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ABSTRACT

We investigate some closed loops of a replicated virus model. to analyse a mathematical
model for virus replication. A bifurcation analysis is performed to determine the ranges of
parameter values that lead to a steady state. " A Hopf bifurcation occurs of a critical value of
the time delay for some ranges of parameters.
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1. INTRODUCTION

With developing sciences. mathematics has always benefited from its involvement. Each
successive interaction enhances the field. This has led mathematicians to attempt to construct
mathematical model of biological principles to know how their processes work and predict
what may pursue.

A population dynamics of the immune response was looked by Nowak & Bangham
[1]. They developed three differential mathematical models to explain the relation between
antiviral immune responses. virus load, and virus diversity. The model did not consider any
time delay. Tam Juddy [2] was interested in Nowak & Bangham mathematical model and
included a time delay somewhere. Here this research follows their mathematical form and adds
an clfective delay. Interestingly. as the time delay is increased chaotic behavior arises. The
implications of this were pointed out by Murray [3] - It is known that a critical time delay
may exist such that the steady state becomes linearly unstable. Therefore it is vital to
investigate this new system analytically.

In this paper. we wish to study the effects of time delay on the mathematical model
for a replicating virus. Our model differs from the others in that it has an explicit time
delay. The model is introduced in Section 2.1. We identified two steady states of the model
having no time delay. a‘washout state (0. 0. 0) and a non washout state (x .y .z). In
seetion 2.2. putting time delay and doing the process of the linearized forms of the equations
describing the model in which there is a time delay present are also given. For Section 2.3,
we performed a bifurcation analysis using time delay as the bifurcation parameter. The purpose
ol performing the analysis is to obtain ranges of a bifurcation parameter. Finally. Section 3.
we discuss and conclude.

2. METHOD

2.1 A Plentiful Virus

There are many intracellular parasites. Virus are dependent on these parasites for survival and
replication. It is noteworthy that, many type of infection are caused by viruses. The abundance
of the virus. the virus load. is always an important factor. For patients with HIV. the virus
load is correlated with disease stage. pathogenic and progressive disease. In the real situation,
Cytotoxic T Lymphocytes (CTL) is shown a critical part in antiviral defenses as it attacks
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virus infected cells. Physicians know that the rate of HIV nuclei determines the virus load.
Nowak & Bangham [l. 4] showed that CTL responsiveness is an important concept.

We shall first introduce a simple model. which has no immune responses against
infected cells. for the interaction between host cells and replicated virus. We use a modified
model which depends on more realistic physiology associated with the effective time delay: :
The objective is to determine the possible existence of critical delay «

2.2 Mathematical Model for Replicated Virus

2.2.1 A Simple Model
A basic model of viral dynamics contains three variables that are based on the Nowak

& Bangham [ 1 ] model. X : number of uninfected cells. v : number of infected cells.z :

number of free virus particles. and all a, (i = 1.2.....6) are positive parameters.

dax
T AR B O (n
dar
dy :

= Yz : (23
dt
dZz
S AR (3)
di

Numbers of uninfected cells arc assumed to be generated at a constant rate a, with
making from a pool of precursor cells. and can decline as uninfected cells and [ree virus
particles at ratea ¥ Z . The rate of numbers of infected cells depends on uninfected cells and
free virus particles and we produced ratea X Z . A free virus is produced from infected cells
at a ratea y . Finally. uninfected cells. infected cells and the free virus decline at the rate
a,¥.a,)y . and o,z respectively.

Thus the dynamical model is the described by the following system (1). (2) and (3).

They are the simplest possible host cell dynamics in a stcady state of host cells at

a ooy
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Nowak.M.A. & May. RM.(1991). If & - | then presenting in the beginning of the infection

each virus infects a cell. Suppose that the infection cannot spread. and fortunately the sysiem
returns to the uninfected state as can be scen [rom equation (1). However. in the casc.
when R - 1 the infected cell population will increase while the uninfected cell population
will decline. The opportunity for the virus try to infect new cells. the system will then
converge to a steady state given by (Y ...V ,.Z ,)-that is spreading of the virus is limited
at the steady state. Then. each infected cell will now produce. on average. exactly one newly
infected cell, It is not necessary to evoke an immune response to attain a stable level ol the
virus in a persistent infection.

2.2.2 A replicated Virus Model with Time Delay

As the mathematical model pointed out. there is no lag in the time for virus
replication in the absence of an immune response. Time delay should occur in the modcl
because of certain biological phenomena. For sample. virus production may lag by an
intracellular effective time delay r . firstly. between the emission of viral particles and the
infection of a cell and secondly. before completed declining of infected cell — that is il a
patient has more infected cells and a good environment for infected cells. the infected cell
can respond after a time delay. We now use the term) (r - ). which denotes the density of
infective stages at time /- ¢ . Thus the factor that is accountable for the probability that
infected cell decayed before starting to produce virus can be removed. Therefore . the system
becomes (1) and
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ay

=G ONZ L e (4)
dr
dZz
S Y Ut a,z (5)
di

where 1 . the effective time delay. is a positive parameter. These look like the delay model
for the control of testosterone secretion presented by Murray [ 7 ].
System (1) - (3) and (1). (4) and (5) still have the same equilibrium state. We will
now consider the linearized system of system (1). (4) and (5) at
&

e . ‘\'=)'.aﬂdz='2 (6)
dis
Then the system becomes
dx a,a,
ke e ARG —=ie § (7)
dt a,
dy a,a, .
——i= st (1 (LSRRI (8)
o1 a,
diz
— - agl- 1) oa,s 9)
dr
For this system. we notice immediately that the real part of a certain eigenvalues are negative.
This means that the stabling is the same as the case when + = 0.
We now consider the linearized system of (1). (4) and (5) by introducing
F b £ b
a .,.a a a.aq a.a a .,
e R ‘"% and - = 7 - §——- g
“3”« 'ﬂ_‘ "1”5 I(i'_“],I 1’1]
(10)
Then we get
o x
e b U A (rn
di 3
dy
St s R (S ROl o (12)
dit : i ;
iz
el s Tl (13)
dt

2.3 Bifurcation Analysis

It is well known that the steady state is stable if all eigenvalues of the exponential
polynomial equation have negative real part and unstable il at least one root has a positive
real part. A Hopl bifurcation occurs when the real part of a certain eigenvalues changes
from negative to zero and then to posilive (ie. the steady state changes Irom one of
stability to onc ol instability). This is usually caused by the delay. To find the solutions.
we obtain

1\({) _al —-a.'iz,\‘l 0 _aSX‘\'Z X(f)
5 -A
y(’) T aSZ‘\'Z _alle : aSX.s'Z y(t) “4)
5 -Ar
=) 0 a.e -a, z(r)
The characteristic equation associated with (14) is
/13+1Jl,13+p3,%+;)3:e"“(q,iz+qzi+q3) (15)
where p | T A e e o (SR e T A e DR e
(e U (0 ey A A i2as s n}nsﬂr"‘:.and Gy s G s a,a,a X b aqaga L.

We treat the composite delay time ¢ as the bifurcation parameter. First. we look at
(15) for 0 . that is

A3+p]/12+p2/1+p3=0 (16)
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by the Routh-Hurwitz condition. all roots of equation (16) have negative real parts while
p, > 0. py 2 0vand Spip. - pf= 100 Thustithelsteady state (v (k- tz )is

asvmptotically stable.
Now for r u 0. we suppose that eginvalues of (15) are a pair of complex conjugates

!, and 7 ie. /,, = u(r)A iv(s) where « and v are constant. By continuity. we know
that w(r) < o for sufficiently small ¢ .  Therefore. the steady state would remain stable for

values of + such as ¢ <~ ¢ for +, > 0. Suppose u(s,) = 0féra 7,>0. then u (1) <
0 for 1€[0,7,). The stability of (x_‘,.y_\_,z_v) will be lost at 7=7, and we will
have A = iv(rg ) :

Obviously. fv. where v>0. is a root of equation (15). Substituing A =iv into
equation (15) gives

S plt': Foipyy top, o= Gk C (,'ilg2 it s S TS TA)
Separating the real part and imaginary parts. we obtain

3 p,r: tipii =g q,vl)cosr.' g st (18)

-t e P, = q,vcosve - (g, - qll':)sin v (19)

Squaring both (18) and (19) and adding them. we have

S

h

vE p s By s g R N GA - ppy - s 1 2aigy e
(20)
We find the root of (20) by reducing the power of v to the third degree. By letting

q:) 0

o

v~ = 5 . we have
O(s)=5+ps’ +gs+r=0 (21)

a

while Das= pf+ 2p:- qll. q.= p;- Z;JI;?)- q_: ! E(IWzr].and r p,‘ q‘:
To find the roots of (21). we look at the following lemma.
Lemma Let n= p2 —3(] (22)

1.1 It r <0 then equation (21) has at least one positive root.

120t r 20 and: 77 =p2 —3g =0 then equation has a positive root.
Proof 1.1 Now. letting §=0 in equation (21) we gel Q(O):r <i(F As

lim Q(.S‘)=DO. equation (21) must have a positive root where (0 =0. by the intermediate

S=pn
value theorem.
Proof 1.2

3 Let n=p -3g=0 (23)
And from (21) we. have
dQ(s)
ds
The stationary point of Q(s) is obtained by setting the RHS. equation (24). We gel

9:+2p+~/4p3—|2q:vp+\/5 s
6 3
when §>0. Thus. for Q(S)<0and O0(0)=r=0. we know by the intermediate value

=35’ +2ps+gq (24)

theorem that (J must vanish somewhere between 0 and s.

Claim. Equation (20) has no positive real root if #=0 and n :p2 -3g<0
Proof
it 20 whileQ'(S)>0. QO is then an increasing function and does not vanish

anywhere along the positive x-axis.

315



KMITL Sci. J. Vol.6 No.2a May — Dec, 2006

if  r20 and 7=p*—3g <0 which A= fv = i[5 then there are all rodts of.the
characteristic equation (13) having negative real parts for all 7 =0. Therefore; the stehdy

state (x\‘,ys,z_\,) is always stable in this case.

On the other hand. if the condition in lemma 1 holds, then equation (21) has at least
one positive real root. Without loss of generality, we may denote the three positive roots. of

equation (21) by S,.,i:],2,3. Then equation (21) has three positive roots
Vi=\/;,i=l,2,3 (26)

Now. let 1'0>0 be the minimum value for all the values of T for which

a(rﬁ):o. After substituting v, into (24). (25) a-md solving for 7, we get

1 v ply e
T, =— arctan[—’—,&_] =123 27
A —DV; +Ps
Therefore. implying that 7, can be considered as a function of v,.i= 123, we choose

To=T: —min {r. }
Y by S g (G

(28)

Now we know all conditions for parameters that use time delay as the bifurcation

parameter by considering the critical value of (27) as a functionv . By claim and lemma,
we obtain the following theorem
Theorem

2

Let 7, and-v, be defined as (28). 5, =V, and
O(s)= 8 + (2 +2p, —q7)s* +(p3 —2p,ps — 43 +24:4)5 + (P —45) =0
Suppose that p,p, — p; >0
(i) If r=0 and 7=p’ -3¢ <0 then the steady state (x,,¥,.2,) of the
system (1). (4) and (3) is absolutely stable (i.e. asymptotically stable for TE[0,00))
(ii)Ir r<Q0or r=0,3s5>0and Q(s) < (. then the steady state (xr\..y_‘,,z_\,) of
‘syslcm (1). (4) and (5) is asymptotically stable for TE[O, ‘L’O)
(iii) Il the condition of (ii) are satisfied. 7 =7,. and Q’(.S‘)?‘-‘O then system (1)

(4) afnd (5) will undergo a Hopf bifurcation at (xx,yh,z_\).

3. DISCUSSION AND CONCLUSION

A simple mathematical model for a virus presented by Nowak & Bangham (1996) was used
here. The model included the effective delay. The effective time delay occurs somewhere
between the emission of viral particles and the infection of cells. Our analysis aims to
determine how the stability of the steady state of the system is affected by the length of the
cffective time delay. In order to perform a bifurcation analysis with time delays. we used the
Hopf bifurcation theory. We can give a condition governing the parameter values of the model
by the theorem. Depending on the suitable parameter values, we can generate curves
resembling numerical or clinical data that we hope to look at in a later paper.
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