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Abstract

More than three decades, flexible link robot arms have attracted attention from the
researchers around the world due to advantages over conventional robot arms. The
advantages include less overall mass, less energy consumption, smaller actuators and faster
responses. This paper focuses on mathematical modeling for a thin two-link flexible robot
arm operating in planar plane. The model was derived based on energy model and
Lagrangian method. Computer simulation is also given to validate the effectiveness of the
model. The results yield a satisfaction and imply the application of the area for applied
science and engineering field in robotics and automation.

Keywords: mathematical modeling

1. INTRODUCTION
The first worldwide recognition as the
first introduction of flexible structure in
control areas has been presented by
Gevarter [1]. Since then the flexible
structures including the flexible manipulator
have been attracted attention of researchers,
scientists, and engineers around the world
[2-6]. For flexible manipulators, there are
advantages over the conventional ones. The
advantages include less overall mass, less
energy consumption requirement, and
smaller actuators.
Since the flexible link robot arms are
made of lightweight material, for example,

" the arms made of plastic, aluminum, or

fiber; whereas, the conventional arms
usually made of iron, this implies that
vibration behavior in the link is an inherent
property due to the flexible nature. In some
engineering application such as assembling
electronic parts and components which
requires precision and accuracy during
operation, the vibration in the flexible-link
arms could reach unpleasant performance.
Hence the vibration suppressions needs to

be carried out during the operation. In
doing so, control engineers have to design a
control scheme that can track or regulate the

work and suppress the vibration at the same
time. In order to do that, most control
schemes, both conventional and advanced
control techniques, require a good
mathematical model to be cooperated. This

Jy

Figure 1 A model of a thin two-link flexible
robot arm.

motivates the research of searching for an
accuracy and reliable model for the needs.
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In this paper, a thin two-link flexible
robot arm model is proposed. Structural
damping is included in the model, which
makes the model being an improved version
of the model proposed by other researchers
in the past [2-6].

2. MATHEMATICAL MODELING

A mathematical model of a two-link
flexible robot arm in this research is
depicted in Figure 1. Here 0;, wi, m;; and L;
stand for an angle, the deflected distance
away from the link i, mass at the end of the
link i", and the length of the link i
measured corresponding to Figure 1,
respectively. It is worth mentioning that the
model is assumed to work under no gravity
effect, and the torsion and transverse forces
in the links are negligible.

To begin with, let us now summarize
coordinate transformation using to derive
the model along with energy model
corresponding to the problem in hand. The
coordinate transformations using here are:

i _| cos 4, sing |/ (2 1)
[fl |- sin @, cos @, {J

Il cos(wi ) sin(wi,, ) |(i, (2.2)
/5 - sin(wy g, ) cos(wi; ) || j;

iy | | cos8, sind, ||i 2.3)
J3] |-sin8, cosé, ||/, i

The total kinetic energy can be described as

T=T, +1;,

5=l

L
=1 (oG 70 +2mG )
0

I
+3 [0, To oty + Ly )
0

xy=ly

(2.4)

where p; is the volume density and A; is a
cross-section of link i, respectively, and
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We assume that the displacements are
small so that the higher order terms
associated with the small deviation can be
neglected. Now the potential energy can be
expressed as

L Lz :
U =1L (B, w2 ey + & [eEn, )2, (2.7)
0 0

where E; is the Yong’s modulus, and is the
moment of inertia of the i*".

We assume that there is existence of
modes of vibration in the flexible arms so
that we can utilize the assumed mode
method. We now define modes in
corresponding to the deflection as follows:

(=Yg (xpa =9 a=a’y
i (2.8)

wa(x,0= Yy, (x;)e, )=y c=cy
Jj=0

In nature, there are no cases such that
the arms are still having vibrations in simple
harmonic motion. Vibration is die out due
to the law of entropy. With this picture in
mind, we then define a dissipation function
in the form of

n n
D=%sz;ﬂf‘h (2.9
i=li f=l

where d;; is the damping coefficients and the
qi is a generalized coordinate i defined as

a=l 0, o TF o
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Using the Lagrangian equation, we have

Mg+ Dg+Kqg=0 Ee (OR )

and after long time consuming calculation,
we then arrive at equations of motions in
state space formulation as:
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where u is an input vector and the rest of the
corresponding terms will be shown in
Appendix.

- 3. SIMULATION RESULTS

To validate the model and observe
the effects of damping, following
parameters are used in the below simulation:
L| = 05, L2= 05, m =0.4, m2=0.1,
d;=0.05, d;=d3=0 and d4=0.07, p
i=2710kg/m>, A;=1.613*10%-5m?,
EI=0.0684N*m>. The reason to set d, and
d; equal to zero is that to provide no direct
interaction of damping effects via the
middle joint between two links.

Figures 2 shows the simulation
obtained from using the model and the given
parameters. In this case, we simulate an
impulse response acting on the arms.
Subgraph (1,1) on the upper-left corner
shows the effects of the impulse response
applied at angle 8, which is corresponding
to apply current U(1) to the motor located at
the hub in Dirac delta function as a very
narrow pulse signal, while other inputs are
retained to be unchanged. Here label Y(4)
means the observation point is at the tip of
the second arm. It is no surprised that the
smallest vibration amplitude can be
observed. This is/because the contribute of
the impulse is away from the tip of the
second arm.

Subgraph (1,2) on the upper-right
corner shows the effects of an impulse
response applied at angle ©,, which is
corresponding to apply current U(2) to the
motor located at the joint between two arms
in Dirac delta function as a very narrow
pulse signal, while other inputs are retained
to be unchanged. We can observe that

higher order of magnitude of the vibration

can be investigated. The closer the input
point to the tip, the higher the vibration
amplitude at the observation points.

Subgraph (2,1) on the lower-left
corner shows the effects of an impulse
response U(3) applied at link 1, which is
corresponding to apply impulsive force
hitting on the link 1, while other inputs are
retained to be unchanged. We can see that
the vibration from the first link is also
effected on the tip of the arm.

Subgraph (2,2) on the lower-right
corner shows the effects of an impulse
response U(4) applied at link 2, which is
corresponding to apply impulsive force
hitting on the link 2, while other inputs are
retained to be unchanged. As expected,
compared to all subgraphs, the highest
vibration amplitude can be observed. And
for all above subgraphs, we have seen the
damping effects that vibration is eventually
die out.
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Figure 2 Simulation results corresponding
to the given data.

Figure 3 illustrates the corresponding
picture in frequency domain for each
subgraph corresponds to each one in Figure
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2, respectively. As we can see from poles
and zeroes in below subgraphs, the system
is not the minimum phase due to there are
zeroes on the right half plan, and the poles
lie on the real axis contribute to the damping
behavior of the system; while pairs of poles
indicate the vibration. This analysis is
confirmed with the picture in time domain
and the interpretation is exactly shown what
would be expected and predicted in
frequency domain analysis of classical
stability theory.
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Figure 3 Simulation results in frequency
domain correspond to Figure 2

4. CONCLUSION

We have presented a mathematical
modeling for a thin two-link flexible robot
arm. The model is derived by using
assumed mode method along wi-th
Lagrangial equation. The finding is
arranged in state space form, which is a
preferable form for engineers in most
disciplines to work out for further
application.  The findings have been
validated graphically by using computer
simulation. As far as the analysis is
concerned, the model provides important
information in practical senses in which the
damping effects can be significantly
observed.
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APPENDIX

This Appendix describes important
terms corresponding to the findings in state
space form in Section 2. Those terms
include:
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