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ABSTRACT

In recent years. artificial neural networks have been applied in many fields. Reportedly, the structure of
networks seriously affects the performance of the network model. A scheme for river flow forecasting
with a recurrent neural network has been proposed in this paper which consists of the phase that
determines of input patterns. Autocorrelation analysis is used to identify the number of input nodes of
time series for training. The calculated number of neurons for an input layer is then used to construct
the fully recurrent neural network forecaster. Computer simulations are presented to show the
effectiveness of the scheme. The results obtained show that autocorrelation and cross correlation
analysis can be used to determine the number of input nodes. In terms of the performance statistics. an
online training algorithm for fully recurrent neural networks has high forecasting accuracy.

KEYWORDS: Autocorrelation analysis. crosscorrelation analysis. network architecture. fully
recurrent neural networks. number of input nodes. efficiency index. computational time.

1. INTRODUCTION

River flow forecasting is one of the earliest forecasting problems that have attracted the interest of
scientists. The importance of estimating river flows to the livelihoods of the inhabitants around rivers
made them study and record their lives since the earliest history. Forcasting the behavior of complex
systems has been a broad application domain for neural networks. In particular. applications
such as forecasting natural and physical phenomena [1] have been widely studied. Forecasting is a
highly “noisy”™ application. because we are typically dealing with systems that receive thousands of
inputs. which interact in a complex nonlinear fashion. Usually with a very small subset of inputs or
measurements available from the system. the system behavior is to be estimated and extrapolated into
the future. What gives some hope to solve some of the difficult forecasting problems is that typically
successive events or inputs that affect the time series are serially correlated. and that cause a tlime series
pattern that can give some hint of the future.

- We present here another neural-network forecasting application. namely river flow
forecasting. Forecasting river flows is an important application. that attracted the interest of scientists
for more than 50 yrs. It can help in predicting agricultural water supply. predicting potential flood
damage. estimating loads on bridges. etc. Application of neural networks in time series forecasting [2]
is based on the ability of neural networks to approximate nonlinear functions. The most popular
treatment of input data is feeding the neural networks with either the data at each observation or the
data from several successive observations. This treatment considers the time series as a nonlinear time
series and tends Lo generate a nonlinear “auto-regression” model to fit the series. So far there have been
a lew papers describing how Lo choose inputs for the ncural network forecaster (especially for recurrent
neural network) in order to achicve better forecasting performance (especially for river flow
forecasting). It is our belief that the performance of a recurrent neural networks forecaster is much
affected by input data patterns. In this study the first goal is to apply fully recurrent neural network
(FRNN) to the problem of predicting the flow of two stations. one is in Thailand and the second is in

*
Corresponding author. Tel:02-549-4194 Fax:02-549-4195. Tel:02-549-4828 Fax:02-549-3242
E-mail: suwarint@rmut.ac.th. suwat@rmut.ac.th

250



KMITL Sci. J. Vol.6 No.2a May — Dec, 2006

Vietnam. In addition we exploit the statistics method. autocorrelation and cross correlation analysis to
determine the input patterns.

2. THE NETWORKS ARCHITECTURE

An artificial neural network (ANN) is typically composed of layers of nodes. In this study. all the input
nodes are in one input layer. all the output nodes are in one output layer and the hidden nodes are
distributed into one or more hidden layers in between. In designing an RNN one must determine the
following variables:

e the number of input nodes.

e the number of hidden layers and hidden nodes.

e the number of output nodes.

The selection of these parameters is basically problem-dependent. To date. there is no simple clear-cut
method for determination of these parameters. Guidelines are either heuristic or based on simulations
derived from limited experiments. Hence the design of an ANN is more ol an art than a science.  The
hidden layer and nodes play important roles for many successful applications of neural networks.
Influenced by theoretical works which show that a single hidden layer is sufficient for ANNs to
approximate any complex nonlinear function with any desired accuracy [2]. most authors usc only one
hidden layer for forecasting purposes.

The number of input nodes corresponds to the number of variables in the input vector used to
forecast future values. For causal forecasting. the number of inputs is usually transparent and relatively
easy to choose. In a time series forecasting problem. the number of input nodes corresponds Lo the
number of lagged observations used to discover the underlying pattern in a time series and to make
forecasts for future values. However. currently there is no suggested systematic way to determine this
number. The selection of this parameter should be included in the model construction process. Ideally.
we desire a small number of essential nodes which can unveil the unique features embedded in the data.
Too few or too many input nodes can affect either the learning or prediction capability of the network.
In our opinion. the number of input nodes is probably the most critical decision variable for a time
series forecasting problem since it contains the important in formation about the complex (lincar and /or
nonlinear) autocorrelation structure in the data. We believe that this parameter can be determined by
theoretical rescarch in nonlinear time series analysis and hence improve the neural network model
building process. Over the past decade. a number of statistical tests for nonlincar dependencies of time
series such as Lagrange multiplier tests 3. 4]. likelihood ratio-based test [5]. bispectrum tests [6]. have
been proposed. However. most tests are model dependent and none is superior to others in all
situations.

The number of output nodes is relatively easy to specily as it is directly related to the problem
under study. For a time series forecasting problem. the number of output nodes often corresponds Lo the
forecasting horizon. There are two types of forecasting: one-step-ahead (which uses one output node)
and multi-step forecasts. The first is called the iterative forecasting as used in the Box-Jenkins model in
which the forecast values are iteratively used as inputs for the next forecasts. In this case. only one
output node is necessary. The second called the direct method is to let the neural network have several
output nodes to directly forecast each step into the future.

3. DETERMINATION OF THE NUMBER OF INPUT NODES

Denote the data at instant & as y(k). where y may be a vector. then the above treatment can be described
as Y.y = NN() OF Yier = NNk Yicto-.--Vhn) TESpECtively. where RNN() stands for the neural network
forecaster and / is the number of successive observations. This treatment considers the time serics as a
nonlinear time series and tends to generate a nonlinear “auto-regression™ model to fit the serics.
Autocorrelation analysis has been often used in time series forecasting using statistical approaches such
as ARMA models. This analysis is mainly used in determining the autocorrelation between successive
observations of time series. and used in the well-known ARIMA models with Box-Jenkins methods
that are very efficient in forecasting linear time series | 7].

Autocorrelation analysis can be used to determine the correct input patterns for nonlinear time
series forecasting with a neural network. This research presents a scheme for time series forecasting
with a RNN for detection of input patterns. In the detection phase. autocorrelation analysis is used to
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identify input patterns of time series for training. Input pattern detection is done using autocorrelations

analysis.

The determination involves two steps:

Step 1 For a given time series. calculate the autocorrelation coefficients. If a trend is detected, then
differencing should be used to remove the trend. This step should be repeated until the trend is
removed to a reasonable degree. This step is important as autocorrelation coefficients may be
used to determine the lags of residuals for short term forecasting.

Step 2 Calculate the partial autocorrelation coefficients. The information will tell us how y; is auto-
correlated to y, , Choose those partial autocorrelation coefficients that are significantly
different from the rest of the coefficients. The largest lag between any two of the coefticients
is the number of inputs needed for the neural network forecaster.

4. EMPIRICAL STUDY

4.1 Network Used

- Fully Recurrent Neural Networks (FRNNs)

FRNNs arc complex. dynamical systems. and exhibit all of the power and instability associated with
limit cycles and chaotic behavior of such systems. FRNNs can take an in-determinate amount of time.
Shown in Figure. 1 is a typical FRNN where all the outputs of the existing neurons are used for
fecdback and its neurons are fully connected. The simplest memory element is the unit time delay,
which has the transfer function. H(Z)= Z'[8].

Qutput

Input

Figure 1. Fully recurrent neural network

4.2 Training Algorithms

- Notation

In an FRN'N. m(n)-p-r topology. the total inputs pass directly with their connected weights and then
obtain the outputs ol both hidden and output nodes simultaneously. Let y(/) or y, denote the n-tuple of
outputs of the units in the network at time /. and let u(f) or u, denote the m-tuple of external input
signals to the network at time £, Ina fully-connected RNN. each neuron in both the hidden and output
layers have a feedback loop from the neuron itself and the recurrent links from other neurons. To
distinguish the components of y representing unit output from those representing external input values,
let O denote the set of indices 7 such that y, is the output of a unit in the network and I denote the set of
indices 7 for which y, is an external input.

vy = wal iel =1 2...m
{y,(l). e QR =020 n
Let w, denote the weight on the connection to the i unit from either the /" unit. if y either j € O or if j
el
l.et n=p+rand wij be the weight of link from node j to node i. where.
i e S e prand
T R T T Tk fa = Db b s e YR
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- Y-N and Atiya-Parlos Algorithm

The important algorithm was derived by Yamamoto and Nikiforuk [9]. The algorithm is derived using
an algebraic method instead of a gradient approach. This algorithm. denoted Y-N algorithm,
incorporates an Error Back Propagation (EBP) method for obtaining a fictitious target signal of output
of the hidden nodes. The weight parameters are obtained by an Exponentially Weighted Least Squares
(EWLS) method.

Atiya and Parlos [10] obtained the algorithm by approximating the error gradient. This is an online
algorithm which assumes a small change in the network state and finds the direction of weight change
by approximation. When minimizing the error, the error of hidden node is equal zero, whereas the
error of output node is the difference between desired and model output. The determination of the
change in the weights will be according to the change in network state. The basic idea of Atiya- Parlos
algorithm is to interchange the roles of the network states y(7) and the weight matrix W. The states are
considered as the control variables, and the change in weights is determined according to the change in

1.

Proposed Algorithm

The algorithm was obtained by incorporating the techniques of Y-N algorithm and the error self

recurrent (ESR) into the Atiya-Parlos algorithm.

The algorithm finds the direction ol weight change by approximation. and estimates fictitious target
signals for each hidden node and then uses these signals to adjust output weights, moreover. this
algorithm improves the error functions by calculating the errors from output nodes and then feeding
back to determine weight updates of output nodes.

The proposed algorithm can be summarized as follows:

1. Assume that the data

(,V(l). d(l) ..... y(T - l). d(T - I)) are given.

2. Initialize the value of t = 1. and let’s denote some mathematical notations in order to find weight
changes as follows

= 7 7
YT = —D L Dfse(T)] + WiseT - 1)) (n

i

1

B(T) = D Yy (t-1) (2)
=1

Because of ill-conditioning problems. Eq.(3) must be added with the outer product matrix by a
small matrix &/. where € is a small positive constant.

It ]
i VD) =el+> vy’ (1) (3)
=
Updated weights of hidden nodes are expressed by

AW, =nBy (T)J 5 (T) (4)
W, (new) =W, (old) + AW, (3)

Then. all new hidden outputs are calculated based on the updated hidden weights.

V=W, y(t-1) and
v =l v’ w') (6)

Finally. updated weights of output nodes arc expressed by

=
AW, =NMBo(DV,, (1) (7)
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W, (new) =W, (old) + AW, (8)

3. Caleculate a vector of error self-recurrent networks to be used as the error signals for output and
hidden nodes

se(r) = e(f) + p, + e{1-1) (9)

where se(f) = [se,(7). sey()...... se,(1]. n-tuples are a number of output units. and |, is a constant
of the time delayed errors called one-step previous error.

xnﬁ) _Su(r)
= (10)
x,(1) -8, (1)

4. Time step at t = t+1. calculate the model output.
y(1)= (W (1-1)) (11

Then. compute the error signal using se(/) of the ESR method then using these signal in order to

generale }’(t) as in Eq.(1).

L’,(I):J v()-d @) ieo )

l-’), otherwise

5. Find weighted changes of hidden nodes. AW, (!)

A= Awo-0+

7 -l -1 -l
n Yo - DUy (- 1) - Bygte - DV - e - “|-'H (1 - vt~ .')‘[

T -1
LA - Dy - v - 1)

and

o=l 0 = =) (14)
T )

".HI(")=’.;;I("-])_

P BH(’):BN(f_1)+}'u(’)."'l("—]) (].5)
6. All new hidden output signals are calculated based on the updated hidden weights.

_1'?, (.') = Wf,; (r)_r(! - 1) and y*(f)T = (y(, (l)"r.y:, (!)T,H(I)T) (16)

7. Iind weighted changes of output nodes. AWO(f)

Ny =N - 14N
Tl =l - ; (17
Y v - 1) e 1= Bt 1) (- Dyt D= Dy I;f

7ol
Vhv*a-1) 0, (- ip*a-1)

and

(9]
wn
-
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1)- [t =1y (-1 D! -1y e -nf (18)
1+ (e =1) ¥, (e -1)y" (rél)

B(J([):Bc)(f‘ )'*'70() (t_l) (19)

8. Repeat steps 3 through 7 until the end of given data. The training is terminated when the system
error has reached an acceptable criterion. Set AW, and AW, to zero at the beginning of next

V5t t)=5' (-1

iteration.

4.3 Determination of the number of input nodes

The data used consist of the daily rainfall and stream flow records at two stations. namely Khao Laem
in the Mae Klong River Basin Thailand. and Hoa Binh station in the Red River Basin of Vietnam. The
data at Khao Laem station between April 1982 and March 1985 are used in the calibration(training)
phase. and from April 1985 to March 1986 for validation (testing) stage. For Hoa Binh station. the
training data comprise those values during January 1992- December 1994 and the testing data are
during January 1995 — December 1995.

The input of the RNN consist of discharge and rainfall. and their values for this forecasting problem are
used

Q(t +1 ) = g(Q(1). Q(t-1).........Q(t-Ng). R(t). R(t-1)......R(t-Ng))

where g stands for ~function of™. Q(t) and R(t) denote the discharge and rainfall at time t respectively.
N and Ny are the lag times in the discharge and rainfall data respectively. and 1 is the forecasting lead
time.

The SPSS soft ware (standard version 11.0 for Windows 2000) was used to calculate the
autocorrelation function (ACE). partial autocorrelation function (PACF) and cross correlation function
(CCF) between successive observation of discharges and rainfalls. The autocorrelation analysis is used
to determine the number of input node [11] for the same output variable. Similarly. the cross-
correlation analysis can also be used to determine the number of input nodes for other variables.
However. in practice. these are used as the upper limit for the number of nodes representing the
different input variables.

e Khao Laem data
The ACF and PACF of the discharge with lags from 1 to 365 are shown in IYigure 2 and 3 respectively.
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Figure 2. ACF of the discharge data from | to 365
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Figure 3. The partial autocorrelations of the discharge from 1 to 365

The discharge data series was non-stationary in the mean (the mean of these series changes
over time). therefore the data was applied in the first differencing : y'; =y, — ¥:.,. Figures 4 and 5 clearly
show that the non-stationary has been effectively removed.

Auscomelalon - Trarstoms :difErence ()

> Coridence Limils
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1 3™ 77 115 153 191 Z29 267 305 343

20 S8 95 134 172 210 248 I\ W+ B62
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Figure 4. ACF of the discharge data trom 1 to 365 with the first difference

Patial autocorrelations - Transforms: difference (1)

-6 Confidence Limits

1.0 -Coefficient
1 39 77 115 153 191 229 267 30§ 343

20 58 96 134 172 210 248 286 324 362

Lag Number
Figure 5. PACF of the discharge data from 1 to 365 with the first difference

Similarly. the cross correlation coefficient function (CCF) of discharge and rainfall data with

lags from | to 20 was computed. The CCF is non-stationary in the mean. therefore. the first
difterencing was taken and the result is in Figure 7.
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Figure 6. Cross correlations between discharge and rainfall
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Figure 7. Cross correlations between discharge and rainfall
with the first difference

The partial autocorrelation of discharge data (yx). Figurc 8 depict that PACF between y, and
Yien i = 1. 2...... 16. Considering the sampling distribution of autocorrelation coelticients. ry: for k =
[ 16 of the time series. So the PACF between y, and ¥i.i. ¥k and yi.o and yi and yy.: are
significantly difterent from others.

In addition. the cross correlation values in Figure 9 depict that the CCF between discharge (y)
and rainfall (Ry) data. y, and Ry. y,., and R and yya and Ry are significantly different from others.
Thus. the RNN forecaster without differencing has six inputs Yy. Yi-i ¥k-2- Rie Rici. Rga where yy is the
discharge and Ry is the rainfall at time k. In other words. the discharge at time t+1 is a function of
discharge values at time t. t-1 and t-2 and of rainfall values at times . t-1 and t-2:

Q(tt1) = g(Qr. Quy. Q2. R Rii- Ria)

Partial Autocorrelation: KLM
Transformation: natural log. difference (1)
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Figure 8. Computable first lags afier differencing: 3283
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Figure 9. Computable 0-order correlations after differencing : 3284

e Hoa Binh data
Similarly. with the method for determining the number of hidden node of discharge and rainfall data
points of the Khao Laem data was also applied for the Hoa Binh data.

3 In this study. the hydrological variables of Hoa Binh data are also the discharge and rainfall
and due to quile the same size (considered rather big sizes) of these two drainage area of the
streamflow station used. so we obtained the same number of input nodes of Hoa Binh data as Khao
lLacm data.

4.4 Data Used
Following the work of Danh et al. [12]. the forecasting equation with lead time of one day can be
expressed as:
Q(+1) = g(Q(t). Q(t=1). Q(t-2). R(t). R(t-1). R(t-2)) + h(Qu(k-T).... Quplk=1). Qq(k-1))
{ = daily data time (Sundays to Fridays)
k = time step of the network
Q = discharge (m'/s) at the forecast station
R = average rainfall (mm/d) at the station used to forecast
H, = hiddennodei(i=1.2.....p).
o = output node
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Before being presented to the RNN. the data are transformed by an affine transformation to
the range [0.05. 0.95] using the equations:

Yt =009« = ¥ min /(¥ max = Ymin )] +0.05 (20)

Yiikss [(ynm\ = Ymiu )(y: WOOS)/09]+ ymin (21)

r - C
where y, and y, denote the transformed and original data. and y . and y_ .. are the
maximum and minimum of the original data in the calibration phase. respectively.
A stopping rule is introduced to indicate the convergence of the algorithm. It is based on the
relationship between the summation errors of two consecutive iterations. Generally. the stopping rule is
as follows:

<é

SE(t+1)-SE(t)
SE(t)

where SE(t+1) is the Sum of Squared Errors at iteration (t+1). and €, is a small number. The
value of' g, is chosen to be 0.001.

- Networks Used
For both data sets. the 6(3)-2-1 topology is used for fully recurrent network (FRNN). This topology
has 6 external inputs (3 inputs of discharge and 3 inputs of rainfall data). 3 feedback lines from hidden
nodes and 1 output node. To obtain the performance of the training algorithms. the weights in the
range of [0. 1] were used. We note that for recurrent networks. it is always better to start with small
weights. because if we have long sequences for large initial weights the states tend to wander olf into
the saturation region.
All feedback connection weights equal 1.0. The sigmoid slope (p) of sigmoid function was set to .
The training parameters. for the proposed algorithm was set the bias of one-step previous error (i) Lo
be 0.3. n is equal to 0.008 and € is equal to 6.0.

A prediction accuracy measure is often defined in terms of the forecasting error which is the
difference between the actual (desired) and the predicted values. Nash and Sutceliffee [13] proposed the
efficiency index (El) as follows:

El = SR/ST

where SR = ST-SE
Al
ST=>0, =)
1=
A S
SE=D(r-5.)
(i)
I Al
Vv=—2 v,
Ai 1=
In the above equations.
SR = Variation explained by the model.
ST = Total variation.
SE = Sum of squared errors.
v, = Actual output. i.e. observed value at time
¥ = Mean value of the actual outpul.
¥, = Model output. i.e. forecast value at time

= Number of data points

From the definition equation. El is clearly related to SE: the minimum value of S
corresponds to the maximum value of EI. Moreover. a value of EI close to 1.0 indicates an excellent

2
n
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performance in terms of the prediction accuracy. As such. EI can indicate the performance in terms of
prediction accuracy of the resulting (network) model.

5. SIMULATION RESULT AND DISCUSSION

(a) Forecasting Accuracy and Computational Time

The calculated values of the efficiency index are collected in Tables 1.

e It should be noted that the computed values of the efficiency index are provided for both stages,
training and testing. Generally speaking. the network being considered can be said to provide a good
forecasting model if the values of the efficiency index in both stages are high. but more emphasis
should be placed upon the training phase. Since the two catchment areas concerned are quite big . the
accuracy obtained expressed by the efficiency index (EI) should not be less than 0.85 [12].

Table 1. Computed values of efficiency index and computation time (second)

Station Training Testing
El Time El
Khao Laem 0.901 8.642 0.905
[Hoa Binh 0.914 20.151 0.936

FFrom Table 1. It is clear that the training time is quite small, the highest computation time required 21
seconds for three years of daily data. about 1095 daily values (for Khao Laem and Hoa Binh data) on a
Pentium 111 Processor. For FRNN. the proposed algorithm provides accurate forecast (EI >0.85).

6. CONCLUSIONS

The experiment study.-was mainly for obtaining the performance of the proposed algorithm on FRNN
using ‘the efficiency index (for forecasting model accuracy) and the computation time. For a given
problem. the network builder needs (o experiment to find the appropriate one for the problem at hand.
For this river flow forecasting using discharge and rainfall data in the Khao Laem station, Thailand and
I1oa Binh station. Vietnam. the number of input nodes is well defined by the autocorrelation and cross
correlation analysis and it is the number of independent variables associated with the problem. By
means of the experiments using hydrological data. that such network structures provide the resulting
model which have the good performance in terms of efficiency index and low computation time.
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