KMITL Sci. J. Vol. 5 No. 1 Feb. 2005

SPACE-EFFICIENT PARALLEL BITONIC SORTING
ON A CLUSTER OF PCS

P
Jureeporn Boonniyom , Phairoj Samutrak, and Jeeraporn Srisawat

Department of Mathematics and Computer Science
Faculty of Science
King Mongkut’s Institute of Technology Ladkrabang(KMITL)
Ladkrabang, Bangkok 10520, THAILAND

ABSTRACT

This paper presents the space-efficient parallel Bitonic sorting for a very large data set on a
cluster of PCs by using MPI. Recently, most studies have focused on the theoretical approach of
the parallel Bitonic sorting on shared-memory or distributed-memory parallel computers. As a
combination of theoretical and practical approach, we are interested to study and implement the
parallel Bitonic-sorting on a cluster of PCs with efficient-space and efficient-communication
overhead. In such cluster environment, the system performance of our parallel Bitonic sorting
(NBS) and existing Bitonic sorting (BS) have been compared in terms of response time, speedup,
and efficiency. In experimental results, our space-efficient parallel Bitonic sorting yielded similar
results to those of the parallel Bitonic MPI-based sorting, while the space of our method was
improved up to 50%.

KEYWORDS: Parallel Bitonic sorting, efficient space, efficient communication, MPI (Message
Passing Interface), a cluster of PCs.

*
Tel: 0-6803-9858. E-mail s7063605@kmitl.ac.th, onenoi@hotmail.com

24

KMITL Sci. J. Vol. 5 No. 1 Feb. 2005

1. INTRODUCTION

Sorting is one of the most common operations performed by computers in many applications.
However, sequential sorting on very large data sets is time consuming. Therefore parallel Bitonic
sorting [1], one of the most popular parallel sorting method, is introduced because of its fast
processing. It’s time complexity is only O(Log” N), where N is a number of data being sorted on
P processors (P = N). In the past ten years, many studies were proposed in order to improve
communication overhead of parallel Bitenic sorting [5], [6], [7] and also adapted them to specific
parallel machines. There are two main theoretical approaches that proposed the efficient-
communication parallel Bitonic sorting: I) one is based on shared-memory parallel systems [5].
[7] and 2) another one is based on distributed-memory parallel systems [6]. Recently. more
practical sorting methods on cluster(s) of computers, a class of distributed-memory parallel
systems, were introduced as coarse-grained computing (P < N). which are the merge-sort-based
parallel sorting on a cluster of heterogeneous PCs [2] and the quick-sort-based parallel sorting on
clusters of SMPs (symmetric multiprocessors) [4].

In this paper, we present a combination of theoretical and practical parallel Bitonic-
sorting with efficient space on a coarse-grained cluster of PCs (P < N) by using MPI (Massage
Passing Interface) standard [3], [8], [9]. = We also present the investigation of the system
performance (i.e., response time, speedup, and efficiency) of our space-efficient parallel Bitonic
sorting (NBS), compared to that of existing Bitonic sorting (BS) on a cluster of PCs.

The remainder of this paper is organized as follows. Section 2 gives the fundamental
definition and original parallel Bitonic sorting algorithm. Section 3 proposes our space-efficient
parallel Bitonic sorting method for a cluster of PCs and Section 4 shows the investigated results of -
the system performance evaluation. Finally, Section 5 presents the conclusion of this study and
discusses our future study.

2. MATERIALS AND METHODS

2.1 Bitonic Sorting

Definition 1: A Bitonic sequence is a sequence of a data set (ay, a,, a», ... a,, ..., ax.;). where a,.
a;. ... a, is a monotonic increasing sub-sequence and a,.,. a,.>. an.; is a monotonic decreasing

sub-sequence (0 <1 < N-1).

An instance of a Bitonic sequence (N=16)is4 5 6 8 10 15 20 30 28 25 20 151293 1.

To perform Bitonic sorting on a Bitonic sequence. a single compare-e€xchange step can
split a single bitonic sequence (of n values) into two bitonic sequences (of n/2 values). <min(a,.
a,-.)> and <max(a, ay2+)>; i = 0, [. ... n/2 - I. However. for any. sequence. transformation step
(Fig. 1) is required in order to create a Bitonic sequence.

Definition _2: A Bitonic Sort Network is a sorting of N elements (of any sequence) on P
processors (where P=N) using log. N stages in O(log™ N), as depicted in Fig.|.

where 4 represents decreasing sub-sequence (<min(a,a,s.,)>) and
y represents increasing sub-sequence (<max(a,.a,»:)>)

]
wn

KMITL Sci. J. Vol. 5 No. 1 Feb. 2005

An example of Bitonic sort network is shown in Fig.1.

Processors

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

A Bitonic sorting algorithm for any sequence is presented in (C-like program) Algorithm I.

Transform any sequence into a
Bitonic sequence 3 Bitanic Sorting

Stage 1 Stage 2 Stage 3 Stage 4

Fig. 1. Bitonic sort stages with 16 processors.

Global d: Distance between elements being compare
Local a: One of the elements to be sorted :
t: Element retrieved from adjacent processor
Begin
for1=0thenm-0do //m=loga N
for J = | downto 0 do
di=28
{/ For All Processor 3
for all Processor k where 0 <= k <= 2m-1 pardo
: if k mod 2d < d then
t=[k +d]a ‘
if kmod 21+2 < 2|+1 then
[k+d]a = max(t. a) //sort low to high
a= min(t, a)
else

[k+d]a = min(t. a) //sart high to low

“a= maxlt a)
end if
end if
end for all
end for J
end for |
end

Algorithm 1: Bitonic Sorting Algorithm (P = N).

26

KMITL Sci. J. Vol. 5 No. 1 Feb. 2005

The inter-process communication in the above Bitonic sorting algorithm s calied
compare-exchange operation, depicted in Fig.2. Initially. each processor has one element in its
local memory (Fig2(a)). Next. each communication pairs of processors (P, and P,) send a copy of
its element to and receive a copy of another element from its partner (Fig.2(b). Finally (Fig.2(c)).
P, stores min (a,. a,) and P, stores max (a,. a,).

min{a. a} max{a .a)

a a, a a a a,
I N S e Sl |
Pi Pi P Py Pi o Pj

Fig. 2. Compare-Exchange Operation.

In case of medium-grained or coarse-grained (P < N). first each processor is responsible
for sorting N/P elements locally. Then, these P processors need to communicate in order to
perform Bitonic sorting for the larger sorted sequences. The inter-process communication now is
called compare-split operation, illustrated in Fig.3. In this example, there are 2 processors (P=2)
and 10 elements (N=10). Initially, each P, is responsible to sort 5 elements (N/P) locally
(Fig.3(a)). Then, P, and P, need to communicate to form the Bitonic sequence (Fig.3(b)).
Processor P, and P, send a copy of its sub-sequence (of 5 elements) to and receive a copy of
another sub-sequence (of 5 elements) from its partner (Fig.3(c). Finally (Fig.3(d)). atter
performing locally merge sort, P, stores the minimum sub-sequence and P, stores the maximum
sub-sequence.

1|s|al11|13{ |2|7|9[10|12[|1{s[sl11i13|4;|‘2[7[9|10112
i j Pi (b) Pj

Pi (a) Pj

p‘;l%!5|5J11|13|I2‘7I37[1Ol121 Pil1]2]e]7]8] |2]7]9]10]m]

o 2 o I) K 3 2 Y K Y

(c) (d)

Fig. 3. Compare-Split Operation.

2.2 Space-Efficient Parallel Bitonic Sorting

We propose in this paper to reduce the redundant copying data of the existing parailel Bitonic
sorting in an efficient way. In practical, we apply our efficient-space parallel Bitonic sorting on a
cluster of PCs using C programming language with MPI standard. In the implementation of our
paralle! Bitonic sorting using MPI, the program consists of P workers (or computing nodes). Each
processor (P} in the worker group receives N/P elements of the unsorted sequence, sorts them

locally, and then communicates to its partner to merge the result.

KMITL Sci. J. Vol. 5 No. 1 Feb. 2005

The MPI code (for N elements on P processors) and an example of work load (N/P) for each p;
(when N = 10 and P = 2) is illustrated as follows:

Start

MPI_Init(&argc. &argv):
MPI_Comm_size(MPI_COMM_WORLD, &p);
MP|_Comm_rank(MP|_COMM_WORLD, &my_rank);

Generate Data
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
srand(my_rank);
for (i=0;i < list_size; i++)

local_list[i] = rand() % KEY_MAX:

Local Sort
gsort(local_keys. list_size, sizeof(KEY_T). int(*)(const void*, const void*))(Key_compare));

Bitonic Sort (BS)
if ((my_rank & and_bit) == 0) // increase
Par_bitonic_sort_incr(list_size, local_list, proc_set_size, MPI_Comm}):
else // decrease
Par_bitonic_sori_decr(list_size, local_list. proc_set_size, MPI_Comm);

Partner Communication (send and receive data)

MPI_Comm_rank(comm, &my_rank);
proc_set_dim = log_base2(proc_set_size):
eor_bit = 1 << (proc_set_dim - 1);
for (stage = 0; stage < proc_set_dim; stage++) {
partner = my_rank * eor_bit;
if (my_rank > partner) {
/I OR my_rank < partner for Par_bitonic_sort_decr
MPI_Send(&local_list.list_size, key_mpi_t. partner. tagin, comm);
1
else {
MPI_Recv(&temp_list.list_size, key_mpi_t. partner. tagin, comm, &status):
Merge_split(list_size temp_list, local_list. LOW., partner.comm):
/I Merge_split(list_size.temp_list, local_list, HIGH. partner, comm);

MPI_Send(temp_list[0] list_size. key_mpi_t, pariner, tagout, comm);

MPI_Recv(&local_list[0].list_size, key_mpi_t, partner, tagout, comm, &status),

!

Low and High Value
if (which_keys == HIGH)
Merge_list_high(list_size, local_list, temp_list);
else
Merge_list_low(list_size, local_list, temp_list);

Algorithm 2: Space-efficient parallel Bitonic sorting algorithm (P < N).

In our coarse-grained approach (P < N), first each processor (P,) is responsible for sorting
N/P elements locally via quick sort in O(log® N/P). Similar to existing Bitonic sorting,

28

KMITL Sci. J. Vol. 5 No. 1 Feb. 2005

corresponding pairs of processors need to communicate in order to perform parallel Bitonic sort to
form the larger sorted sequences, except we introduce here the efficient-space communication,
called the efficient compare-split operation, illustrated in Fig 4.

1|s|a]11|13| |2[7[9]10|12| 11|6|8|1T|13|4.>IZ|?|9I10|12

Pi (a) Pj (0)

pi[1 I 6 | 8 |11L13|[2 [_7 [9.110}12[Pil 1 | 2 | 6 | 7] aJ[z_ [? 9110112]

Pz]7]e]m]=] R
(©) (d)

Fig. 4. Our Efficient Compare-Split Operation.

In order to compare to the existing approach, we use the same example as illustrated in
Fig.3. Initially, each P; (i = 1, 2, ..., P) is responsible to sort 5 elements (N/P = 5) locally
(Fig.4(a)) and then P; and P; need to communicate to form the Bitonic sorting. In our approach,
only processor P; (where j > i) send a copy of its sub-sequence (of N/P elements) to its partner P,
and wait for the result (Fig.4(b)). In our case (Fig.4(c), there is no extra copy of N/P elements in
processor P; (as required in existing approach (Fjg.3(c)), and hence we can save space up to 50%.
However, while P; is waiting, only P; is responsible to perform locally merging the sorted sub-
sequence and splitting it into two sub-sequences. Then, P; stores the minimum sorted sub-
sequence and send the maximum sorted sub-sequence back to P; (Fig.4.d). Clearly, the computing
and communication time of our approach are the same as those of the existing parallel Bitonic
sorting method.

3. SYSTEM PERFORMANCE EVALUATION

In the system performance evaluation, we implement our space-efficient parallel Bitonic sorting
(NBS) on a cluster of PCs. In our cluster environment, the system consists of 10 CPUs residing in
5 computer units (2 CPUs/unit). All computers in this cluster system are homogeneous, each of
which is 2.4 GHz Xeon (1 GB RAM) and connected via a high speed 1000 Mbps LAN (Fig.5).

computer =¥

|

| [Frontehd] o

i s e e “"“’

: Computer : i

: High | |
Users | Switched é Computer Speed i

Ethernet LAN

e /.
Computer !

e i

Fi'g. 5. A cluster of PCs environment.

A number of experiments were performed to investigate and compare our space-
efficient parallel Bitonic sorting (NBS) and the existing parallel Bitonic sorting (BS) on such a

29

KMITL Sci. J. Vol. 5 No. 1 Feb. 2005

cluster system. - During experiments, many parameters (i.e., N (no. of elements), P (no. of
processors)) were varied to investigate response time (T), speedup (S = T,/Tp), and efficiency (E =
S/N), where T, (s) is the execution time of running sequential program on one processor and T, (s)
is the execution time of running parallel program on P processors.

Table 1 showed the response time (T), speedup (S), and efficiency (E) of the BS sorting
and our NBS sorting, where N = 10, 20, 40, 60, 80,: 100 millions and P = 1, 2, 4, 8 processors. [n
all tested cases, the BS and NBS performed the comparable results, while our NBS can save space
up to 50%. In particular, more than one half of these results, the NBS sorting yielded improved
results than those of the BS sorting.

Table 1: Experimental Results of the BS and NBS sorting.
; —

ETpiEy S ERE BBl S i

N P|Tis) | BS | (BS) | (BS) | NBS . (NBS) _(NBS)
0 12 ‘ 479 | 129 | 064 | 489 126 | 063
Milion | 4 | 617 | 424 ' 146 | 036 | 4.04 © 148 ' 036
8 i 407 [1.52110.16/ | 387 ; .59 0.20

20 2 898 | 138 | 069 | 897 ' 138 089
Milion | 4 i 124 | 78 | 188 | 040 | 76 ' q83 | ot
8 | 877 [141 | 018 | 847 _ 146 1" 0.8

40 |2 i 1864 | 136 | 068 | 1764 | 143 072
Milion | 4 | 2527 ! 156 | 162 | 040 | 158 160 0.40
8 ! | 1544 . 164 | 020 | 1484 170 0.21

60 24l I 28 | 138 | 069 | 282 1.37 0.69
Million | 4 : 3873 ' 2331 166 | D42 [2391 ; 162 | 040
g ! 2297 169 | 021 | 2287 J 169 | 021

80/ 12 | 3738 (111 | 059 | 08 . 106 | 058
Milion | 4 ‘ 4403 | 3058 | 144 | 036 | 3038 | 145 | 036
8 677 065 | 008! 675 0.65 0.08

100 2 ! | 47.05 i 1.19 0.60 { 46.65 1.20 0.60
Million ‘ 4| 5603 ' 3881 144 | 036 ' 3851 ° 145 0.36
LSl 10523 053 | 0.07 | 10487 053 . 007

For setting N = 50 million elements and varying P = 1. 2, 4. and 8, the investigated

response time. speedup, and efficiency were illustrated in Fig. 6, 7. and 8. respectively. When
increasing P to 2, the response time of both methods (Fig. 6) were improved by about 30% and
their efficiency was approximately 0.72, closed to 1.0 (an ideal case). However, the response time
was not improved when P > 8 for N = 50. Similar experimental results, as shown in response time.
were presented for speedup (Fig. 7) and efficiency (Fig. 8) of both sorting methods for N = 50
million elements.

For using P = 4 processors and varying N = 1, 10, 20, 30, 40, 50. 60, 70. 80, 90. and 100
million elements, the investigated response time, speedup, and efficiency were illustrated in Fig. 9,
10, and 11, respectively.

When increasing the number of elements (N), our NBS sorting yielded the improved
speedup and efficiency. Especially when N = I, 10, 20, 30, 50, the speedup of the NBS sorting
(Fig. 10) were improved up to 1.8 and also its efficiency (Fig. 11) were improved up to 0.45.

30

Efficiency (Sec)

Time (Sec)
o

KMITL Sci. J. Vol. 5 No. 1 Feb. 2005

35

BS [NBS
o | 5]

25

1 2. 4 8
Number of Processors (P)

Fig. 6. Responses time of NBS and BS sorting (N = 50).

e BS @NBS i
Siaot o R

1.60

Sgaeg UE [Ssc)_
o ® o N 1
S S

0.40
0.20
0.00

1 2 4 8
Number of Processors (P)

Fig. 7. Speedup of NBS and BS sorting (N = 50).

1.20
mBS mNBS

1 2 4 8
Number of Processors (P)

Fig. 8. Efficiency of NBS and BS sorting (N = 50).

31

i s

KMITL Sci. J. Vol. 5§ No. | Feb. 2005

Time (Sec)

1 10 20 30 40 5
Number of Elements (N)

0 60 70

®BS Nes|
H

Fig. 9. Response time NBS and BS sorting with 4 PEs

Speed Up (Sec)

1 10 20 30 40 50 60

Number of Elements (N‘)

m BS -0 NBS |

Fig. 10. Speed up of NBS and BS sorting with 4 PEs.

Efficiency (Sec)

0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

1 10 20 30 40 50 60

Number of Elements (N}

mBS ONBS

Fig. 1 1. Efficiency of NBS and BS sorting with 4 PEs.

32

KMITL Sci. J. Vol. 5 No. 1 Feb. 2005

4. CONCLUSION AND FUTURE STUDY

In this study, we introduce a new space-efficient parallel Bitonic sorting (NBS) on a coarse-
grained cluster of PCs (where P < N). which can save space up to 50% while computation and
communication time is similar to those of the existing parallel Bitonic sorting (BS). The
experimental results showed that our approach (NBS) and existing approach (BS) yielded the
comparable response time, speedup, and efficiency. In particular, more than one half of the
results, our NBS sorting yielded the improved results than those of the BS sorting.

In our future study, we try to improve the communication overhead between processors P,
and P, by adding the efficient-communication scheme into our space-efficient parallel Bitonic
sorting (NBS).

5. ACKNOWLEDGEMENTS

Our work was implemented on the IKKMITL’s cluster of PCs. This cluster system was supported
by the computer research and service center at King Mongkut’s Institute of Technology
Ladkrabang (KMITL). directed by Assoc. Prof. Dr. Manas Sungwarasil and his research
assistance, Nopparat Pantsaena.

REFERENCES

[1] Batcher., K.E. 1968 Sorting networks and their applications. Proceedings Spring Joint
Computing Conference AFIPS. Washington DC. 307-314.

[2] Brest. J. Vreze, A. and Zumer. V. 2000 A Sorting Algorithm on a PC Cluster. Proceedings
2000 ACM Symposium on Applicd Computing (SAC00). Como. ltaly. 710-715.

[3] Gropp, W. Lusk. E. and Skjellum. A. 1994 Using MP[: Portable Parallel Programming with
the Massage Passing Interface. Cambridge, MA. MIT Press.

[4] Helman, D. R. and JaJa. J. 1997 Sorting on Cluster of SMPs. [2th International Purallel
Processing Svmposium, University of Maryland, College Park. MD, USA.

[5] lonescu. M. F. and Schauser, K. E. 1997 Optimizing Parallel Bitonic Sort. Proceedings 11
Int'l Parallel Processing Symposiwm, 303-309.

[6] Kim, Y. C. Jeon, M. Kim. D. and Sohn. A. 2001 Communication-Efficient Bitonic Sort on a
Distributed Memory Parallel Computer. fnt' | Conference Parallel and Distributed Systems.
165-170.

[7] Lee.J. D. and Batcher, K. E. 2000 Minimizing Communication in the Bitonic Sort. /EEE
Transaction on Parallel and Distributed Systems, 459-473.

[8] Message Passing Interface Forum. 1994 MPI: A message passing interface standard. /nt'/
Journal of Supercomputer Applications, 8(3/4).

[9] -www. http://www-unix.mes.anl.gov/mpi/papers/archive/index.html

h

L
(o9

