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ABSTRACT

Nanayakkara and Cressie [1] have presented a confidence interval for the slope ( f;) in the regression
model (1) when the error term has non constant variance. For the case of a single predictor and the
error terms are normally distributed with variance which is a function of the predictor variable. Their
simulation results show that the proposed confidence interval, is preferable to the confidence interval
based on the ordinary least squares, OLS method. Later, Wilcox [2] found that confidence intervals
based on bootstrap technigues can improve Nanayakkara and Cressie’s (NC) method. However, the
simulation results show only a comparison of coverage probabilities of confidence intervals for the
slope. Unlike Nanayakkara and Cressie and Wilcox, this paper presents a comparison of confidence
intervals for the slope of a simple regression using OLS and NC methods when these confidence
intervals have minimum coverage probability 1-¢ . The ratio of the expected lengths of these
confidence intervals are compared using Monte Carlo simulation. The conclusion is that the confidence

interval for [3, based on the NC method is less efficient than the confidence interval for [, based on

the OLS method for some cases. These results are not similar to those of Nanayakkara and Cressie and
Wilcox.

KEYWORDS :  Simple linear regression model. Heteroscedasticity, Ordinary least-squares method,
Coverage probability. Expected Length

1. INTRODUCTION

Consider a simple regression model

Y, = B+BX +e,. (H

!
where the set [(X,Y,):i = 1,2,...,n] is a random sample of n pairs of observations and &, is the
random error which are independent and identically distributed.
Nanayakkara and Cressie [1] constructed a confidence interval for [, using a smaller

: i
standard error of /3, th an the OLS method's. Their method gives a confidence interval which has

better coverage probability than a standard OLS’s method, when the error term has non-constant
variance.

Wilcox [2] extended Nanayakkara and Cressie’s results by considering the following cases a)
the predictor and error terms are normally distributed, b) the predictor and error terms are non-normally
distributed. Wilcox found that a modified percentile-bootstrap technique gives a fairly good coverage
probability which is close to a nominal value of 1-&. Nevertheless Wilcox did not consider the
expected length of their proposed confidence intervals.
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To compare two confidence intervals, Kabaila [3], [4] argued that two confidence intervals
can be compared solely based on the ratio of their expected length when these confidence intervals
have minimum coverage probabilities 1-& where & is the level of significance.

; In this paper, we therefore adjust two confidence intervals for the slope of a regression line
based on the NC and the OLS methods. when the error term has non-constant variance, to have
minimum coverage probabilities 1- & . Then, the two expected lengths are compared by looking at their

ratio. In section 2, we review methods to construct two confidence intervals for /3. Section 3 gives a

simple method to adjust the confidence intervals in order to have minimum coverage probabilities 1-
@ . Numerical examples are shown in Section 4. The conclusion is presented in Section 5.

2. CONFIDENCE INTERVAL FOR

This section reviews two methods of constructing confidence intervals for 3, . when the distribution of
the independent variable and the error terms have non-constant variance.

2.1 OLS Method
We shall find b, . the estimator of /3, from the ordinary least-squares method. This estimator is

S -0 b

b = = =
e
=1
and the (1- & ) confidence interval for ﬁ, is
Cl, s = [b —c sel(ols),b +c,selols)] .
where the quantity ¢, is a constant value of confidence interval for which C/,, . has a minimum

coverage probability 1—¢ . The quantity s.e.(ols) stands for the standard error of b, from OLS
method and it is calculated from

where S° = Ze,z /(n—=2) is the usual estimator of &° based on the error e, =Y —BX b,

i=]

where b, =¥ - b, X, )7=lZY, and X=lZX,.
His: n

The expected length of C/,, ; from OLS method can be calculated by
E(Length),, = E(2¢,se.ols)).

2.2 NC Method
This method was proposed by Nayakkara and Cressie [1]. It has a smaller standard error of /3, than the

OLS method’s. The 1-& confidence interval for the parameter [3, is

Gl = b ¢, seltNE): bike, se (NG
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where the quantity ¢, is a constant value of confidence interval for which CI. has a minimum

coverage probability 1— ¢ . The quantity s.e.(NC) is the standard error of b, from NC method and
is calculated by first computing

(n=1)Y. X} —(nX)? +2X,nX + nX}
d. i i=1

i

ni sz 2 (n/?)z
i=1

and
n

DX - X)lel d
se.(NC) ==

2
i=1
The expected length of C1 . from NC method can be calculated by
E(Length),. = E(2¢c,se(NC)).

3. A SIMPLE METHOD TO ADJUSTED CONFIDENCE INTERVALS

. In this section. we propose a simple method to adjust the confidence interval for the slope of a
regression line for C7,, .. to have a minimum coverage probability 1-c. The estimated” f(c,)

were a function of a coverage probability for Gl where
c, = {1.3,14,..,42} ;i=12 ,j=12,.,30. We carried out Monte Carlo simulations to find
the estimated coverage probability for C/,, . where we fixed the values of n =20, £ =1 and

varied over the grid of values ¢, . 10.000 samples from the & -and- /1 distribution were generated for

the independent variable and the error term in the four cases specified in Section 4. The resulting
coverage probabilities of C/,,, . . for four variance configurations; VC1- VC4 (described in section 4).

are shown in Figure .
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Figure 1. Coverage probabilities of CI o method when the independent variable and the error term

were a symmetric distribution

Figure I shows that the estimated coverage probability for C/,, ¢ is a monotonic increasing function.

We therefore fit these estimated coverage probabilities by using the following non-linear regression
model

flc,) = 6, + 6, exp(6; e
where é]. éz and 61 are the estimator of &,, &, and &, obtained by using non-linear least squares
method. A minimum coverage probability 1-a for C1,),s can be found by setting f(cC,) = 0.95 and
solving for éu . The results of all simulations at‘id values of CAH are partly tabulated in Tables 1 and 2

particularly in some cases of g-and-/ distribution. Wilcox [2]. A complete set of results can be
obtained upon request to the authors.

4. NUMERICAL EXAMPLES

Wilcox [2] has pointed out that the g-and-/ distribution is suited for examining the non-normal
distribution since it shows the distribution with skewness and heavy-tailedness.

Following Wilcox [2], we explain how to generate X, and & in regression model (1). The
observations were generated from the g -and-/ distribution (Hoaglin [5]) with g = 0.0, 0.5 and

h=0.0,0.5. As expressed in Wilcox [2]. as g increases skewness increases, and as A increases
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heavy-tailedness increases. Figure 2 shows the characteristics of the g -and-/ distribution. Using g -

and- /1 values, we simulated X, and &, values, where

S (M}xp(hz,z /12),
g

and Z, are generated from a standard normal distribution.

When g = 0. The last expressionis taken to be

X\ = Zexp(hZ 12).

i

which has a standard normal distribution if & =0,
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Figure 2 The shape of X,'s when we generated by each g -and- /1 distribution.

As in Wilcox |2]. we now simulate X, and & from one of the four distributions [g =h=0.
g=0.h=05. g=05.h=0and g=h=0.5]. i=12,..,n with X, independent of &,.
and then setting

Y s age e (0 e

!

when f(AX,)é, is the function of variance configurations. which have four types of variance
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For convenience, the four variance configurations (VC) will be referred to as VC1, VC2, VC3 and VC4
respectively. The four VC used were as follows; VC1 is f(X) =1, VvC2is f(X)= 1."X , VC3is

= n i = L
F(X)=|X]| and ve4 is f(X)_]+(]X|+1)

The two situations VC2 and VC3 correspond to large error variances when the value of X is in the
tails of its distribution, while VC4 is the reverse, an example of which can be seen in Figure 3.
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Figure 3 Examples of ¥ for each VC when X, and &, are distributed with g =h=0.
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Table 1: Coverage probabilities and expected lengths for CI,,, and CI,. when the g-and-h

distribution of X and & are a symmetric, g =h=0.

y~0,+6, *exp(-6; * x)
Cov.P E Al e
VC Method : ,, 1 &7 cah (Length) Ratio
9] 92 93 S.E.

OLS 1.002434 | -2.077822 | 1.763315 | 0.001845 | 2.0867 | 0.9500 | 0.9829

] 0.9161
NC 1.000878 | -1.577622 | 1.296540 | 0.001044 | 2.6488 | 0.9502 1.0729
OLS 1.010890 | -1.485754 | 1.039382 | 0.002960 | 3.0736 | 0.9516 1.2333

2 0.9290
NC 0.999262 | -1.468490 | 1.131999 | 0.001881 | 2.9980 | 0.9517 1.3275
OLS 1.028643 -i 346620 | 0.764695 | 0.003495 | 3.7145 | 0.9518 1.5752

3 0.9248
NC 1.001765 | -1.442287 | 1.038579 | 0.002531 | 3.2037 | 0.9518 1.7032
OLS 1.000709 | -2.583228 | 2.253329 | 0.000555 | 1.7444 | 0.9500 1.8745

4 0.9455
NC 1.001771 | -1.713179 | 1.426813 | 0.001580 | 2.4525 | 0.9518 1.9825

# is Ratio between E(Length) of OLS and E(Length) of NC

The results from Table | show that the C/,, ¢ is preferable to the

expected lengths in the case g =h=0.

ClI - in terms of their ratio of

When X has a symmetric distribution and & has increasing heavy-tailedness and VCI1, VC2,

V3 and VC4 the NC method gives the better expected lengths and the results are shown in Table 2.

In Table 2 when g =0,/7=0.5 and g =0.5,A=0.5 X has a symmetric distribution

and € is asymmetric. We found that C/ . is preferable to CI,,, .

However. in Table 3. there are some cases which CI,, ; perform better than CI,. in terms

of their ratio of expected lengths. These results are different from these of Nanayakkara and Cressie

[T].
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Table 2: Coverage probability. expected of length and the ratio of the expected lengths between OLS
method and NC method when g -and-# distribution of X is a symmetric and £ is a

asymmetric, g =0, A=0.5and g = 0.5, h=0.5 respectively

y~6,+6, *exp(-6; *x) :
VC | Method - o = g P (Lefgth) Ratio
6, 6, 6, SE.

OLS | 1.002796 | -1.884451 | 1.652927 | 0.001496 | 2.1628 | 0.9528 | 3.0621

| 11532
| NC | 1.001478 | -2.922532 | 1789181 | 0.001658 | 2.2575 | 0.9520 | 2.6553
OLS | 1.010955 | -1.729989 | 1207264 | 0.002382 | 2.7713 | 0.9529 | 3.2033

2 1.0371
NC | 1001447 | -2.528524 | 1.568422 | 0.001377 | 2.4833 | 0.9525 | 3.0887
OLS | 1.023260 | -1.651356 | 0.961231 | 0.003658 | 3.2410 | 0.9529 | 3.9862

3 1 1.0655
NC | 1.001081 | -2.438134 | 1.454900 | 0.001523 | 2.6569 | 0.9527 | 3.7413
OLS | 1.001397 | -1.946379 | 1.909163 | 0.001153 | 1.9033 | 0.9526 | 6.1861

4 1.1987
NC | 1.001188 | -3.245683 | 1.939006 | 0.001800 | 2.1400 | 0.9526 | 5.1608

Table 3: The ratio of the expected coverage probability of length between OLS method and NC method

" . Expected lengths of C7 ), / Expected lengths of
CIN('

g h g h VCl VC2 VC3 VC4
0 0 0 0 0.9161 0.9290 0.9248 0.9455
b s 0 0 0.7375 0.5664 0.5340 0.8319
oo o 0 0.8221 0.5873 0.5408 0.9261
05 | o 0 0 0.9020 0.8651 0.8732 0.9538
o5l 0 05 0 0.9480 0.8853 0.8775 0.9970
0.5 0si sl L 0.7073 0.4832 04236 | 0.9066
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5. CONCLUSION

As shown in Section 4, the efficiency of OLS method is better than that of the NC method in some
cases when the CI,, . and the CI,,. are adjusted to have minimum coverage probabilities 1—cx.

These results are not the same as those of the Nanayakkara and Cressie [1] and Wilcox [2]s studies in
which they did not adjust confidence intervals to have minimum coverage probabilities 1- & .

Therefore. based on the results in Table 3. The simple and easy, CI, ¢ is preferable to

ClI . in some cases of g -arid-/ distributions.
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