustrates the formalization of UML class diagram and sequence
diagrams. Finally, in section 6, the conclusion of this work is discussed.

2. OVERVIEW OF BACKGROUNDS

2.1 The Calling-Called Dependency between Class Operations [4], [5]

Hung Ledang proposed an approach to build the relationship among the class operations into
hierarchical tree, called the Calling-Called dependency between class operations, to help construct a
BAM. Hung Ledang divided the class operations regarding their calling behaviors into 2 groups; 1)
Non-Basic operations are the class operations that typically call the other operations during their run-
time activities and 2) Basic operations are the operations that typically not call the other operations.

1 Non-Basic Op1(i
—_— 5

1.1 Non-Basic Op20L |

1.1.1 Basic Op2.10

|

| |
|

[|

Figure 1.Non-Basic and Basic Operations from critical scenario of sequence diagram

In figure 1, both operation Opl() and Op2() are Non-Basic operations that invoke the other
operations at least once. For example, the operation Op () calls Op2() once while the operation Op2()
also calls Op2.1(). The operation Op2.1() is Basic operation that does not call the other operations at
all. The Non-Basic operation Opl() is a calling-operation, and the Basic Op2.1() is called-operation.
While the Non-Basic operation Op2() is both calling-operation and called-operation as shown in figure
2.

A

1 Non-Basic Op1() Call 1&::;‘;‘3015;:33‘?:;)

(Calling Operation)

1.1.1 Basic Op2.1()
e I (Called Operation)

1.1 Non-Basic Op2(}
(Calling Operation)

Call

Figure 2.Calling-Called Dependency of Non-Basic and Basic Operations

2.2 B-Method [1]
The B-Method represents a formal specifications modeling that can be used in software development

life cycle. The specifications method focuses on the concepts of modularity and information hiding.
The BAM notations are used to specify a module to represent each class or object. Each module is
defined to encapsulate structural and behavioral properties. The relationship between the BAMs can be
defined to represent their collaborations. In fact, developer practically considers a BAM module to a
class and utilizes them for developing many complex systems. The structure of BAM is graphically
illustrated in figure 3A and the essential clause names of BAM syntax is listed in figure 3B.

242

KMITL Sci. J. Vol.6 No.2a May — Dec. 2006

MACHINE
Input

USES
\ SEES
: 2 SETS

Operation | !

VARIABLES

INVARIANT

Data INITIALISATION
Output ; OPERATIONS
END
(A) (B)

Figure 3.The Structure of BAM
(A) Information hiding and (B) Importance Clauses in BAM

3. OUR PURPOSED SCHEME

We propose a scheme of translating both UML class diagram and related sequence diagrams into BAM
specifications and eventually conduct the syntactical and semantic consistency checking using B-
Toolkit program [6]. The overview of our proposed scheme is shown in figure 4. We begin to consider

the given class diagram and map each class to a BAM module with attributes. A set of BAM skeleton

modules is generated with the corresponding attributes. The relations among classes are considered as
well to create the relations of BAM accordingly. The related interaction among classes in sequence
diagrams will be considered especially on the class operations and the operations of the BAM modules
are completely appended. In B-Methods, a BAM implementation module is expected to describe the
details of called operations sequences. We provide a set of rules to generate the associated BAM
implementation modules. The formal specifications in BAM — the BAM modules with relations and
their implementation modules, will be finally gathered and refined. We provide a set of translation
rules to cope with activities mentioned above. The B-Toolkit program is used to do the consistency
checking. Both developers and users will be guided and provided with our systematic scheme to
evaluate their software system model in the early stage.

KMITL Sci. J. Vol.6 No.2a May — Dec, 2006

Critical Scenario from
Sequence Diagrams

Map Classes to
BAM

Appended
BAM operations

P

[mplemenmtimné
BANMN

Generate BAM
Implementation

Conduct
CONSISICNCY
cheek

Skeletaon of BAM
modules

Operations of the
BAM modules

Final Formal
Specification in BAM

Figure 4.0Overview of purposed scheme

4. CASE STUDY

In this section, we introduce a case study of Tuition fee payment system. The class diagram, in figure 5,
shows a set of classes named as class Bank, Student, StudentAccount, UniversityAccount,
UndergraduateStudent with attributes, operations and their relations. The types of relations are drawn
with multiplicity notations to describe the structural property of the Tuition fee payment system. To
demonstrate one of the payment scenarios, a sequence diagram, in figure 6, shows the interaction
between classes to conduct the transfer cash from StudentAccount to UniversityAccount. A student
requests Bank to do the operation fransferCash(). The Bank performs the requested operation by asking
the StudentAccount to do the withdrawMoney() operation and asking the BankAccount to do the
depositMoney(). To order to withdraw the money, the StudentAccount will perform the called operation
decreaseAmount().

Mame | STRING * * = =
= 2% 1. 1. [Bostudent_ID : STRING
Spbark_Address : STRING| e Name : STRING
SransferCash() : void
7] 0
A e
LihiversityAccotnt StudentAccount

UnderGraduateStudent

EuniversityAccount_Name : STRING| [BstudentAccount_Mame : STRING

SyithdrawMoney() : void

‘depcs-u« Aone 5
I Ol *decreaseAmount() : void

Figure 5.Class diagram of a Tuition fee payment system

KMITL Sci. J. Vol.6 No.2a May — Dec. 2006

student : bank ; studertaccount ! " | wniversityaccournit ;
Studerit Bank StudentAccount UniversityAccount

I

|

|

I

\
|
|1. transfercash() : void _ |

|
|
|
|
|
|

1.1. withdrawMoney() ; void

—_,————————

1.1.1. decreaseAmount() : void

=

1.2. depositMoney() : vpid
|

|
1 | |
| | |
| | |

WS S

Figure 6.Sequence diagram of a cash payment scenario

5. TRANSLATION OF UML CLASS DIAGRAM AND SEQUENCE
DIAGRAMS INTO BAM

This section will distinguish between the rule for translation of class diagram and of sequence diagrams
by using a sample in case study of tuition fee payment system as follow
1 Generate BAM of BasicClass and BAM of Class will be described in section 5.1.

2. Generate BAM of Relation between classes are association, aggregation and composition.
These will be provided in section 5.2.

3. Generate BAM of sub class inherited all of attributes from super class will be explored in
section 5.3

4, Generate BAM of Relation (or BAM implicit relation) between sub class inherited from
super class and the other class will also be presented in section 5.3.

5.1 Translating UML Class Diagram

In this section, we demonstrate the translating of UML class diagram into BAM gradually. We create
several BAM modules to each class and named it accordingly in the MACHINE clause, for example,
BasicStudent and Student to represent class Student. All of the attributes of each class are defined into
VARIABLES clause. The types of attributes will be considered as sets in SETS clause while
INVARIANT clause define the domain set of each variable found in VARIABLES clause. The
INITIALISATION clause contains the initial preconditions of each essential attributes in a BAM
module. The USES clause will represent the relation between a BAM and the others. The BAM
modules of BasicStudent and Student are shown in figure 7.

MACHINE BasicStudent

SETS BASICSTUDENT
VARIABLES basicstudent,
; student_ID, student_Name
INVARIANT basicstudent C BASICSTUDENT A

student D € STRING A student Name € STRING MACHINE
INITIALISATION basicstudent := @ || %t;%"s"t
student_ID := null || student Name := null BasicStudent
END END

Figure 7.The BAM modules of class Student

5.2 Translating the Relations between Classes

An association between two classes in UML is formally defined as a BAM module with “Asso” prefix
to its name. The association is considered as a set of order pair of Cartesian product of two relating
classes. The multiplicity of the association will be defined as well to represent the number of instance
of each class which has relationship. Table 1 shows the mapping between predicates for variety of

multiplicity.

245

KMITL Sci. J. Vol.6 No.2a May — Dec. 2006

Table 1.The Multiplicity and its mapping predicates

Predicate

Multiplicity

RelName — BASICCLASS! x BASICCLASS2
dom{RelName) = basicclass1 A ran(RelName) = basicclass2 A

V (xx.yy).(((xx € dom(RelName)) A (yy € ran(RelName)))
—> card((RelName)[{xx}]) 20/ card((RelName)_] lyy11=20)

IO

RelName < BASICCLASSI x BASICCLASSZ2
dom(RelName) = basicclass| A ran(RelName) = basicclass2 A

¥ (xx.yy).(((xx € dom(RelName)) A (yy € ran(RelName)))
— card((RelName)[{xx}]) 2 | A card((RelName) B HyyiD=1)

RelName — BASICCLASS1 x BASICCLASS2
dom(RelName) = basicclass] A ran(RelName) = basicclass2 A

Y (xxyy)(((xx € dom(RelName)) A (yy € ran(RelName)))
—> card((RelName)[{xx}]) = 1 /\card((ReIName)_] [tyyiD=1

RelName © BASICCLASSI x BASICCLASS2
dom(RelName) = basicclass| A ran(RelName) = basicclass2 A
WV (xx.yy).(((xx € dom(RelName)) A (yy € ran(RelName)))
—> card((RelName)[{xx}]) = 0 A card((RelName)[{xx}]) < 1A

card((RelName) ™' [{yy!]) = 0 A card((RelName) "' [{yy!]) < 1)

The sample of a BAM module for the association between class Bank and Student. in figure 5.
is shown in figure 8. The Aggregation and composition in UML are defined in the similar steps. We
use ~Aggr” and “Compo™ as the prefix to theirs names respectively. Figure 9 shows the composition
between Bank and StudentAccount. In order to implement the aggregation and composition between
two classes. the container class has to carry the implicit references to all contents classes. Therefore. we
automatically add a reference variable to the container class. As shown in figure 10. the class Bank
contains a set of Studentdccount object so that the reference to StudentAccount object called

RefStudent:ccount!D is added.

MACHINE Asso_Bank_Student

USES BasicBank. BasicStudent

VARIABLE asso_bank_student

INVARIANT asso_bank_student CC BASICBANK X BASICSTUDENT A
dom(asso_bank_student) = basichank A ran(asse_bank_student) = basicstudent /A

Y (xxy)(((xx € dom(asso_bank_student)) A (vv € ran(asso_bank_student)))

—> card((asso_bank_student)] {xx1]) 2 | A card((asso_bank_student) [{vy}]) >1)

END

Figure 8.A sample of the BAM for association

MACHINE Compo_Bank_StudentAccount
USES BasicBank. BasicStudentAccount
VARIABLE compo_bank_studentaccount
INVARIANT compo_bank_studentaccount & BASICBANK X STUDENTACCOUNT A
dom(compo_bank_studentaccount) = basicbank A
ran(compo_bank_studentaccount) = basicstudentaccount A
v (xx)(((xx € dom(compe_bank_studentaccount)) /A
(vy € ran(compo_bank_studentaccount)))
—> card((compo_bank_studentaccount)[{xx}]) = 1 A

-1
card((compo_bank_studentaccount) — [tvyi]) = 1)

END

Figure 9.A sample of BAMs for composition

KMITL Sci. J. Vol.6 No.2a May — Dec, 2006

MACHINE BasicBank
V;AR]ABLF,S

RcfStudentAccountlD
INVARIANT

RefStudentAccountlD € STRING
INITIALISATION

kéiStud::mAccountlD = null
END

Figure 10.A sample of implicit reference for container class

5.3 Translating Sub Class Inherited from a Super Class

When a sub class is inherited from a super class. the sub class will have almost the same properties as
super class. All of the non-private attributes and operations will be implicitly copied from super class.
as well as various relations. Technically. to generate a BAM for a sub class. we can copy the BAM of
super class and paste into the BAM of sub class and do the refinement. In figure 11. 2 BAM for the sub
class UnderGraduateStudent is shown. all of the attributes and operations are copied from the super
class Student and the variable names are refined to avoid the name clashing.

MACHINE BasicUnderGraduateStudent

SETS BASICUNDERGRADUATESTUDENT

VARIABLES basicundergraduatestudent.

undergraduatestudent_ID. undergraduatestudent_Name

INVARIANT basicundergraduatestudent C BASICUDERGRADUATESTUDENT A
undergraduatestudent 1D € STRING A undergraduatestudent_Name € STRING

END

Figure 11. A sample of basic BAM for the sub class UnderGraduateStudent

Moreover. the association between the super class Bank and Student will be implicitly
inherited to the sub class UnderGraduateStudent as well. We define the extra implicit association BAM
between sub class Bank and UnderGraduateStudent as shown in figure 12.

MACHINE ImplicitAsso_Bank_UnderGraduateStudent

USES BasicBank. BasicUnderGraduateStudent

VARIABLES implicitasso_bank_undergraduatestudent

INVARIANT

implicitasso_bank_undergraduatestudent

C BASICBANK X BASICUNDERGRADUATESTUDENT A

dom(implicitasso_bank_undergraduatestudent) = basicbank /A

ran(implicitasso_bank_undergraduatestudent) = basicundergraduatestudent A

W (xxyv).(((xx € dom(implicitasso_bank_undergraduatestudent)) A
(yy € ran(implicitasso_bank_undergraduatestudent)))

—> card((implicitasso_bank_undergraduatestudent){ {xx}]) = 1A

card((impIicilasso_bank_undergmdualestudcnt)_! Livyih 2 1)

END

Figure 12.A sample of implicit association BAM for the sub class UnderGraduateStudent

5.4 Appending the Operations to BAM from Sequence Diagrams

After a set of BAMs is generated from a class diagram. these BAMs must be appended with their
operations described in the related sequence diagrams. Typically. the sequence diagram shows the
operation names invoked and the correspondent operations between two classes. Using Hung lL.edang’s
technique called Calling-Called Dependency Model [4]. we can classify the operations into “Basic™ and
“Non-Basic™ operation groups. The Basic operations will be appended into OPERATIONS clause of

247

KMITL Sci. J. Vol.6 No.2a May — Dec, 2006

basic BAM modules and the Non-Basic operations will be appended into the related original BAM

modules.
As shown in figure 13. every operation names in sequence diagrams will be appended into the

BAMs completely.

MACHINE MACHINE
BasicUniversityAccount BasicStudentAccount
OPERATIONS OPERATIONS
Basic_depositMoney = Basic_decreaseAmount =
END ; END

MACHINE MACHINE

Bank StudentAccount
OPERATIONS OPERATIONS
transferCash = withdrawMoney =

END END

Figure 13.A sample of operation names appended into BAMs

5.5 Generating the BAM Implementation modules

In order to illustrate the sequence of the calling-called operations for each scenario described by a
sequence diagram. we generate the extra BAM implementation modules to refine these sequences of
invoked operations. As shown in figure 14. the BAM implementation module of StudentAccount shows
that the withdrawMoney operation in BAM will call another operation named Basic_decreaseAmount.
Another example is the BAM implementation module of Bank. The transferCash operation in BAM
will call two other operations named withdrawMoney and Basic _depositMoney in sequential order.

IMPLEMENTATION StudentAccount_imp IMPLEMENTATION
REFINE StudentAccount Bank_imp
SEES BasicStudentAccount REFINE Bank

: SEES StudentAccount. BasicUniversityAccount
OPERATIONS

Value € withdrawMoney = OPERATIONS
VAR Value Value € transferCash =
IN Value € Basic_decreaseAmount = VAR Value
END IN Value € withdrawMoney
e Value € Basic_depositMoney
END END
END

Figure 14.A sample of the BAM implementation modules

6. DISCUSSION

This paper has been further developed from Hung Ledang's research. which allow the user to specity
multiplicity of each class appropriatcly in BAM of relation such as association. aggregation.
composition and BAM of implicit relation too. Therefore these can support “association class™ of UML.
class diagram. and develop calling - called operations of critical scenario from sequence diagrams.
These help to increase flexibility of UML design from developer.

248

KMITL Sci. J. Vol.6 No.2a May — Dec. 2006

7. CONCLUSION

We propose an alternative of the consistency checking for UML class diagram and its related sequence
diagrams. Given a set of class diagram and sequence diagrams. we propose a set of translation rules to
map a class. its attributes. operations and relations between classes into a formal specification notation
called BAM. The translation rules guide to generate a set of BAMs systematically and do some
automatic refinement of the specification as well. The varieties of relations are covered such as
association. aggregation. composition, inheritance. The BAMs will be refined usmg a set of BAM
implementation modules by describing the sequence order of the invoked operations in each scenario of
the software system.
A case study of Tuition fee payment system is briefly described and the examples of the
BAMSs are shown. The final BAM specification has been checked by B-Toolkit program and the result
has no conflict and applicable. '

REFERENCES

[1] Abrial. J- R. 1996 The B — Book Assigning Programs to Meanings. Cambridge University Press.

[2] Grady Booch. Jame Rumbaugh and [var Jacobson. 1998 The Unified Modeling Language User
Guide. Addison Wesley.

[3] Arlow. J.. Neustadt. 1..2002 UML and The Unified Process Pratical Object - Oriented AAnalysis
and Design. Addison Wesley.

[4] Ledang .H.and Souquiéres. J. 2001 Integrating UML and B Specification Technig ues.
Workshop at Informatik.2001 .

[5] Ledang .H.and Souquiéres.]. 2001 Modeling Class Operations in B: a case study on the pump
component. Technical Report A0I-R-011. Laboratory Lorrian de Recherche en Informatique et
ses Applications, 2001.

[6] Lano .K.and Haughton.H. 1996 Specification in B: An Introduction using the B Toolkit. Imperial
College Press.

249

