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Abstract

Traceability is the common term for mechanisms to record and navigate relationships
between development and assessment artifacts. Effective management of these relationships is
essential to the success of projects involving complex safety critical systems.

Practitioners on such projects typically use a range of techniques to model and analyse
the safety and reliability of the s.ystems they are developing. Most have tool support, although
poor integration leads to inconsistencies and limits rraceallyih'ty between their respective data
sets. This paper proposes a framework that enables links to be established and consistency

maintained across data from potentially disjoint safety analysis tools.
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1. Introduction

Fhe term salety crical applies toany system whose fature can lead 10 1oss ol life, mnjury
ot environmental damage |1 Such systems are destgned (o satisfy a range of functional and
non-functional requirements. includimg salety rehabiliny and availability. An important role
lot developers is theretore m depth anals sis that such requirements have been met. In doing so
arange of salety analysis techngues may be applied

Two complementary strategies underpim salety analysis lechniques: these have been
termed deductive and mductive approaches [2] Deductite techniques such as Fault Tree
Analysis (FTA) start from a system failure and then reason ahout system or component states
contributing to that lailure. Conversely. induclive lechnigues such as Failure Modes and
Effects Analysis (FMEA ) consider a particular fault in 2 system component and then attempt
Lo ascertain its consequences. FMEA is seen as a complimentary upproaéh to Fault Tree
Analysis such that a fault tree used (o determine the causes of 4 particular hazard may utilise
failure rates from relevant FMEAs,

Other commonly used techniques include HAZOPS (Hazard and Operability Studies),
used in determining potential causes of Failures (those that the afore-mentioned safety
requirements are intended to mitigate against) and Event Tree Analysis (ETA) used in
determining the accidents that may follow from such hazards.

Most technigues have CASE (ool (Computer-Aided Systems Engincering) support,
however a lack of well-defined approaches Lo integration leads to inconsistencies (if individual
analyses are inconsistent, it follows the overall assessment will be inconsistent and hence
untrustworthy) and limits traceability between their respeclive data sets.

Traceability is the common term for mechanism sto record and navigate relationships
between artifacts produced b'y development and safety assessment processes. Effective
management ol these relationships is crucial to the success of projects involving complex
safety critical systems.

This paper presents details of MATra, the Meta-meodelling Approach to Traceability,

]
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which addresses the two problems described above, namely.establishing (and maintaining)
traceability and consistency across data from potentially disjoint safety engineering tools. The
framework is realised by exporting information from the internal models of tools, to an
integrated environment consisting of: i) a Workspace comprising a set of structures (meta-
models) expressed in a common modelling language representing selected safety techniques;
ii) well-formedness constraints over these structures capturing properties of the notations; and
iii) associations between the structures. To maintain consistency, the structures are verified
against a physical system model.

With these principles in mind, the rest of the paper is organised as follows. Section 2
provides an overview of MATra, which is demonstrated by example in Section 3. Section 4

has some concluding remarks.

2. The MATra Traceability Framework

MATra is an object-based framework for tracing between artifacts distributed across
disjoint tools supporting safety analysis of critical systems. The framework is based on a set of
interconnected ‘traceability structures’ represented in UML [3], with constraints expressed in
the Object-Constraint Language [4]. The example in Section 3 shows one possible means of
realising the framework, with alternative representations and tool support considered in \
Section 4.

MATra is based on five key principles:-

L. A Workspace of notation dependent structures (meta-models) representing data exported
from tools supporting various safety analysis techniques (see 2.1).

2. A Meta-class model to maintain consistency of definition across Workspace meta-models
by providing a common underlying representation (described in detail in [5]).

3. Atool2marra (tool-to-MATra) mapping function providing data exportation from tools to
the‘WDrkspace (see 2.2).

4. The Product Data Synthesis (PDS), a physical system model that defines the structure,



A
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operational principles, properties of components and relationships between components of the
target system; it maintains Workspace consistency by preventing ‘bad’ data from CASE tools
entering via tool2matra (i.e., being mapped to a notation dependent structure) unless the PDS
contains corresponding data elements, and by preventing violations once the data is ‘inside’
(see 2.3).
5 A Framework Model that manages common behaviour among MATra elements
(described in detail in [5, 6]). Of interest in this paper are classes from the model for creating
relations among notation dependent structures (see 2.4), and between these and the PDS (see

. 2:5).

2.1 Notation Dependent Structures

As previously stated, projects involving complex safety critical systems typically employ
a range of techniques — mostly diagrammatic or tabular in their presentation of results - to
analyse the systems under development. This paper concentrates on representation of two such
techniques — FTA and FMEA — introduced in Section 1. Readers are referred to [5, 6] for
comprehensiveAcoverage of others. '

When developing a meta-model, the concepts to be modelledrmust first be established;
these are assumed to correspond to concepts underlying safety analysis tools. Having
identified the relevant concepts, a meta-model is created using the Class Diagram view of
UML. OCL constraints defining well-formedness and PDS consistency are then added. PDS
checks verify integrity of the tool2matra export function by stating appropriate invariants for
Workspace elements that must hold following its invocation. However, their main purpose is
to preserve consistency (between the Product Data Synthesis and the Workspace) following

changes to the PDS. Meta-model development is demonstrated in Section 3.

2.2 ‘tool2matra’ Mapping Function
A lack of well-defined approaches to integration means practitioners often find it difficult

to trace between data created and stored across disparate tools (figure 1).
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One solution is to export data from the tools to a Workspace of notation depehdent
structures (introduced in 2. 1) capable of receiving this data. By expressing these structures in a
uniform format (i.e.. in a common language). links (expressed in the same language as the

structures) can be inserted that capture dependencies among data in safety analysis tools,

within the Workspace.

A, 5o
E )
‘*3!”14}:

Figure 1. Inter-Tool Traceability Problem.

Ideally, mappings across the CASE tool/MATra interface (i.e., information capture)
s];ould involve limited human intervention. Here il is treated as a ‘black-box’, with all
transfers considerad in terms of an undefined function, tool2marra, that maps data from the
internal models of tools onto notation dependent structures (figure 2). Feasibility of this

approach is evident in work by project SEDRES [7] and the DOORS requirements

management tool [8].
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Figure 2. Realising Inter-Tool Traceability.

The tool2matra funclion takes as its input parameters, a populated CASE tool data
structure (pCDS) with a corresponding un-populated notation dependent structure (uNDS) and

the Product Data Synthesis (PDS), and returns a populated notation dependent structure
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(pNDS). The rooi2matra interface is defined as follows:-

pNDS tool2maira (pCDS, uNDS. PDS)
The resulting Workspace provides an integrated environment allowing traceability linkages
(o be established between otherwise disjoint dala (see figure 2); by dropping from CASE tool
level into the Workspace, engineers can move arot'md the complete data set wherever links
_exist.

2.3. Product Data Synthesis (PDS)
As Sub-section 2.2 demonstrated, the Product Data Synthesis plays an important role in

MATra by preventing bad data from entering the Workspace via rool2matra. However, it also
maintains consistency once data is inside the Workspace, notably following updates to the
PDS itself. This is ensured by rules over links associating elements of the PDS with
corresponding Workspace elements.

Product Data Synthesis is a notation independent structure populated by engineers with
design authority. It captures the physical system model in terms of structure, behavior,
operational principles, properties of components and relationships between components.

Core PDS constituents are referred to as build elements (BuildElement) and build
associations (BuiIdAssociation). Each build association subtype has single source and target build
elements. Correct combinations of element and association subtypes is maintained using
appropriate constraints.

BuildElement is specialised by Module, Function, Transaction, Interface and other types. As
such, Module describes a system or ‘component’ of a system - be it hardware, software or
human; the functional architecture of a module is described using the Function element, while
Transaction is a combination of functiéns that perform some task. Modules or functions may be
connected via an Interface (seé [5, 6] for further details).

A subset of Build associations permitted between build elements are shown in Table 1.

Most are self explanatory and partly based on existing literature [notably 9 and 10].
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BuildAssociation Source Target
Encapsulates Module Function
HasSubmodule Module Module
Haslnterface Module Interface
: Function Interface
UsesFunction Transaction Function

Table 1 — (Subset) of PDS Build Associations

2.4. Systems Engineering Associations
A mechanism is required for establishing associations between Notation Dependent
Structures, and between elements of these structures. In MATra these associations are

modelled as classes (figure 3).

SystemsEngineering Associalion from_entity 1| SystemsEngineeringEntity
(absiract <> to_onlity (abstract)

AsmsodBy

ConlributesTo

Figure 3. Systems Engineering Association.

SystemsEngineeringAssociation or SEA is an abstract class whose subtypes, e.g., AssessedBy
and ContributesTo in figure 3 (which feature in the example in Section 3), realise traceability
between two SystemEngineeringEntity subtypes (SEE) over rolenames from_entity and to_entity.
SEE is simply a super-class subsuming all notation dependent structures, and elements of
these structures. As with build associations, correct usage of SEA subtypes is maintained by
constraints (not shown
2.5. Framework Link Entities

Framework Link Entities exist between the PDS and W_orkspace and take two forms,
BEmodelSEE and BEelementSEE (figure 4). These represent links between build elements and

meta-models, and between build elements and meta-model elements respectively.
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Figure 4. Framework Link Entity.
For example, in figure S(A), BuildElement (BE)X’ is linked via a BEmodelSEE association
to a Workspace meta-model for which it is the subject.
In figure 5(B). BuildElement *(BE)Y" is linked over a similar association to another
Workspace meta-model in which (BE)X is named as a model element - namely ‘(ME)X"; (BE)X
and (ME)X are therefore related via'a BEelementSEE association. It can be seen also that in the

PDS, build element (BE)Y is linked to (BE)X over an (unspecified) BuildAssociation, e.g.

HasSubmodule.
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Figure 5. Framework Link Entity Concept.
n 3. Meta-models for Safety Analysis

This section illustrates development of a Notation Dependent Structure for the Fault Tree
Analysis technique alluded to in Section 1.
As previously indicated, Fault Tree Analysis is a deductive technique in that it starts from

one particular undesirable event - termed the rop evenr - and provides an approach to
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investigating potential causes. Analysts then examine the system (or as in this case, a model of
the system) to determine ways in which a top event may occur.

The fault tree itself provides a graphical representation of event combinations that can
lead to an undesirable event. A number of different event types commonly occur in fault trees,
including intermediaie, basic, undeveloped. external and conditional [21]. These are
represented by rectangle, circle, diamond, house and ellipse symbols respectively. Events are
connected together by logical operators known as gates that either enable or prevent the flow
of a fault up a tree. The most common forms of gate are the AND-gare and OR-gate whose
syinbols are as used in traditional logic- circuits [2].

Once the fault tree logic is complete, it can be used to compute event probabilities. In
order to do so, the tree must first be reduced Lo what is termed minimal-cut-set-form. That is, :
the smallest set of events capable of causing the top event.

Basic events are then annotated with their probability of occurrence. Calculation of
intermediate probabilitics then progresses up through the tree until probability of the top event
can be calculated. Probabilities for output events of the two most common event connectives -
and gates and or galtes - are determined by the product and sum of their respective input
events. Where applicable, it is also common to state failure rate and exposure time of basic
events; event probabilities are then calculated from the product of these'two values.

Fault trees in.f\‘lA'l’ru support all of the standard concepts set out above. In addition,
MATra fault trees reflect actual usage - especially within the nuclear, rail and aerospace
domains where they are often used i conjunction with u “standard’ safety assessment process
[e.g. 1], Within such processes. fault trees are typically used to determine budger
probabilities - 1.c. sulety objectives (established prior to dcs-igm as part of the Functional
Hazard and Preliminary System Safety Assessments. Updated versions of these trees
determining actual probabilities are subsequently produced by the System Safety Assessment
to affirm whether the original safcty objectives have been met; both the preliminary and

updated trees form submissions to the appropriate regulatory body as evidence towards
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certification.

Event labels in MATra fault trees differentiate between *Simple’, *Composed” and
‘Synchronisation® categories as derived [rom a taxonomy proposed in [12]. Simple events are
described in terms of a subject entity and 4 condition: ¢.g.. Valve  Stuck Open Composed
events meanwhile refer to the comaidence of two or more simple events: this is often
expressed as two events joined using the “when” conjunction. For example. Valve o Stuck
Closed when Pump e Stuck On. Finally. Synchronisation describes the temporal relationship
between two simple events E1, E2 (normally separated by the preposition “upon”) such that in

boolean logic. E1 already holds when E2 becomes Truc: ¢.g. Tank e Full upon Engine e StartUp
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Figure 6. (Partial) Fault Tree Analysis Structure
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;[‘he (partial) MATra Fault Tree meta-model is shown in figure 6 (and described further in
[5]). The figure identifies key fault tree concepts including events, And/Or gate connectives,
Minimal Cut Set Expression and event properties such as Exposure and Rate. Note inclusion of
the MATra Natural Language Structure (MatraNLS) [13], a utility structure (for fine grained
traceability of textual statements that also features in the FMEA meta-model in Section 3.2)
enabling annotation of probabilities, exposure times rates, etc.

It can also be seen that MATra fault trees employ the notion of preliminary and updated
event profiles in accordance with the domain usage scenarios alluded to earlier. As such, each
event is made up of an ‘UpdatedEventProfiIe and optional PreliminaryEventProfile - specialisations
of the (abstract) EventProfile supertype, with attribute (event) type - restricted to int(ermediate),
top, bas(ic), ext(ernal) or und(eveloped).

Both preliminary and.updated event profiles are described by an EventLabel, or more
specifically one of its subtypes, atcording to the afore-mentioned classification in [12]:
namely SimpleLabel, ComposedLabel or SynchronisationLabel. Each label is described either by a
single SimpleEventDescription instance for Simple events, twé or more instances for Composed
events, or two instances (differentiated using the initiaJ_event_deécription and
sync_event_description rolenames) for Synchronisation events. A SimpleEventDescription can be
given scope by nominating an optional QualifylﬁgEntity,

Event labels and Exposure objects created for a preliminary tree can normally be reused by
the updated version, although the capability exists for new instances to be introduced if
necessary; this facility is also available to Rate which is expected to change.

Finally, in terms of gates, OrGate takes as input two or more EventProfile elements, while
AndGate takes a single EventSet (itself an aggregation of two or more event profiles). Both
EventProfile and EventSet are further defined as subtypes of the abstract EventEntity class. This
exists partly to allow propagation of the cause and trans_cause associations from EventProfile to
both EventProfile itself and to EventSet, The cause and trans_cause associations are used in

identifying paths through a fault tree and hence in the expression of constraints and deductive
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tules that are dependent on this abiline One <ach rule populates the MinimalCutSetExpression.

\ number ol categories of constramts we eapressed vver the Fault Tree meta-model.
I'hese include the following:
s Well-formedness of fault tree elements P

For example to ensure non-priniary esents types have a child gate, while primary event types do

not

EventProfile invariant
sell alllnstances->forallie , net{ {(e.type = "bas’ or e.type = ‘ex!” or e.type = ‘und”) and
e.evenl_connective->size » 0) or ((e.type = “top” are type = “nl": and e.even: connective->size = 0)))

and to ensure probabilities of output events for Or-gates equale to the sum of input probabilities.

EventProfile invanant

self.allinstances->rejectiselfl allinstances type = "bas” or self.allinstances.type = ‘ext” or self allinstances.type = "und")->forall{e |
selfl.event_connective->exists(g | 4 .
self.preliminary_budget->union(sell.actual_probability)->not exists(p |

(e.event_connective->includes(g) and g.oclType = OrGate and

({e.ocIType = PreliminaryEventProfile and e.praliminary_budget->includes(p) and p probability <>
g.input.preliminary_budget.probability->sum) or

(e.ocIType = UpdatedEventProfile and e.actual_probability->includes(p) and p.probabilily <> g.nput.actual_probability probability-
>sum))) )))

o  Fault tree ‘safety-criteria’
For example. u restriction identitying single failire causes ol a top event:

MinimalCutSetExpression
self.allnstances->forall(m | self.event_entity->forali(e | not (m.event_entity->includes(e) and e.ocllsKindOf(EventProfiie)})

and a restriction identifying conunon cause failures throngh And-gates,

AndGate
self.alllnstances->forall{g1, g2 | not{(g1.input.event_profile->
intersection(g2.input.event_profile)->not Empty) and g1 <> g2))

Note event labels are verified against PDS system model elements using appropriate invariants. We
return to this issue in Sub-section 3.3 when addressing consistency among safety analysis techniques..
The partial O-Telos code in figure 7 (embedded in the ConceptBase Object Management

System [14]) implements the FTA meta-model:-

EventSet in StructureElement, SimpleClass
isA EventEntity with has_part
event_profile : EventProfile end

UpdatedEventPrefile in StructureElement, SimpleClass isA EventProfile with

12
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has_part
actual_procapility : ActualPr Vi
preliminary_pucget @ BudgetFrobability;

ActualProbability in StructureElement, SimpleClass with has_property
probability : Keal

has_structure
annotation : MatraNLS end

BudgetProbability in ..
as per ActualProbability end

Rate in StructureElement, SimpleClass with
has_property failure_rate : Real ..... ‘end

Exposure in StructureElement, SimpleClass with has_property period : Real
end it

SimpleLabel in StructureElement, SimpleClass isA EventLabel with has_part
simple_description : SimpleEventDescription end

SimpleEventDescription in StructureElement, SimpleClass with has_property
entity : String;
condition : String;
qualifying_entity : QualifyingEntity end

QualifyingEntity in ArtifactProperty, SimpleClass isA String end

AndGate in StructureElement, SimpleClass isA Gate with has_part

input : EventSet end

OrGate in StructureElement, SimpleClass isA Gate with has_part
input : EventProfile end

Event in StructureElement, SimpleClass with
has_property

identifer : String

has_part
preliminary_profile : PreliminarykEventProfile;
updated_profile : UpdatedEventProfile end

Figure 7. FTA Base Classes (Partial): O- Telos

3.1. Fault Tree Analysis Example

The following example instantiates the Fault-Tree Meta-model using a partial fault tree

analysis fragment (figure &) which considers underlying causes of ‘inadvertent braking’, a

hazard arising from failures of an aircraft braking system control unit (BSCU)[11].

It can be seen from figure 8 that inadvertent braking is caused by a detectable failure in

either of the BSCU computers (BSCU1 or BSCUZ); note to avoid repetition we only show the

branch relating to BSCU! failures (BSCU1DETD). In summary, this event can occur if the power

supply monitor is stuck valid (BS1PSMOFV) and the power supply failure causes bad data

(BSCU1PSF). A (partial) O-Telos representation of this diagram follows:-
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Figure 8. ‘Example Fault Tree Analysis’

Note that the O-Telos objects (figure 9) are created automatically by rool2matra, and

‘concealed’ from users by an appropriate (graphical) fault tree interface.

Definition of Event ‘BSCUINADD’

EventA in Event, Token with

Identifier _Identifier : “BSCUINADD"

preliminary_ profile preliminaryProfile : EventAPreliminaryProfile end

EventAPreliminaryProfile in PreliminaryEventProfile, Token with
Type Type : “top”

event_connective eventConnective : OrGatelP

preliminary_budget preliminaryBudget : EventAPreliminaryBudget
preliminary_label

preliminarylabel : EventAPreliminaryLabel end

EventAPreliminaryBudget in BudgetProbability, Token with probability
_Probability : 2.50E-09 end

EventAPreliminaryLabel in SimpleLabel, Token with simple_description
simpleDescription : EventASimpleEventDEscription end

EventASimpleEvénLUescrjption in SimpleEventDescription, Token with
Entity _Entity : “Bscu”

Condition _Condition : “Commands Inadvertent Braking” end

Gate definitions

OrGatelP in OrGate, Token with

Input _Inputl : EventDPreliminaryProfile ...

end

Definition of Event ‘BSCULDETD’

EventD in Event, Token with Identifier _Identifier : “BSCU1DETD"
Lifeliminary_profile preliminaryProfile : EventDPreliminaryProfile end

14
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Definition of Event 'BSCUlPSIND’

EventF in Event, Token with identifier
_Identifier : “BSCUlPSIND”
preliminary profile preliminaryProfile : EventFPreliminaryProfile end

EventFPreliminaryProfile in PreliminaryEventProfile, Token with type _Type
“int” event_connective EventConnective : AndGatelP ..... end :

Gate definitions

AndGatelP in AndGate, Token with input
_Input : HIEventSetP end

HIEventSetP in EventSet, Token with event_profile
eventProfilel : EventHPreliminaryProfile;
eventProfile2 : EventIPreliminaryProfile end

Definition of Event ‘BS1PSMOFV’

EventH in Event, Token with identifier
_Identifier : “BSIPSMOFV” preliminary_profile
preliminaryProfile : EventHPreliminaryProfile
end

EventHPreliminaryProfile in PreliminaryEventProfile, Token with type
STypelsiitbalst
preliminary_budget preliminaryBudge! : EventHPreliminaryBudget
preliminary_rate
preliminaryRate : EventHPrelimiraryRate
preliminary_exposure
preliminaryExposure -: EventHPreliminaryExposure
preliminary_label
preliminaryLabel : EventHPreliminarylabel end

EventHPreliminaryBudget in BudgetProbability, Token with probability
_Probability : 2.00E-92 end

EventHPreliminaryRate in Rate, Token with
failure_rate
failureRate : 2.00E-07 end

EventHPreliminaryExposure in Exposure, Token with period _Period : 100000 end

EventHPreliminarylabel in SimplelLabel, Token with simple_description
simpleDescription : EventHSimpleEventDescripticn end

EventHSimpleEventDescription in SimpleEventDescription, Token with Entity

_Entity : “Power_Supply_Monitor”
qualifiying entity qualifyingEntity : “BSCU1”
condition _Condition : “Monitor Stuck Valid” end

Definition of Event ‘BSCULPSF’

EventI in Event, Token with identifier
_Identifier : “BSCU1PSF"” preliminary_profile
preliminaryProfile : EventIPreliminaryProfile
end; Zn

Figure 9. O- Telos Code for ‘Example Fault Tree Analysis’
The above example illustrates our approach to representing (in this case graphical)

techniques used in safety engineering. Given a common representation format such as this,
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associations can be established to support traceability between techniques (one of two
information management problems faced by safety practitioners discussed in Section 1), as the
following sub-section demonstrates.

3.2. Problem 1: Tracing Between Notations

Consider a Workspace comprising meta-models developed using the above approach and
s0 capable of receiving data from CASE tools via tool2matra; traceability associations
(Section 2.4) can then be added between models, and elements of models.

Figure 10 gives a user level view of a traceability path depicting associations between a
basic event from the fault tree in Section 3.1 (Monitor Stuck Valid) and an entry for a failure
that ‘contributes-to’ this event in a (Piecc-isart') FMEA table. Also shown is the source of the
path, namely a comparator element from a Circuit Diagram which is ‘assessed-by’ this

particular FMEA-entry (along with others not shown).
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Figure 10. Example Traceability Associations

" Is common to distinguish two types of FMEA, functional (where investigation is of the lowest level assemblies in a
system - typically functional or block-diagram level) and piece-part (where investigation is at the level of individual
components within an assembly). Piece-part analyses are normally performed to refine failure rates produced from
functional FMEA that do not allow a system or component to meet FTA budget failure probabilities, i

16
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Figure 11a and [ 1b shows part of the underlying FMEA meta-model. The former presents
a high level view included here (o facilitate understanding of navigational paths when

discussing PDS consistency in Sub-section 3.3. Again, the complete FMEA structure appears

in [5].

<<Sircture Eloments>

CeAssessment Siruclur> 1 s
<<Situctyre Elomatsa | imea eltect FalureMoced €11 ecisanay 3a fabsinact) | * <<Trcaanily Srciumss
Fasura Elluct e e pavbyect_moduia Sinng MATraNLS
i 7| Fimes_dascrgtion Sinng

Gimea_dale Dale L}

<eAssgramon Structurers " CeAsamaamont Structuraxs
ProcePant MEA Functonaif MEA

Figure 11a. FMEA Structure (Top Level View)
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<<Slruciure Eloments> } it i
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Figure 11b. (Partial) Piece-Part FMEA Structure.

Note, a full discussion on the MATra Circuit Diagram meta-model appears in [5 and 15].
However, the principles used in constructing this model are the same as those used in

developing the FTA and FMEA safety analysis meta-models.

To realise the associations in figure 10, an implementation of the ContributesTo and

AssessedBy classes (from figure 3, Sub-section 2.4) is instantiated. The source of AssessedBy

17
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(figure 12) is a U1B Comparator element from an instance of a Circuit Diagram Meta-model,
and its target, U1BFailModeDescri pticn, aninstance of ComponentFailureMode-

Description (Figure 1 1b).

AssessedBy0l in AssessedBy, Token with
from_entity fromEntity : ULB
Lo_entity toEntity : UlBFailModeDescription end

Figure 12. Instance of Assessed-By Association.
Similalrly U1BFailModeDescription provides the source of our ContributesTo

association (figure 13), while the target is EventH from the Fault Tree Analysis in 3.1.

ContributesTeo0l in ContributesTo, Token with
from_entity fromEntity : UlBFailModeDescription

to_entity toEntity : EventH end

Figure 13. Instance of Contributes-To Association.
Thus, it can be seen the fundamental gain from the notation dependent structures (meta-
models) is their ability to integrate data from disjoint CASE tools (forming what is termed a

‘Workspace’) which can be linked to create traceability paths as shown above.

3.3. Problem 2: Maintaining Consistency

As indicated in Section 1. maintaming consistency among the various safety analysis
techniques is ol paramount importance in ensuri ng the overall assessment is trustworthy.
Recall. in MATra, (Workspace) consistency is managed using the PDS system model, with
various constraints over each of the meta-models used in conjunction. The following is an
example of one such constraint for the FMEA meta-model:

Invariant to ensure components exist in the PDS as sub-modules of the subject_module

Component invariant
self.alllnstances->forall(c |

self.bEeiementSEE.build_eiemem~>exists(m |
seff.piecePartFMEA.bEmoae!SEE‘build_elemenloexlsts(be |
be.module_name = c.piecePartFMEA subject_module and

¢ =m.module_name and be.hasSubmoduIe,target->inciudes(m))))

A subset of elements from the PDS, plus linkages to appropriate Workspace structures and
their elements is shown in figure 14. Specifically, it shows instantiation of an implementation

of the Module (Build Element) and HasSubmodule (Build Association) classes (from 2.3). as
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well as Framework Link Entity classes for BEelementSEE and BEmodelSEE (from 2.5):-

Examples of PDS Element Instances
PowerSupplyMeonitor in Module, Token with :

module_name mocluleMame : “Power Supply Monitor”
end

PowerSupplyMonUlB in HasSubmodule, Token
with from_entity fromEntity
PowerSupplyMonitor

to_entity toEntity : UlB end

Examples of Framework Link Entity Instances
PowerSupﬁ:lyMonitor_E'SMonFMEA in BEmodelSEE

with build_element buildElement : PowerSupplyMonitor
system_engineering_entity sysEngEnt
PowerSupplyMonltorFMEA end

UlB_fmeaUlB in BEelementSEE
with build_element buildElement : U1B
system_engineering_entity sysEngEnt: U1B_FMEA_Component end

* Figure 14. Examples of PDS and Framework Link Entity Instances.

Note, O-Telos implementation of the above OCL constraint (not shown) is enforced by
navigation over BEelementSEE classes such as U1B_ fmeaU1B in figure 14.

Figure 15 puts the issues addressed in Sub-sections 3.2 and 3.3 into context — effectively an
instantiation of figure 5: on the right are PDS Elements, linked by Framework Link Entities to
(icons for) the FTA and FMEA meta-models; the ContributesTo association described

previously is also illustrated.

Tracaability Workspacae Product Dala Synthesis

1

] Module: Power
(3] Supply Monitor ;
BEslamentSEE
L Power
T tor_FTAPSM
Worin BanVais 01
"A'.Pi o HasSubmodule I
[ PowerSunplyManU1B | |
3l ‘ i
El aEmmmsaé i !
Uy A s £
TanvibulesTa
e PSFMEA

GuotikesTu0 |
3

BEelementSEE
U1B_FMEAU1B

Subject  Powet Supply Mool

omoonent

<omponent e

. LOmedidion e

[ 1] BuildEle ments/Assoc (2.3)
[2) Systems Eng. Assoc (2.4)
[3) Framework Link Entities (2.5

Figure 15. Relating MATra Elements.

Note, associations such as ContributesTo and AssessedBy currently require manual

insertion. Yet, as all MATra models are formally defined, they can be potentially derived
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using inference rules. This is relatively simple where associations link common elements. For
example, it can be inferred from Figure |5 that because PDS element Power Supply Monitor
i1s linked over BEmodelSEE and BEelemenSEE associations to elements of both the FTA and

FMEA table, a ContributesTo association exists between the two Workspace elements.

4. Concluding Remarks

This paper addressed the issue of data integration to improve traceability and consistency
of safety engineering artifacts. A framework (MATra) was proposed that enables engineers to
trace between information residing in different CASE tools. This is achieved by exporting data
from the internal models of these tools to a set of structures (meta-models) expressed in a
common modelling language, enabling traceability links to be established between the models
and between elements of these models; a further structure is used to maintain consistency.

The structures were expressed here in UML/OCL, and in turn implemented in Q-Telos
using ConceptBase. However this is largely incidental as they may just as well have been
represented in [or cxample. EXPRESS [ 16] to align our work with SEDRES [7], or in XML
[17]. The use of commercial traceability tools as a target implementation platform was also
investigated. In particular DOORS [8], which now employs a MATra-like approach by
transferring data from CASE tools onto information models expressed in a comman language
(termed ‘surrogate’ modules) which can then be linked to support traceability.

The novelty of MATra lies in two areas:-
1. A framework for traceability and consistency across artifacts for safety critical systems
engineering projects,
2. Meta-models for a representative sel of safety assessment techniques, as well as
development and project management notations and techniques used in safety critical systems
engineering [5, 6. 17].

MATra has been applied to a range of case studies from the aerospace and rail industries,

including commercial specifications for Fuel Management, Flight Control, and Wheel Braking

systems [5].




KMITL Sci. J. Vol. 5 No. 1 Feb. 2005

The results of these studies are promising, while highlighting a number of areas for future

research. These include the following:-

¢ Extension of Workspace notations

e Application of MATra to other safety-critical domains (e.g., nuclear, offshore oil and gas
and chemical)

e Enriching the Product Data Synthesis

o Systems Engineering process issues for MATra

 Investigation of an inverse mapping function (marraZtool)

K A Use of too/2matra to optimise Workspace revisions

o. Incorporation of standards knowledge (e.g., [11]) into MATra

Finally, we highlight a brace of related works including [1] and [18] which provide tool
support for managing traceabilit); and consistency of reliability, safety and other concurrent
engineering information. These are closest in spirit to MATra, however both rely on their own
custom editors for FTA, FMEA, system modeling, etc. While this provides one solution to the
problems of traceability and consistency, it is & rather binding approach given that experienced

practitioners are unlikely to willingly relinguish existing tools for bespoke alternatives.
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