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Abstract
This research applied new splitting LOD (Locally One-Dimensional) method for
solving three-dimensional time-dependent heat equation. In this work we will find an
analytic solution of this equation and compare with numerical solutions.
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1. INTRODUCTION

Heat conduction is an everyday
experience. Conduction of objects or the
sun emit its thermal rays are examples of
heat conduction. There are numerical
methods for solving heat conduction
problems. One numerical method used in
solving heat conduction problems is Finite
Difference Methods (FDM), which have
been widely used for a few decades in
teaching and modeling. Splitting FDM are
popular methods for solving
multidimension problems. In this research,
we will extend the new splitting FDM in
[2] to apply with three-dimensional time-
dependent heat diffusion equation.

2. THEORY
In this research, we study the heat
equation which is expressed in the form

u=clu, +u, +u,)0sx<A 0
0<y<B,0c2<C,0<t<T

subject to initial condition

ulx,y,2,0)=F(x,y,2)0<sx < A @)
,0sy<8,0s2<C

and Dirichlet boundary conditions which
are expressed in general form

ulo,y,z,t) aql(y,z), O<y<8 3)
G0 z<C,0<tsT i

U(Al‘ylzl’t) = G,()/,Z), 0< y<8

0<z )

! <€; 0<t'gsT

ulx,0,z,t) = G(x,2) 0<x<A 5)

i< 22 C,0<t 2T

ulx,B,z,t) = G,(x,2),0<x <A ©)
,0<z2<C,0<t<T

U(X'V:Uat) o G,(X,y),0<X<A (7)
20 yi< B, 0<tsTF

nx, y,Gt) = G,(x,y)0<x<A

( ) ( Y) (8)

L0y <8, D ST

Where £ and G, to G, are known
continuous functions of their arguments and
all auxiliary equations (2)-(8) are linear. For
heat conduction, the function u(x,y,z,t)
represents temperature distribution varying
in time when « is thermal diffusivity.

3. THE LOD METHOD
In order to solve the equation (1) by

using new LOD we split this equation into
three one-dimensional heat equations,

u, = au,, (C))

i gl (10)

W =
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Sl (11y

W=

Each of these equations is then solved
one third of the time step used for the
complete three-dimensidnal equation, for
which the three-stage procedure is : which
x-sweep in the first one third time step to
solve (9) the formula used which i =
2.3l s

U:;:[: T %(65: i 1)(Ul”—1;},t it Urnd,j,ﬁ)

3 2;' @-35)Us, + Ui )+ %(2 _ 55, +653)U°

41,00k 1.k

(12)
foreachj=0,1,....Jand k=0,1,2,... K.
When computing values of u/%

1.

from the values of ¢/ in the y-sweep

used in the second stage, the formula used
with

j=23,.,)-2 foreachi=12,... landk =
o st o

)
usn = 2lbs, -1, +Ull)

Bipoagluse, cusn) (13)

+ %(2 -55, + st)U""”

fodok

When computing values of v},
from the values of U7 in the z-sweep used

in the third stage, the formula used with k =
28t D foreachi=1,2,....]andj=
1253 o )iis

Uzs, = T2(6s, DU +U)

Beds o, euzm). (4

. %(2 55, 4651 )UmY

r

For convenience, let Notation U,
denotes an approximation of function
ulx,y,z,t) by using FDM approximate its
at grid point (i, liy, kAz,nat). First we let
grid spacing ax, 4y, 4z and 4t, when
Ax=AI, 4y=B/J, az=C/kand for

At=T/N , where I,J,k and N are integers.
Thus we can use the notation(x,y,z, ') to
denote grid point (ix, jdy, kaz,nat) for
f=0u2 i = O 2 R R s = OR12 5 LG

and »=0,1,2,..,/ . This method has fourth

order of accuracy and this new procedure is
stable, in von Neumann sense, for

Q<S5 ,5:0<2/3 (15)

when 5, =adt/(ax) ,s, = aAt/(ay) and
s, = aAt/(az)

4. RESULTS

In this section we will show the results
by presenting a mathematical problem as an
following example. Let us analyze our
solution in the case in which the initial
temperature is constant, 300 k. This
corresponds to a physical problem that is
easy to reproduce in the laboratory. Take a
clay brick, measuring 0.2mx0.2mx0.3m , and
place it in a large tub of boiling liquid
(300 k ). Let it sit there for a long time. After
for a while (we expect) the brick will be at
300° & throughout. Now put it in large well-
stirred baths of liquid, 0«. The
mathematical problem is

= 2
u =alu, +u, +u,)0sx<0 (16)
,0cy<02,0c2<03

subject to initial condition

ulx,y,2,0)=300,0 < x <02 (17)
,0sy<020<2z<03 :

and boundary conditions

U(O,‘V.fo) =U(0.2,J/,Z,t) = u(xtorzf r) =0 (18)
=ulx0.2,2,t) = ulx,¥,0,) = tfx, ¥,03,t)

when thermal conductivity k =1.3W/m K ,
density p=1460kg/m’, specific heat
c, =880J/kg-k and thermal diffusivity
a=klpc,.

m
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By using eigenfunction expansion
and .separation of variables method. The
analytical solution of this problem is

Ux,y,z,t)=8/02x02x03

S350 Jfstariaf st ) (19

qy Bligein
x 5] az]si 03]6}’4:“0!7?(‘0.—2)4'65 E ]t]

where I, =300 s.rn[o BJ and the diffusivity

a=1.01183x10*

Next, we will consider
approximation to the initial-boundary value
problem (16)-(18). We have now obtained
the solution to the problem for the heat
diffusion with zero boundary conditions
(18) and initial temperature distribution
equaling 300'k . The solution is expressed
in equation (19). The solution is quite
complicated, involving an infinite series.
First, we notice that /m, _u(x,y,z,¢t)=0.
The temperature distribution approaches a
steady state, «(x,y,z,t)=0. This is not
surprising physically since all of edges are
at 0"k ; we expect all the initial heat energy
contained in the brick to flow out those
edges. : :
problem

with

The

du, +uy +1,)=0
w0,y 2,8) =02y, 2,) = thxP, 2,t) = x0.2,2,6)=0
and ox,y.0,¢)=u{x,y03,t)=0, has a unique
solution, v =0, agreeing with the limit ¢
tends to infinity of the time-depcndent
_problem. We note that each term in (19)
decays at a different rate (since decay of
exponential function). We can then
approximate the infinite series by
summation of finite terms in (19). For
studying of analytical solution when use
only first term in (19), which easiest to
compute (see Fig.1), it presents values of
temperature distribution u('x,0.05,0.05, At)
when Ax=001m, At=123538539s. The
peak amplitude occurring in the middle
x = 0.1m decays exponentially in time.

equilibrium
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Figure 1 Decay of Temperature Distribution
vary in x-direction

When ot =nxAt;n=1,2,3,... notice
that for higher level of time step we can then
make a conclusion that /m, _u(x,y,z,t)=0 as
discussed above. For comparison of analytic
solution with numerical solution. First, we
let grid spacing Ax =Ay=4z=1cm when
s = 2/3. For this case At=49.41542s, since
At is small value, we then obtain the
approximation of analytical solution by using
summation of 37th first term in series (19)
(the value of u(x,001,001,4a¢) when
approximate the summation from p,q,r =1
to 37 equal the summation from p,q,r =1 to
39,40,41,... ). Thus we can then use only 37"

first term :

x ztzf:i:

2
x [ J‘( j[ [300 sin(:rz}dz] sin (ny)a}/) sin (:rx}dx}

0. gg}‘m [0 3)
g

BV

8 /o.z «0.2x03

i 2% 2o (2% @)

ol e &)

0.2 0.2
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x (1 - cos 7p)t - cos =gt - cos =r) -

x Sin Py sin Lizds sin| 7=
7 0.2 0.3
2

p] q rZ
X exp(— afr‘f(ﬁ o ﬁ)}

(20)

The notation v;,, and v”,, denotes the

rhik
analytic solution (20) and the numerical
solution at grid point (idx, jay, kaz, nat)
respectively. Representing the results in
following table :

(i’j’k’n) Ul’:}.l U:.‘Lt
(1,1,0,1) 0 0
(11,151 95.455 80.20932
(1,1,2,1) 133.456 139.80075
(15153:1) 139.442 139.80075
(1,1,4,1) 139.812 139.80075
(1,1,5,1) 139.818 139.80075
(1,1,6,1) 139.82 139.80075
(1,1,7,1) 139.82 139.80075
(1,1,8,1) 139.819 139.80075
(1,1,9,1) 139.82 139.80075
(1,1,10,1) 139.82 139.80075
(LL1L1) 139.819 139.80075
(Q el b 139.82 139.80075
(1,1,13,1) 139.82 139.80075
(1L,1,14,1) 139.819 139.80075
(1,1,15,1) 139.82 139.80075
(1,1,16,1) 139.819 139.80075
(1,1,17,1) 139.82 139.80075
(1,1,18,1) 139.82 139.80075
(1,1,19,1) 139.819 139.80075
(1,1,20,1) 139.82 139.80075
(1,1,21,1) 139.82 139.80075
(1,1,22,1) 139.819 139.80075
(1,1,23,1) 139.82 139.80075
(1,1,24,1) 139.82 139.80075
(1,1,25,1) 139.818 139.80075
(1,1,26,1) 139.812 139.80075
(1,1,27,1) 139.442 139.80075
(1,1,28,1) 133.456 139.80075
(1,1,29,1) 95.455 80.20932
(1,1,30,1) 0 0

Table 1 Compares analytic solutions with
numerical solutions when s =2/3

From table 1 we obtained the result that
numerical solutions from numerical method
give closely values to analytic solution.
Showing the accuracy of the numerical
method.
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