142

An Analytical Description of ....

A(M.A. Allen and G. Rowlands)

An analytical description of asymmetric soliton states in a nonlinear
optical fibre coupler

Michael A. Allen' and George Rowlands®

'Physics Department, Mahidol University, Rama 6 Road, Bangkok 10400
frmaa@mahidol.ac.th
2Physics Department, Warwick University, Coventry, CV4 7AL, UK
G.Rowlands@warwick.ac.uk

Abstract

Solitons in a nonlinear dual-core coupler can be
in symmetric, antisymmetric, and also asym-
metric states. There are two branches of asym-
metric states. For one of the branches we apply
perturbation theory to give an approximate ex-
pression for the soliton states near the ends of
the branch, and combine the results to give a
Padé approximant for the whole branch. Using a
perturbative technique involving the regrouping
of algebraically secular terms developed by us
previously, we can analyse one end of the other
branch. However, the remaining end does not
appear to be amenable to this type of analysis.

1 Introduction

The envelope of a light wave propagating down
a fibre obeys the cubic nonlinear Schridinger
(NLS) equation:
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where the normalized quantities E, £, and T are
proportional to the envelope function of the elec-
tric field, the distance along the fibre, and the
time, Tespectively, and the coordinate system is
moving with the group velocity (1]. The non-
linearity is a result of the Kerr effect which is
the distortion of the electron orbitals due to an
applied electric field. It produces a nonlinear re-
fractive index, n = ng + ng|E[%, and this results
in the wavenumber having a nonlinear depen-
dence on the signal amplitude [2].

_ If two fibres are placed next to each other,
optical signals propagating along them will be
coupled via the evanescent fields. This form of
nonlinear dual-core directional coupler can ex-
hibit soliton switching and therefore has poten-
tial applications in optical processing [3]. The
system may be described in terms of two linearly
coupled NLS eqpiations:

iU + LU, + [UPU+ KV = 0

(1)
Ve + iV, +|VPV+KU = 0

where U,V are the electric field envelopes in the
two fibres and K is the normalized coupling co-
efficient. Insisting on stationary pulse-like solu-
tions by making

U, T) =u(r,g)e', V() =v(r,q)e'",
where q is a soliton parameter, one obtains the
reduced equations for soliton states:

Li-f+f+kg = 0
(2)

Yi-g+g°+sf = 0

where f = u/\/q, g = v//q, £ = K/q, and the
dot denotes the derivative with respect to the
reduced variable ¢t = 7,/g [4]. It is sometimes
helpful to rewrite equations (2) as

F—olz+z+3zy2 = 0
(3)
ji—ptaly+yP¥ +3yz = 0
where = = (f + 9)/V2, y = (f — 9)/V2 and
e A

T (4)

From (2) it is apparent that both symmetric
(f = g) and antisymmetric (f = —g) solutions
exist. They take the forms

(z,9) = (2asech at,0), 0<k <],

and

(z,y) = (0,+/20psech apt), £>0,

respectively. It is shown in [4] that there are also
two branches of asymmetric states. They appear
as a result of bifurcations from the symmetric
states at & = 3/5 and from the antisymmetric
states at k£ = 1. The two branches are referred to
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as ‘A’ and ‘B’ respectively. All the asymmetric order we find
states can be conveniently parameterized by L,(1)F, =0 © (6)
=tan!' ¥ and
i o G -G =—Fy, (7)

where g = z(0) and yo = y(0). The bifurcation
diagram showing these states is plotted in Fig. 1.

4 (in degress)
g8 &

Figure 1: Bifurcation diagram showing asymmet-
ric states

The asymmetric states are of particular in-
terest because for some values of ¢¢ their shape
deviates significantly from the sech-form usually
associated with non-topological solitons. This is
important, as many calculations had been done
with the assumption that the two solitons had
sech-function shapes.

2 ‘A’-type asymmetric states

As can be seen from the figure, the two branches
of asymmetric states meet at x = 0 which corre-
sponds to the decoupled states. One such state
is a single soliton (f,g) = (v2sech v/2t,0). It
turns out that if we perturb about this state, we
obtain the ‘A’-branch.

After introducing the new variables T = v/2¢,
F = f/v2, and G = g/+/2 from (2) we obtain:

F'—F4+2F = —kG

(5)
G'-CG+26° - —-kF
where the prime denotes differentiation with re-
spect to T. Using & as our small parameter, we
carry out a small-x perturbation analysis and
expand the envelope functions as
F=FR+cF+.., G = kG, +H2G2+....

The zeroth order kolution is the state we are per-
turbing about, namely Fy — sechT. To first

where we have denoted d?/dT? + 6sech®T — p
by L,(p). The solution to (6) is F; = AF}, but
F must be even and therefore A — 0. The only
solution to (7) which decays to zero at infinity
is

G1 =coshTIn(2coshT) — T'sinhT. (8)
We now have enough information to deter-
mine the small-x behaviour of ¢g to first order
for the ‘A’-type asymmetric states. From our
definition of ¢y and our expression for G, we

obtain
tangg =~ 1—2kIn2 (9)

from which £5
o = i kIn 2.

The gradient, d¢g /dk, at & = 0 agrees with that
obtained numerically for the ‘A’-type asymmet-
ric states.

At the other end of the ‘A’-branch is one of
the symmetric soliton states, y = 0. To per-
turb about such a state, it is most convenient
to use (3) rewritten using the reduced variables
(X,Y) = (z,9)/(v2a) and T = at:

%—X+2X3+6XY2 =0
(10)
%— Y 42V 16V X2 = 0.

Introducing an expansion parameter ¢ = pl —
12 we write
X=Xo+eX7+.., Y=er1+...
The zeroth order equation derived from (10) is
XXy 7+ 2X3 =0 (1i)

and has the solution Xy = sech T. The first
order equations are

X! +6X2X; - Xy =L)X, =0 (12)

and
Y +6X3Y; — pdYi = L(id)Y1 =0.  (13)

The solution to (12) is X; = Asech TtanhT.
As with the small-x analysis, since X must be
an even function of T', we have to make A = 0.
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Lo(p) can be transformed into the associated
Legendre operator if z = tanhT:

(1 -zﬁ)j-‘i ((1 - zz)%) +N(N+1)(1=2%) -\

with N = 2 and eigenvalue, A\ — p. From this
it can be deduced that (13) has exactly two so-
lutions which decay at infinity. The non-trivial
solution is Vi = B sech®T with g2 = 4 (which
corresponds to k = 3/5). This is the result ob-
tained in [4].

To describe the asymmetric states, we need
to proceed to higher order. The second order
equations are

Lo(1) X2 = —6X,Y (14)
and
Lo(4)Y; = 0. (15)
The solution of (14) is
X,y = B}(sech®T — 2sech T) (16)

and from (15), Ya=0. To third order we have
L,(1)X3=0
and
L,(4)Ys =Y, - 2Y ~ 12Y) Xo Xz, (17)
To determine B; we can use the consistency con-
dition

| ViLo@)¥ipadr =0 (18)
0

derived from the self-adjoint property of L,(4).

Applying (18) to (17) yields By = 1/5/48.
The expansion for X and ¥ so far is

X = sech T + ¢ B?(sech®T ~ 2sech T) + ...
Y — eBy sech’T + ...

To compare these results with the numerical re-
sults of Fig. 1 we must determine ¢o:

U B
£(0)  X(0)  1-€*B}

tan gy =
Expressing ¢(—/4 — p?) in terms of & using (4)
we then obtain
25 5
~3—2- (1 oo -'3-&) (19)
for & near 3/5.

We can combine the results (9) and (19) us-
ing a two-point Padé approximant. Given the
form of the equations, it seemed most natural

do = tan ¢p =~
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to obtain an approximant, P, for tan® ¢g. We

therefore write
e §'C) 1+a1k
3 1+bik

so that P automatically has a zero at & = 5/3

P= (20)

.and the correct value at & = 0. Matching the

expansion to first order of the Padé approximant
with that of tan® ¢g for small k gives

al—b1-§=—4ln2,

and to ensure that P has the correct gradient
around its zero we must have
14 3a; / 5 L 25

1+3h/5 32

From these two relations we obtain the Padé co-
efficients a; ~ 2.28305 and b; ~ 3.38898. The
error in ¢ obtained using (20) is less than 2.5%.

3 ‘B’-type asymmetric states about x = 1

In the case of the antisymmetric state we have
f = —g and so z = 0. We now rewrite (3) in
terms of the reduced variables X = z/(v/2ap),
Y ~y/(V2ap), T = apt:

% — X 42X+ 8XY2 =0, (21)
?—TE— —Y+2¥i+6YX? = 0, (22)

in which we have put v = 1/u. Notice that these
equations are the same as (10) but with X and
Y exchanged and p replaced by v. Demanding
a solution with k non-zero and X vanishing at
infinity, would similarly result in vo = 4 which
would imply a negative . The numerical results
suggest. that we should insist that vo = 0 (i.e.
& = 1). Hence we use ¥ as our small parameter
and write

X =vX, +rXa+...

Y =Y, +vY) + 03 + ...

To zeroth order in », we have Yy = sech T. To
first order we obtain

L,(0)X, =0

which has the general solution

3
X, = A, (gsz - 1) + H, (th -T+ §t)

in which s = sechT and t = tanhT. Although
this does not blow up for large T' (with H, set
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to zero), it still does not vanish at infinity. It
is therefore an algebraic secularity, and based
on our previous work [5], we would hope that
it can be regrouped with other such terms at
- higher order to give an expression which does
tend to zero overall for large T'.
We therefore apply a multiple-scale analysis
[6] so that A; is now a function of the scaled
‘variables T, etc., where T,, = v™T. The quan-
tities X; and Y; are now functions of T}, as well
as of T' and so we must expand the derivatives
in (21) and (22) using
div a0 a8
ﬁ ;ﬁ+va—T—l—+v Efz_-'_
Apart from A; and H; no longer being con-
stants, the results obtained so far for the ordi-
nary analysis are still valid. The solution to the
other first order equation,

L(1)Y: =0,

2 0

where we now have L(p) = 02 + 6s° — p, is
i 3 43
Yi =Bist+ J; k1 coshT — '2-3 + §T3t !

Evidently we must make J; = 0.
At second order we find

Xy = g-A,,lt + 34, B, 5% + 3B H; (Ts*t — %)

3 3
+H]|1 {(1 T)(28 1) 2Tt}
Since the Hy,; term cannot be removed by mak-

ing it a function of Ay, By, or Hy, we put H; =
0. Our equation for Y5 is then

Y’z = 1

+B%s — Bis’T — By 1 Tst.

A2 (933 ~3s+ 37".;&)

Given the form of ¥}, it can be seen that the T'st
terms in ¥; are ghost secularities. Their removal

gives a relation between By and A;:
Bya =343 (23)

At third order the most divergent term in X3

is
303
(1—53)—§Tt}

which can be removed by choosing

T2

(Al,ll = A]_ +2A:;) {—2*

Ajg— A +243 =0 (24)
The only bounded solutions to (24) are
A; = xsechTh. (25)
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From (23) and (25) we see that B; — 3tanhT).

If we look at the ordinary perturbation anal-
ysis again and expand up to fifth order, ignoring
the mounting algebraic secularities, we find that
the leading terms in each order in the expansion
of X sum to give

24% -1

20
A [1— T2 4 (247 1)M—1u4r‘]

24

These terms are consistent with the expansion of
—vAsechvT if A = +£1. The positive solution in
(25) is the one we have been taking throughout
the previous analyses.

Using the results we have obtained so far, we
find that

=
i
2

v? : 1-
with v = 5
1+k

sl
=

tan ¢g =~

<

This agrees with the numerical results for & close
to unity. j

4 Discussion

The analysis of the ‘B'-type asymmetric states
about the decoupled state has proved to be much
more difficult. As x approaches zero, the numer-
ical calculations show that F' tends to a sechT
function while G has two sech-like humps (sym-
metrically placed about the origin) whose sep-
aration increases with decreasing k. To carry
out a small-x analysis like that in §2 we would
have to perturb about a state, Gy, that has two
sech-like humps at infinity. With the G,, inde-
pendent of &, it is difficult to imagine what form
they could take to relocate Go's humps at in-
finity to some finite, x-dependent distance from
the origin.
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