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ABSTRACT

Given a graph. in a well-known combinatorial optimization problem. the search for a maximum clique is
investigated here. A clique of a graph is a set of vertices, any two of which are adjacent. The maximum
clique problem asks for a clique having a largest vertex (node) set. This research modifies a specific
previous algorithm that uses branch and bound as well as pruning strategy by reordering the vertices

according to the degrees of vertices. Then the new algorithm and some previous algorithms are,

implemented on a computer to compare the results of these algorithms on a certain type of graphs,
namely. random graphs. In addition, for approximation proposes, an algorithm for solving the
minimum vertex color problem is also implemented because of the fact that the solution to this problem
is an upper bound to the solution of the maximum clique problem.
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1. INTRODUCTION

The maximum cligue problem is one of the classical problems in combinatorial optimization and
graph theory. Its applications can be found in various areas when the problem can be transformed
into a graph problem and the objective is to find the largest set of vertices. each two of which has
a direct edge. This section is to state the problem by starting with basic graph theory concepts.

Let & = (V.E) denote an undirected graph, where V' is the set of vertices (nodes) and £ is the
set of edges. Two vertices are said to be adjacent if they are connected by an edge. A clique of a graph
is a set of vertices. any two of which are adjacent. An independent set of a graph is a subset § of V,
such that every two nodes in S are not joined by an edge of E. The maximum independent set problem
consists of finding the largest cardinality ot an independent sct. A vertex cover of a graph is a subset C

of’ I'. such that every edge of £ has an endpoint in C. The minimum vertex cover problem consists of

finding the smallest cardinality of a vertex cover.
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Figure 1.1: An Example of Two Maximum Cliques of Size 4 in a 5-Vertex Graph.

The maximum clique problem searches for a clique having a largest node set. And example of
a maximum clique is shown in Figure I.1. This problem is computationally equivalent to some other
important graph problems, for example, the maximum independent set problem and the minimum
vertex cover problem. Since these are NP-hard problems [1], no polynomial time algorithms are
expected to be found. Therefore almost all types of algorithms have been used to solve it
Nevertheless, as these problems have several important practical applications, it is of great interest to
try to develop fast, exact algorithms for small instances. Another direction of research, which has
recently been fairly popular, is that of using heuristic methods to find as large cliques as possible,
without proving optimality. At the survey of Pardalos and Xue [2] provides an extensive bibliography
on the maximum clique problem.

2. PREVIOUS ALGORITHMS

In this section, two algorithms proposed by Carraghan and Pardalos [3] in 1990 and Ostergérd [4]
in 2002 are presented. The idea behind each algorithm is given now.

Algorithm 1

Given an arbitrary graph, the algorithm basically starts at a vertex to see how large a maximal
clique size can be identified if that vertex is included in the clique. Repeat the process for other
vertices until the last vertex is considered. In the mean time, after each iteration, update the

maximum clique size found so far.

Details and steps of this algorithm are as follows.

Step 0 : Set masz,.!':'l,size:O.
.Step 1 : Given a graph G(V, E), randomly assign numbers 1 to  to the vertices.
Step2 : If (i > n) or the possible clique size of the remaining graph is not greater than the
current maximum clique, stop, max is the maximum clique size. Otherwise, go to step
3
Step 3 : Remove vertex i from V, set size = size + 1.
Step4 : Set U equal to the intersection of neighboring vertices of the just-removed vertex in
Graph ¥ and the remaining vertices.
Step 5 : If the possible clique size of the remaining graph is not greater than the current
maximum clique. Set i = i + 1, size = 0 and go back to step 2. Otherwise, go to step 6.
Step 6 : If U= @, size is a maximal clique size and set max = size only if max is less than size.
Also seti=i+ 1, size = 0 and go back to step 2. Otherwise, remove a smallest vertex
in U, set size = size + 1 and go back to step 4.
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Algorithm 2

This algorithm starts-at a subgraph that has one vertex to see how large a clique can be. Then
insert another vertex and consider again the maximal clique size in the induced subgraphs with
those vertices. Repeat the process until the last vertex is inserted. Furthermore. to make it faster.
the variable found is used to see if the maximum clique size is found.

Details and steps of the aigorithm are as follows.
Step 0 : Set max=0.i=n.size = 1, found = false. c[i] = 0, W= &.
Step 1 : Given a graph G(V.E). randomly assign numbers 1 to n to the vertices.
Step 2 : If (i < 1). stop. max is the maximum clique size. Otherwise. go to step 3.
Step 3 : Insert vertex i (from F) into .

Step 4 : Set U equal to the intersection of neighboring vertices of the just added  vertex in
Graph J# and the vertices in Graph W.

Step 5 : If the possible clique size of the remaining graph (depending on U ) is not greater than
the current maximum clique. set c[i] = max, i =i - 1, size = | and go back to step 2
Otherwise. go to step 6.

Step 6 : If U/ = 0. size is a maximal clique size and set max = size only if max is less than size.
Also set ¢[i] = max. i=i- 1. size = 0 and go back to step 2. Otherwise, go to step 7.

Step 7 : If the possible clique size of the remaining graph (depending on c[i] ) is ot greater than
the current maximum clique or found = true then set i = i-1. size = | and go back to step
2. Otherwise. remove a smallest vertex in U . set size = size + 1 and go back to step 4.

3. PROPOSED ALGORITHMS AND EXPERIMENTAL DESIGN

In this section. two proposed algorithms are presented. It is hoped that the proposed algorithms
will outperform the previous two algorithms. especially on a certain type of graphs, namely.
random graphs. The definition of random graphs is given later in this section. A way of generating
random graphs by the computer is then followed.

3.1 The Proposed Algorithms

In this scction. two proposed algorithms (and henceforth called Algorithm 3 and Algorithm 4) for
solving the maximum clique problem are presented. Again, the general concepts along with the steps of
the algorithms are presented here.

Algorithm 3 2
FFor good performance of the algorithm. a proper heuristic for reordering the vertices has to be
chosen. One can think of several ways of doing this. and these orderings may have different
cffects for ditferent types of graphs.

. We will now consider an improved algorithm by reordering the vertices in descending
order of their degree (the number of incident edges) using Selection Sort. Additional notation to be
used is defined here. Let S, = fv; . vy . ... .}t where degg(v)) 2 degg(va) 2 ... 2 degg(v) 2 ... 2
*degg(v,). This improved algorithm searches for the maximum clique by first considering S). then
S. Sy and so on (or ' in cach iteration of the following algorithm).

Details and steps of the algorithm are as follows,

Step0 : Set max=0.i=l.size = 1. found = false. c[i] = 0, W= .

Step 1 : Given a graph G(J.E). sort the vertices in descending order of their degrees and assign
numbers 1 to # to the sorted vertices.

Step 2 : If(i> n) or the possible clique size of the remaining graph (depending on /. ¢[i]) is not
greater than the current maximum clique. stop. max is the maximum clique
size. Otherwise. go to step 3.

Step 3 : Insert vertex i (from }) into W (or S

Step 4 : Set U equal to the intersection of neighboring vertices of the just added  vertex in
Graph ' and the vertices in Graph .
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Step 5 : If the possible clique size of the remaining graph (depending on U) is not greater than
the current maximum clique, set ¢[i] = max, i =i - 1, size = 1 and go back to step 2
Otherwise. go to step 6.

Step 6 : If U = . size is a maximal clique size and set max = size only if max less than size.
Also set ¢[i] = max. i =i- 1, size = 0 and go back to step 2. Otherwise, go to step 7.

Step 7 : If the possible clique size of the remaining graph (depending on c[i] ) is not greater than
the current maximum clique or found = true then set i = i-1. size = | and go back to
step 2.
Otherwise. remove a smallest vertex in U . set size = size + | and go back to step 4.

Algorithm 4

This algorithm uses minimum vertex coloring problem to approximate the maximum clique size.
That is doable because the maximum clique size is less than or equal to the minimum number of
vertex colors [5]. or o(G) = % (G).

A vertex coloring is an assignment of labels or colors to each vertex of a graph such that
no edge connects two identically colored. The most common type of vertex coloring seeks to
minimize the number of colors for a given graph and this number is an upper bound of the maximum
clique size.

First. initialize parameters i and color ¢ to be assigned to v, Then assign the minimum
possible color ¢ to v,. Repeat the process until the last vertex is assigned.

Details and steps of the algorithm are as follows.
Step 0 : [This step initializes the parameter / and color ¢ . used for naming the current vertex v, and
to be assigned to v;.] ih=dliEes=
Step 1 : Given a graph G(},E). assign numbers | to n to the vertices.
Step 2 : [The minimum possible color ¢ is assigned to v,.]
2.1 Sort the colors adjacent with v, in non-decreasing order and call the resulting list L.
2.2 If ¢ does not appear on L, . then assign color ¢ to v, and go to Step 4. Otherwise.
continue.
Step 3 : [The color ¢ is incremented.|
¢ = ¢+ 1 anid return to Step 2.2.
Step4 : [The parameter i is incremented.]
If i<m.theni =i+ 1.andreturnto Step 1.
Otherwise, stop.

3.2 Experimental Design
Random graphs are graphs randomly generated by the computer. Input parameters are the number
of vertices and the edge density. The edge density is defined as the proportion of number of edges

in the graph being considered and the number of edges in the complete graph on the same set of

vertic or example. for a graph of 10 vertices. if our graph has 27 edges. the edge density will
be’ 27;T = (0.6 or 60%. For each instance. a random graph is constructed by the following steps.

Step 1 : Define an edge density.
Step2 : Select a pair of vertices.
Step 3 : Random a number between 0 — 1 uniformly. If the random number is not
greater than edge density then insert an edge.
Step 4 : Repeat Step 2 and Step 3 for every other pair of vertices.
Eventually after many instances have been undertaken. the average edge density of the
graphs actually constructed will be very close to the predetermined edge density.
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4. COMPUTER EXPERIMENTAL RESULTS

In this section. computer éxperimental results of the maximum clique problem when solved by the four
algorithms in section 3 are presented. The two quantities of interest here are the average CPU time used
to obtain an optimal solution and the average maximum clique number of the optimal solution.

To see the performance of each algorithm from section 3 in solving the maximum clique
problem. algorithms 1 to 4 are applied to the same sets of random graphs having various numbers of
vertices and different values of edge densities. For each value of number of vertices and edge density,
500 randomly generated problems are created using C** programming on a 1.8 GHz Pentium M laptop
computer with 768 MB RAM.

Vertices Edge Average CPU Time (Seconds)
Density Algorithm | | Algorithm2 [ Algorithm3 | Algorithm 4
5 0.1 0.000030 0.000009 0.000001 0.000001
02 0.000048 0.000017 0.000007 0.000001
05 0.000077 0.000049 0.000017 0.000004
08 0.000082 0.000059 0.000025 0.000005
09 0.000119 0.000073 0.000051 0.000009
10 0.1 0.000173 0.000100 0.000073 0.000013
02 0.000203 0.000197 0.000159 0.000075
05 0.000252 0.000202 0.000197 0.000102
08 0.000300 0.000288 0.000210 0.000139
09 0.000800 0.000499 0.000307 0.000201
25 0l 0.000806 0.000531 0.000441 0.000294
02 0.001000 0.000747 0.000500 0.000417
05 0.004600 0.001906 0.000981 0.000500
08 0.081500 0.009482 0.003220 0.000529
09 0.707400 0.083146 0.010180 0.000779
50 0l 0.003200 0.001900 0.001239 0.000802
02 0.006700 0.002300 0.001700 0.000927
05 0.084000 0.004530 0.002420 0.001040
08 22.205072 0.036634 0.004370 0.002700
09 558.863600 0.551210 0.013278 0.007500
100 0.1 0.030200 0.002400 0.002000 0.003540
02 0.067800 0.059400 0.005152 0.020200
05 3.210400 0.160240 0.011900 0.033700
08 949.599100 6.027900 1.964358 0.040700
09 3156.749600 | 417.359448 18.785400 0.052100
150 01 0.081600 0.004200 0.003600 0.007840
02 0.591600 0.125080 0.024342 0.060400
05 34.278208 0.156900 0.038596 0.097500
08 4907.210400 58.003200 34.491617 0.157500
09 11452.98070 | 8993.601200 | 1829.406020 0.178000
200 0.1 0.202800 0.009900 0.007828 0.016982
% 02 4.009500 0.513200 0.072464 0.131300
05 468.734900 1.349800 0.158844 0.141600
08 51782.39820 | 1252.552400 | 827.210100 0.497100

Table 4.1 Average CPU Time to a Maximum Cligue When Solved by Algorithms 1 to 4 in Random

Graphs with Different Numbers of Vertices and Difterent Values of Edge Density
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Figure 4.1: Average CPU Time to a Maximum Clique. When Solved by Algorithms | to 4 as a
Function of Edge Density in Random Graphs with 5 Vertices.
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Figure 4.3: Average CPU Time to a Maximum Clique When Solved by Algorithms 1 to 4 as a
Function of Edge Density in Random Graphs with 25 Vertices.
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Figure 4.4: Average CPU Time to a Maximum Cliqt-le When Solved by Algorithms 1 to 4 as a
Function of Edge Density in Random Graphs with 50 Vertices.

4.1 Average CPU Time to a Maximum Clique

Computer experiments for solving the maximum clique problem by algorithms 1 to 4 have been
conducted. Table 4.1 shows the results on the average CPU time to an optimal solution in random
graphs for different numbers of vertices----5, 10, 25, 50, 100, and 200---- and different values of
edge density ---0.1, 0.2, 0.5, 0.8, and 0.9 (0.9 is skipped for the case of 200 vertices due to its
complexity). To understand every aspect of the results better, various graphs are plotted in Figures 4.1
to 4.4

The results in Table 4.1 and Figures 4.1 through 4.4 show that for small numbers of vertices
and any values of edge density, algorithms 1 to 4 can solve the problem in reasonable and comparable
time even though algorithms 3 and 4 seem to perform slightly better (see Figures 4.1 and 4.2). Notice
that the values of the y-axis in all the figures are not the same. As for larger numbers of vertices, when
the values of edge density remain small (such as 0.1 and 0.2 in Figures 4.3 and 4.4), the four algorithms
still perform relatively well. However, when the values of edge density increase, the average time to a
maximum clique enormously: improves in algorithms 3 and 4. The growing rate of the average CPU
time with respect to the increasing values of edge density is highest for algorithm 1 followed by
algorithm 2. Meanwhile, the CPU time increases much slower for algorithms 3 and 4 even with larger
numbers of vertices.

4.2 Average Maximum Clique Size of a Maximum Clique
The results of these algorithms on the average maximum clique size are presented. Table 4.2 shows the
results on the average maximum clique size in random graphs for different numbers of vertices---5, 10,
25, 50, 100 and 200---and different values of edge density---0.1, 0.2, 0.5, 0.8 and 0.9 (0.9 is skipped for
the case of 200 vertices due to its complexity). To understand every aspect of the results better, various
. graphs are plotted in Figures 4.5 to 4.8

The results in Table 4.2 and Figures 4.5 through 4.8 show that for small numbers of vertices
and any values of edge density the average maximum clique size obtained from the four algorithms are
indifferent (see Figures 4.5 through 4.6). As for larger numbers of vertices, when the values of edge
density = 0.1 (see Figures 4.7 and 4.8), the four algorithms still perform relatively well. However, when
the values of edge density increase, algorithm 1, 2, and 3 still give comparable results while the curve
of algorithm 4 increase faster than the curves of the other three algorithms (see Figures 4.7 and 4.8).

5. CONCLUSIONS

Among all the algorithms presented in this paper for solving the maximum clique problem, the results
show that algorithm 3 absolutely outperforms algorithms 1 and 2 for random graphs according to the
average CPU time to a local maximum clique. Note that the maximum clique sizes obtained from
algorithms 1, 2 and 3 are insignificantly different.
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In terms of the average CPU time to a local maximum clique, algorithm 4 is the best.
However. the average maximum clique size is really far from those of the remaining three algorithms.
This is because algorithm 4 is meant for the minimum vertex coloring problem. not the maximum
clique problem. Note that the number of minimum colors obtained from algorithm 4 may beused in
another kind of algorithms for finding the maximum clique. more precisely. when such algorithms start
at a highest-degree vertex and work downward. A vertex having the degree equal to the number of
minimum colors can be used as a starting vertex instead. This will definitely improve the efficiency of

such algorithms.
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Viertices Edgle Average Maximum Clique Size
Density Algorithm | Algorithm 2 | Algorithm | Algorithm 4
5 0.1 1.709 1.640 1.632 1.702
0.2 1.970 1.950 1.974 1.970
0.5 2.710 2.678 2.680 2.790
0.8 3.690 3.674 3.726 3.820
0.9 4.240 4.248 4.200 5.180
10 0.1 2.100 2.084 2.120 2.109 |
0.2 2.530 2572 2.538 2.550
0.5 3.960 3.966 3.856 4.030
0.8 6.080 6.052 6.066 6.100
0.9 7.480 7.394 7.450 7.490
25 0.1 2.890 2.872 2.862 2.970
0.2 3.510 3.470 3.484 3.620
0.5 6.250 5.808 5.970 6.710
0.8 10.630 10.546 10.894 11.670
0.9 14.180 14.140 14.254 14.841
50 0.1 3.210 3.164 3.204 3.640
0.2 4.180 4.552 4.196 6.310
0.5 7.550 7.810 7.994 11.250
0.8 15.860 15.140 14.960 20.000
0.9 22.390 21818 21.488 24.470
100 0.1 3.960 3.958 3.954 5.040
0.2 5.030 5.034 5.042 9.730
0.5 9.340 9.288 9.284 19.840
0.8 20.170 20.180 20.174 34.780
0.9 31.129 31.113 31.825 43.940
150 0.1 4.060 4.019 4.189 8.190
0.2 5.950 5.351 5.632 12.680
2 0.5 10.180 10.245 10.832 26.920
0.8 23.460 23.779 23.006 48.190
0.9 36.887 36.530 37.328 62.010
200 0.1 4.220 4.193 4.229 9.811
0.2 6.728 6.523 6.420 17.080
0.5 11.090 11.695 11.832 33.662
0.8 29.420 29.920 28.100 61.209

Table 4.2 Average Maximum Clique Size Obtained from Algorithms | to 4 in Random Graphs with

Different Numbers of Vertices and Different Values of Edge Density
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Figure 4.5: Average Maximum Clique Size Obtained from Algorithms 1 to 4 As a Function of Edge
Density in Random Graphs with 10 Vertices.
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Figure 4.6: Average Maximum Clique Size Obtained from Algorithms 1 to 4 As a Function of Edge
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