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ABSTRACT

This paper presents the implementation of the coarse-grained parallel matrix multiplication
(C = A x B) with two ways of data partitioning on a cluster of PCs.  In the past, most existing
studies proposed the medium-grained parallel matrix multiplications on the hypercube-
connected or mesh-connected parallel computers. We propose to study and implement the
practical parallel matrix multiplication based on the MPMD model on the cluster of PCs using
MPI (Message Passing Interface) standard. [n particular, two data partitioning schemes for
decomposing matrix A and matrix B with balancing workload are presented: 1) the row-block
partitioning and 2) the checkerboard-block partitioning.  Moreover, we also introduce a
modified parallel matrix multiplication to cover an approach of the parallel all-pair shortest
paths.  Finally, the system performance of sequential and parallel processing of the matrix
multiplication have been compared and evaluated in terms of response time, speedup. and
efficiency. Based on our experimental results. the system performance of the matrix
multiplication was improved up to 50% when the number of processors (p) were increased by
one
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1. INTRODUCTION

The matrix multiplication is one of the most commeon operations in science and engineering
applications. Some matrix multiplication applications operate on very large matrix sizes (nxn)
and hence the sequential processing cannot finish in reasonable time. In the past, a number of
efficient parallel matrix multiplication methods were proposed as medium-grained computing
for specific-interconnection parallel systems to process in fast time. Those existing methods
are parallel matrix muitiplications on the hypercube-connected parallelcomputers [1]. 7],
parallel matrix multiplications on the mesh-connected parallel computers [4], [5], and parallel
matrix multiplication on the systolic-array parallel computers [8]- Another approach. a
scalable parallel matrix multiplication based on theoretical PRAM model [6], was "also
introduced to be applied on distributed memory parallel computers (DMPC). Recently, matrix
multiplication on hetorogeneous platforms [3] and the implementation of heterogeneous
computing model of matrix multiplication [9] on a cluster of workstations were proposed.

This paper presents a practical coarse-grained parallel matrix multiplication
(C = A x B) on a cluster of PCs using very high-speed network and MPI (Massage Passing
Titerface) standard [2]. First, we introduce and also implement our coarse-grained parallel
matrix multiplication, based on two ways of data (matrix A and matrix B) decomposition:
) row-block partitioning and 2) checkerboard-block partitioning. ~ Second, we present a
simple and practical approach ef the parallel all-pair shortest paths, which is based on the
modified parallel matrix multiplication. Then, system performance of sequential and parallel
processing of the matrix multiplication have been compared and evaluated in terms of
response time, speedup, and efficiency.

The remainder of this paper is organized as follows. Section 2 presents our two
practical coarse-grained parallel matrix multiplication methods, namely: 1) row-block-
partitioning matrix multiplication (rbmm) and 2) checkerboard-block-partitioning matrix
multiplication (cbb). Section 3 illustrates an application of our parallel matrix multiplication,
which is an approach of parallel all-pair shortest paths. Section 4 shows the experimental
results of the system performance evaluation of sequential matrix multiplication and two
proposed parallel matrix multiplication methods. Section 5 gives the conclusion. of this study
and discusses our future study

2. COARSE-GRAINED PARALLEL MATRIX MULTIPLICATION

In general, matrix multiplication (C,) of matrix A, and matrix Bay, is computed in the
- following digram,
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where foralliizje= i@y it tk K1 Time complexity of the sequential

matrix multiplication is O(n’) whereas time complexity of the parallel matrix multiplication
using p processors (p = n) is O(n).

Next we present our two coarse-grained parallel matrix multiplication methods,
which are implemented by using C programming language with MPI standard. The MPI
program consists of one master and p workers (or computing processors).

35




KMITL Sci. J. Vol. 5 No. 1 Feb. 2005

2.1) Parallel Matrix Multiplication based on Row-block Partitioning (rbmm)

For the row-block partitioning matrix multiplication (rbmm) method, each processor (p,) in the
worker group receives rn/p-i rows of matrix A and the whale matrix B from the master and

-computes [n/p| rows of matrix C (or row i Fn/pwl to (i+1) [ n/p] - 1) and return its results to the

master. The MPI code (Algorithm 1) and an example of balancing workload for each p; (i.e.,
n =4 and p = 4) are illustrated as follows:

POl (0,0) (0,1) (9,2) (0,3)

PA| (1,00 (11) (1.2) (1.3)

P2 (20) (21) (2.2) (23]

P3 (3,0) (3,1) (3.2) (3,3)

Master (Supervisor Node)
Start MPI
Create Data

Send Data to Workers

MPI_Send(&offset, 1 ‘MPLINT.dest_.mtype.MPI_COMM_WORLD);
MPI_Send(&rows.1.MPI_INT‘dest_mlype,MF‘I_COMM_WORLD)‘

MPI_Send(&a12, NRA/2:NCA, rows"NCA MPI_DCUBLE dest, mtype, MPI_COMM_WORLD);
MPI_Send(&b13, NCA*NCB/2, MPI_DOUBLE, dest, mtype, PI_COMM_WORLD});

Wait for Result

MPI_Recv{&offset,1,MPI_I NT,source,mtype, MPI_COMM_WORLD, &status);
MPlfRecv(&rows.‘l,MP!_INT.source.mtypE‘MPI_CDMM_WORLD, &status),
MPI_Recv(&c[offset](0], rows*NCB, MP|_DOUBLE, source, mtype, MPI_COMM_WORLD, &status),

Waorker (Computing Node)

Receive Data from Master

MPI_Recv(&offset 1 MPI_INT MASTER, mtype, MPI_COMM_WORLD, &status),
MPI_Recv(&rows,1 ‘MPI_INT,MASTER,mtypeMPI_COMM_WORLD. &status);

MPI_Recy (&a12, NRA/2'NCA, MPI_DOUBLE, MASTER, mtype, MPI_COMM_WORLD, &stalus).
MPI_Recv((&b13, NCA"NCB/2, MPI_DOUBLE, MASTER, mtype, MPI_COMM_WORLD, &status),

Perform Matrix Multiplication
for (k=0: k<NCB; k++)
for (i=0; i<rows; i++) {
cli][k] = 0.0;
for (j=0; j<NCA,; j++)
clil[k] = cfillk] + a[ij(] * BUIKL: )
mtype = FROM_WORKER;

Send Data to Master
MP1_Send(&oﬁset,-‘i.MPI_INT4MASTER,mtype‘MPI_COMM#WORLD):
MP\_Send(&mws,1,MPi__INT‘MASTER_mtype‘MPl_COMM_WORLD);
MP|_Send(&c, rows*NCB, MPI_DOUBLE, MASTER, mtype, MP|_COMM_WORLD):

Algorithm 1: MPI code for parallel matrix multiplication based on row-block partitioning.

The rbmm method gives a simple data partitioriing and workload computing. Here,
workers do not have to communicate since the whole matrix B is broadcasted from the master
to all workers. The parallel MPI-based matrix multiplication also presents this way.
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2.2) Parallel Matrix Multiplication based on Checkerboard-Block Partitioning (cbb)

Ihe cbb method (checkerboard-block-partinorimg matrix multiphcation) is introduced to
reduce the redundant copy of mateis 3 all workers, as required in the rbimm method. In this
Cise, cach processor (p) in the worker group receives n/p rows of matrix A and n.vp
Columns of matrix B from the master and computes sub-matrix (n/¥p x n'Vp) of matrix C in
checkherboard fashion and return its results o the master,  However, in order to perform no
communication among workers. some partial rows of matrix A and some partial columns of
mairin B are replicated but less than the way that the romm method does. The MPI code and
an example of workload for each pi (i.c..n = 4 and p = 4) are illustrated as follows:

(e.0) (0.1) | {0.2) (0.3)

(1,0 [ a1

(2,00 (24} | (2,2) (23)

P2
(3.0 34| (3.2 B3)

Master (Supervisor Node)
Start MPI
Create Data
Partition Data
for (1=0 1<NRAJ2. 1++)
for (j=0 |<NCA, |++) {
a12(0= a(il).
a34(1][]= a[NRAS2+][)].
for (1=0, 1<NCA, 1++)
for (j=0. |<NCB/2, j++) {
b13(i{j1= blil().
b24[1]))= b[i)[NCA/2+]]. }

Send Data to Workers

MPI_Send(&offset, 1. MPI_INT, 1, mtype, MPI_COMM_WORLD),
MPI_Send(&rows, 1, MPI_INT, 1, mtype, MPI_COMM_WORLD)
MPI_Send(8a12,NRA/2*"NCA MPI_DOUBLE,1,mtype,MPI_COMM_WORLD):
MPI_Send(&b13 NCA*NCB/2 MPI_DOUBLE. 1, mtype, MPI_COMM_WORLD),

Wait for Result

for (1=1, i<=numworkers, 1++) {
source = i
MP1_Recv(&offset, 1, MPI_INT, source, mtype, MPI_COMM_WORLD. &status);
MPI_Recv(&rows.1_MPI_INT,source_mtype,MPI_COMMkWORLD, &status);
MPI_Recv(&c[0][0), NRA*NCB, MPI_DOUBLE, source, mtype, MPI_COMM_WORLD, &status);

)

Waorker (Computing Node)

Receive Data from Master

mtype=FROM_MASTER:MPI_Recv(&offset, 1, MPI_INT MASTER,mtype MPI_COMM_WORLD &status);
MPI_Recv(&rows, 1.MPI_INT.MASTER,mtype, MPI_COMM_WORLD, &status);

MPI_Recv(&ai2, NRA/2*NCA, MPI_DOUBLE, MASTER, mtype, MPI_COMM_WORLD, &status).
MPI_Recv(&b13, NCA*NCB/2, MPI_DOUBLE, MASTER, mtype, MPI_COMM_WORLD, &status):

Perform Matrix Multiplication
for (k=0; ksNCB/2; k++)
for (i=0; iKNRA/2; i++) {
clijk] = 0.0,
for (j=0; j<NCA; j++)
clil(k] = c(ilik] +a12(i(] = b130)k]: )
mtype = FROM_WORKER;

Send Data to Master
MPI_Send(&offset. 1, MPI_INT, MASTER. mtype,MPI_COMM_WORLD);
MPI_Send(&rows,1,MPI_INT,MASTER, mtype,MPI_COM_WORLD);

MPI_Send(&c, NRA*NCB. MPI_DOUBLE, MASTER, mtype. MPI_COMM_WORLD);

Algorithm 2: MPI code for parallel matrix multiplication based on checkerboard-block
partitioning.
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A Cluster of PCs
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connection
networking

Fig.1 A cluster of PCs environment.

Fig.2 and Fig.3 showed the response time of the rbmm method, where p' =1, 2, 3, 4
for nxn = 300x300, 800x800, and 1000x1000, respectively. When the number of processors
(p) were increased up to 4, the respond time (Fig.2) were improved up to 50%. 63%, and 69%
when p = 2, 3, 4, respectively. However, when the matrix size (nxn) was less than 300x300,
the response time of the rbmm method did rot improved much when the number of processors
were increased.
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Matrix Size (nxn)
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16 4 —*+— 1000x1000
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g L =~ B800x800
812
E 104 —%— 300x300
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8 4 =l
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No. Processosors (P)
Fig. 2. Response time of the tbmm method (p =1, 2, 3, 4).

When we investigate the effect of increasing the matrix sizes (nxn) on p = 4
processors (Fig. 3). where n = 500, 600, 800. 1000. 1200. and 1400, for all of these matrix
sizes, both (rbmm and cbb) methods improved the response time over the sequential matrix
multiplication 60 - 73%.  Between two parallel methods. the rbmm and cbb methods
performed the comparable response time. :

Fig.4 illustrated the speedup of the rbmm method, where p = 2, 3, 4 and n = 300, 800,
and 1000. When setting p = 2, the speedup of all matrix sizes were closed to 2 (an ideal
case). Forn=> 800, the speedup S = 2.7 and 3.2, when setting p = 3 and 4, respectively.

Compared between two (rtbmm and cbb) methods (Fig. 5), we investigate the effect
of increasing the matrix sizes (nxn) on p = 4 processors, where n = 500, 600, ..., 1300, and
1400. For n = 500, 600. ..., 900. the cbb method yielded the better speedup up than those of
the rbmm but when n > 900, the rbmm yielded the better speedup than those of the cbb. For
n > 1200, the speedup of both methods was not improved.
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However, one limitation of the cbb approach is the number of processors (p) must be
arranged in square only (i.e., 2x2, 3x3,4x4, ...)or p=4,9, 16, ....

3. MODIFIED PARALLEL MATRIX MULTIPLICATION
FOR ALL-PAIR-SHORTEST PATHS

A simple and practical approach of computing parallel all-pair shortest paths (of n nodes) can
be obtained from applying the parallel matrix multiplication (D"), where the size of D
(distance) or W (weight) is nxn. The matrix multiplication D" is obtained from

Step1: D x D 2 D?
Step 2: D2x D2 = DY,
Step 3: D4 x D4 > D°,

Slél[-) logzn: D™ x DY > D",

Clearly, this process can be performed in only log,n steps. Note that for each pair of
matrix multiplication, the necessary modification is to replacing the operators x (of a, x by,)
and + (of 2ay x by: k=1, 2, ..., n)in the original matrix multiplication with operators + (i.e..
ay +by) and min (i.e.. min(ay + by: k=1,2, ..., n)), respectively.

Algorithm
ParAllPairShortestPaths(W, D)

for all i&j pardo
dij(1)=w(ij)
end for
fork = 2to log n do
MatrixMultiplication(D, D, D, +, Min)
end for: end

Time complexity of the above sequential all-pair shortest paths is O(n’ log n).
whereas time complexity of the parallel matrix multiplication using p processors (p = n) is
O(n” log n).

4. PERFORMANCE EVALUATION

In the system performance evaluation, we implement our parallel matrix multiplication
methods (rbmm and cbb) on a cluster of PCs. In our cluster environment, the system consists
of 10 CPUs residing in 5 computer units (2 CPUs/unit). One computer, called a front-end
computer, works as a master and the rest of computers work as workers. All computers in this
cluster system are homogeneous, each of which is 2.4 GHz Xeon (1 GB RAM) and connected
via a high speed 1000 Mbps LAN (Fig.1). The master process at the front-end computer is
responsible to communicate to the user and perform data partitioning and broadcast them to
all workers and collect the final results from the workers. This computing model is known as
MPMD (Multiple Programs Multiple Data).

A number of experiments were performed to investigate and compare these two
parallel matrix multiplication methods (rbmm, cbb) and the sequential matrix multiplication
on such a cluster system. During experiments, many paramelers (i.e., nxn (no. of elements).
p (no. of processors)) were varied to investigate response time (T). speedup (S = T,/Tp). and
efficiency (E = S/N), where T, (s) is the execution time of running sequential program on one
processor and T, (s) is the execution time of running parallel program on p processors.
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Fig. 3. Response time of the rbmm and cbb methods (p = 4).
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Fig. 4. Speedup of the rbmm method (p = 1. 2, 3. 4).
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Fig. 5. Speedup of the rbmm and cbb methods (p = 4).
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Fig. 6. Efficiency of the rbmm method (p =1, 2, 3, 4).
1.0 T
L
>
o
=
@
g
£
w

0.6 T T T T T T T v T
500 600 700 800 900 1000 1100 1200 1300 1400 1500

Matrix sizes (nxn)
Fig. 7. Efficiency of the rbmm and cbb methods (p = 4).

Fig.6 illustrated the efficiency of the rtbmm method, where p = 2, 3, 4 and n = 300,

*800,.1000. When setting p = 2, the efficiency of the last two matrix sizes were closed to I.

Fig. 7 showed the similar- compared results between two (rbmm and cbb) methods (as
illustrated in Fig. 5 for speedup), where p =4, n = 500, 600, ..., 1400.

5. CONCLUSIONS

In this study, we introduce two parallel matrix multiplication (rbmm and cbb) on a coarse:
grained cluster of PCs. In the experimental results, when p (no. of processors) was set to 2,
both proposed methods improved response time over the sequential method up to 50% and
yiclded speedup close to 2 and efficiency close to 1. In our future study, we try to perform
efficient-space (by reducing all redundant data on matrix A and matrix B) for both parallel
matrix multiplication.
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