KMITL Sci.J. Vol.6 No.2a May — Dec, 2006

ON EWMA PROCEDURE FOR DETECTION OF A CHANGE IN
OBSERVATIONS VIA MARTINGALE APPROACH

Saowanit Sukparungsee’, Alexander Novikov

Department of Mathematical Sciences,
University of Technology, Sydney,
P.O. Box 123, Broadway, Sydney, NSW 2007, Australia

ABSTRACT

Using martingale technique. we present analytic approximations and exact lower bounds for the
expectation of the first passage times of an Exponentially Weighted Moving Average (EWMA)
procedure used for monitoring changes in distributions. Based on these results. a simple numerical
procedure for finding optimal parameters of EWMA for small changes in the means of observation
processes is established.

KEYWORDS: EWMA. Martingale Approach, First Passage Time. AR (1) Process. Average Run
Length. Average Delay. Overshoot.

1. INTRODUCTION

Statistical process control (SPC) charts are widely used for monitoring and improving quality in
manufacturing and industrial statistics and as well as in finance. medicine. epidemiology.
environmental statistics, and other fields of applications. It is gencrally supposed that a mean of
independent observations is to be sustained at its target value but in reality. this mean could change at
any unanticipated time. To detect this change as soon as possible. one needs to apply statistical
techniques and constrains. There could be many different settings for such constraints but the most
used ones are: a mean of false alarm time (or, Average Run Length (ARL)) should be sutficiently large
if the observation process is in control and a mean of average delay time (AD) should be small if the
observation process is out of control. Of course, there must be a trade-oft between these two contlicting
requirements.

In practice the so-called Shewhart X (mean) charts are still mostly used. though it is known
that they are not efficient in the monitoring of small changes in the means. The so-called Cumulative
Sums (CUSUM) and Exponentially Weighted Moving Average (EWMA) charts are known to be
essentially more sensitive to the detection of small changes. Unfortunately, the analysis of CUSUM and
EWMA charts is much more complicated compared with Shewhart charts. CUSUM is known as an
efficient tool (see e.g. Lucas and Saccucci [5]) but EWMA charts are inherently simpler than CUSUM
and are believed to be more robust with respect to the assumptions compared with CUSUM.

In this paper we present some new analytic tools for finding bounds and approximations for
ARL and AD for both one and two-sided EWMA procedures. A derivation of these bounds and
approximations is based on a martingale approach (see some details in Appendix). In Section 2 we
review the EWMA procedure and its properties. We compare our results with Monte Carlo simulation
and results with Crowder [3]. Lucas and Saccucci [5] in Section 3.
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2. THE EWMA PROCEDURE FOR MONITORING
PROCESS MEAN AND ITS PROPERTIES.

[Setiiekd pekioc oS ,5--- be observed independent random variables. The martingale approach can be

used for different distributions but we restrict out attention in this paper to the most important case of
normally distributed random variables. The model we study is as follows:

X, ~Mupo?) | it=1,2,...,6-1
X, ~ Ny, 02) | it=6,0+1,... , =,

We use notation & = o for the case when there is no change in the distribution of observed data. Note
that if @ =1 then the change occurs at the very beginning. Results for the continuous time
case (f € [0, 00)) and other distributions (including the exponential one) are planned for a future paper.

2.1 The EWMA procedure.
The Exponentially Weighted Moving Average (EWMA) statistics for the discrete time case has the
following form

Zi— AN =yl A)7 0 <] (1)

7

where A is a weighting factor for previous observations. When A =1, it is actually the Shewhart ¥
chart. Without loss of generality. we can assume that the initial value mean L, =0 and variance of
X is one. If the anticipated shift in the mean value is positive (that is My > 0). then we take the

- decision that the process is out of control when for the first time Z, > H . In another words, we use
the stopping time for one-sided case:

r,:inf{teN:Z,>H}. (2)
If the sign of change in the means is defined in advance. we use the stopping time for two-sided case:
rzzinf{teN:’Z,[>H}. : 3)
i A :
Note that. traditionally. H = L S L is a parameter to be chosen.

2.2 The properties of EWMA procedure
As mentioned earlier, we have to find a balance between the quick detection of process changes and at
the same time to keep enough large false alarm time (ARL). To alleviate these conflicts, a possible

trade-oft is to choose the level L such that ARL is not less then a prescribed number 7" that is
ARL=E(r)=T, |(6 =) )
and minimize AD as a function of parameters Aand L :
AD = E(r—é’[r > 9) — min, |l <@ <o (5
where 7 is the stopping time and € is a moment of change-point.
Our goal is to find the optimal combination of parameter (/1* 5 L‘) which satisfies to these criterions.
Though the constraint (5) depends on the parameter &, some empirical studies (see e.g. (5))
demonstrated that this dependence is not very essential. By this reason and in order to be able to

compare our results with previous ones we assumed that in (5) € =1 (that indicates the change point
occurs from the beginning).

Crowder [3] used a system of Fredholm integral equation for numerical calculations of ARL
and AD. Next. Brook and Evans [2] used the Markov Chain approach to approximate these
characteristics. Lucas and Saccucci [5] intensively studied the different pairs (A .L) to find AD for
different magnitudes of change in mean process; we shall use their results for comparison.

2.3 The closed-form formula for the ARL and AD.
Proposition 1.
1). For one-sided EWMA.:
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2
—Au”

ARL = E(z,) = /1) J (Be'™ ~1)e" . (6)

Au®
AD = F(r)— I}Jl "(Ee 1 —l)e " a0 (7N
where Z = H + ;{ W M) is an overshoot of one-sided EWMA statistics.

2). For two-sided EWMA:
—Au?

ARL, = E(1,) = ———— [u'(ECosh(uZ, ) -1)e***du. (8)
2= £ I!n(l—/l 5[ ( ) )

f —,L.w--i
AD, = E(r,) = A} j (£ ~1)e ., p20 ©)
where Zr: = H + Z sl ,’{ : is an overshoot of two-sided EWMA statistics,

Formulas (6) and (8) contain the overshoot ¥ "' whose distribution is unknown. However. taking into

account the tact that the overshoot is nonnegative we promptly get the following explicit lower-bound
for ARL and AD of the one-sided procedure:

: : 0
E[r, ] SLo(Hh )= m J'u"(e”” = I)e_w_mdu., u=0"" (0
0

For the two-sided procedure we have by the same reasoning the following bound:
-’

ARL, > f(H), f(H) = in /1] jy Cosh(uH ) ~1]e™2du. (1)

To study the performance of the two-sided EWMA when the process is out control we may assume that
4 > 0. Note that the probability of the crossing lower bound. that is P(Zr, < —H). should be close

to zero for this case (at least. for not very small ). This suggests to approximate that
AD, z=g(H+AC, u) (12)

where we use notation from (10) and C is a constant as overshoot.
The lower bound (10) and (11) can be expressed in terms of standard special functions or easily
combined numerically using the package “Mathematica™. To make this lower bound more accurate. we

propose to use the following approximation
(1) .
Eeux 2 euAr (|3)
where the constant C' can be obtained this approximation by using Monte Carlo simulation results. In

} A
fact. we suggest finding a corrected diffusion approximation for the level H = L ﬂ . Note that

the very similar approximation is often used in many other problems of sequential analysis, see e.g.
[12]. The theoretical justification for this approximation is based on the fact that for small values of A .
EWMA statistics are closed to a random walk and the distribution of the overshoot of random walks
does not essentially dependent on level H (at least. for large A ). Furthermore. it well known that the

152
constant C' for random walks (that is for A = () is approximately equal to — g«\(/Z—) =0.583.
T

where ¢(x) is the Riemann zeta function (see details in [4] and [12]). Of course. this value of C°
should be used only as a first approximation. A more accurate approximation could be found with a
Monte Carlo simulation and non-linear least-square fitting.

We suggest the following procedure for obtaining numerical results for two-sided EWMA:
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1. Find the constant C for ARL using a Monte Carlo simulation for some given levels L using
approximation (13) and non-linear fitting. As a result obtains an approximation in the form

ARL, ~ f(H + AC)
2. Find the constant C for AD with Monte Carlo simulation for given change £ and level L. Asa
result gets an approximation in the form 4D, = g(H +AC, u)

3. Find a pair of optimal parameter (/1‘, L‘) for given change 4 .

3. NUMERICAL RESULTS.

We compare lower bound (11) and corrected lower bound by (13) with approximations of Crowder [3]
and Lucas and Saccucci [5] and Monte Carlo simulation method (with 10° trials) by showing a

percentage difference in Table 1 that our approximations ARL are fairly well. To find the constant C
we always use the results of Monte Carlo simulation at the level L = 2.0 that often been suggested in
the literature, see e.g. [5].

Tablel. A comparison of ARL.

Corrected ARL
Lower -Bound Lower- (Lucas & ARL Percentage
(martingale) Bound Saccucei (Crowder ARL Difference
A L (6 using (11} using (8) 1990) 1987) (Monte Carlo)

(1) (2) 3) (4) 3 (2)-(5)

0.01 | 0583 59.28 71.67 - 60.11 71.90 (0.06) . 032
T 44791 526.98 - : 453.13 527.02 (0.49) -0.01

A0 .- 4236.14 - 5282.0 - - 5288.46 (5.14) -0.12

003 | | oswe 19.56 27.07 : 26.43 2737 (0.02) -1
2110 147.79 196.46 - 192,16 196.46 (0.18) 0,00

147 363 499.21 500 - 499.33 (0.48) -0.02

20k 1357.79 1999.31 2000 - 2000.00 (1.98) -0.03

o 1397.76 2061.38 S A e 062 34](2104)) L2010

0.05 1o 0397 11.61 17.65 : 17.12 17.89 (0.02) -1.36
20 8776 127.33 - 127.53 127.36 (0.12) -0.02

1015 321.05 500.29 500 ; S 49945 (0.49) 0.17

ik 830.02 1381.99 - 1379.35 1379.39 (1.36) 0.19

0.07 100 0604 8.21 13.45 - 1331 13.70 (0.01) -1.86
T 62.03 96.78 - 96.78 (0.09) 0.00

1015 63.89 99.81 100 - 99.83 (0.09) -0.02
* Atk 586.66 1080.97 - 1065.81 1075.61 (1.06) 0.50.

0.10 100 0.613 3.07 10.18 - - 10.43 (0.01) -2.46
2m 27.70 73.18 - 73.28 73.20 (0.07) -0.03

100 404.09 848.40 - 842.15 841,95 (0.83) 0.76

050 471.80 1009.31 1000 - 998.01 (0.99) 1.12

23 888.47 2018.41 2000 - 1994.56 (1.98) 1.18

Note: the standard error is showed in parentheses.
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Table 2. AD for two-sided EWMA procedure with fixed ARL = 5000.

A 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

L 2.99 3.21 332 3.40 3.46 3.49 3.52 3.55 3.58 3.59

C 0.50 0.51 0.50 0.48 0.49 0.51 0.51 0.51 0.51 0.53

Shift

()

0.10 | sés'.'si., 963.7 12025 | 14186 | 16285 | 18283 | 19728 | 2134.0 | 23143 | 24322
0.20 2048 | 2023 | 204 3514 | 4142 | 4802 | 5384 | 6027 | 6739 | 7321

0.30 wsg | 1223 137.8 [ 1568 178.3 199.2 2229 249.9 274.0

0.40 73.0 | 683 69.8 74.0 80.2 87.8 95.6 104.9 115.7 125.9

0.50 54.7 437 [ENd7SEE| 482 50.1 52.9 56.0 59.8 64.5 68.9

0.60 43.7 37.7 357 Basi| 355 36.5 37.6 393 41.4 43.4

0.70 36.4 30.7 285 27.5 | | z;f.z | 274 27.7 28.4 294 303

0.80 31.1 25.9 237 2.5 22.0 218 218 22.0 224 228

0.90 27.2 224 20.2 19.1 18.4 18.1 17.9 17.8 18.0 18.1

1.00 242 19.7 17.7 16.5 15.8 15.4 15.1 15.0 15.0 150

The last table allows us to find optimal combinations of EWMA parameters for each magnitude of
change g at given level ARL. For example, when ARL = 5000 and £ = 0.5, our approximation

found pairs of optimal parameter (/1 =003 15 :3.32) with AD =47.5 compared to Lucas and
Saccucci  [5] (/1 — (O3 = 3.299) with. AP =47.7 . For: ge=1 lour. resulls  is
(4 =[0.08,0.1],L =[3.55,3.59]) with AD =15.0 compared to [5] (4=0.09,L = 3.538)

with 4D =15.2. See also Figure 1. as below. Furthermore, we found that optimal EWMA
parameters with fixed values for ARL = 100, 300, 500, 1000 and 2000 are also very close in Lucas and
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Figure 1. Curves of AD for different magnitudes of change.

378



KMITL Sci.J. Vol.6 No.2a May — Dec, 2006

4. CONCLUSIONS

We have suggested a new semi-analytical martingale approximation for studying properties of the
EWMA procedure. This approach leads to closed-form formulas for ARL and AD that are easily
calculated and can be computed by using the simple code of standard packages such a “Mathematica™.
The results from these closed-form formulas were compared favourably with those obtained by other

methods.
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Appendix: The Closed-Form Formulas for ARLs and ADs

AR (1) process is defined by the recursive equation
Yoo BY s tid e it 020 vt Sl = - (14)
where [3 is a constant, 0 < B < 1. Note that EWMA statistic Z, coincides with ¥, for a particular

case of =1~ A and independent random variables &, = AX .

Expectation of First Passage Times for one-sided EWMA.
It was shown in [6] that if X, are independent and normally distributed N(,u, O’z) random variables

then the process
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H(Z) = wju" [exp(uz, ) - expluz) exp{‘ s 4/1 2,1}du - log(l —]AJ

0
(15)
is a martingale (with respect to the natural filtration). By the optional stopping theorem [9], we get

E [H(Z )] = ( for any bounded stopping 7 . This implies that for the case of EWMA

2

T ,1)|f S e (16)

Using arguments similar to the ones used in [6] it can be shown that (16) still holds for unbounded
stopping times 7, and T, defined above. Given the initial value Z, = 0 we have

A
E(z,) = “(Ee"’ = )e# =24 gy a7

,1)|j

Expectation of First Passage Time for two-sided case EWMA.
First. consider the symmetric case when ¢ =0 and Z = 0. Then due to the symmetry of the normal

distribution both processes H(Z,) and H(—Z,) are martingales and so the process
H(Z )+ H(-Z TR ]
Erlllag) J- Cosh(uz, ) 1]expd - =— tdu—tlog| ——
2 4-24 A
is a martingale as well. As above for the one-sided EWMA. we get that for any bounded stopping 7
E[HZ,)+H(-Z)] =

Again. using an analytica!.technique similar that in [6] it can be shown that the last identity does hold
for the unbounded stopping 7, . This implies that for the case of EWMA

wju-‘ (ECosh(ZT_‘)—I)e_%du, (u=0) (8)

1
~in(1-2)

=H+ %> H as Cosh(Z,,) > Cosh(H) we get the lower bound (11).

ARL, = E(t,)

where

We can obtain the approximation (13) by using the identity (16) with T = 7, . Then we have (see also
formula (9) above)

jE[/(z > H e -1]].9"""4&-;(1“
E(r ) = ()

lIn (1 [In(1—2)

]E[/(z <-Hp e 1)]e'”"'ﬁdu.

where 1(A) is an indicator function .
As P(qu < ﬁH)is small (see discussion above) we may neglect the last term in (19) and which then
leads to (9).
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