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ABSTRACT

A novel shape-matching algorithm using skeletal graphs is proposed in this paper. The topology of
skeletal graphs is captured and compared at the node level. Such graph representation allows
preservation of the skeletal graph’s coherence without sacrifying the flexibility of matching
similar portions of graphs across different levels. Using appropriate sampling resolution, the
proposed approach is able to achieve a high recognition rate, and at the same time, significantly
reduce space and time complexity of matching, This approach is tested against the Directed
Acyclic Graph (DAG) method on noisy graphs and occluded or cluttered scenes. The results show
that this approach is an effective and efficient technique for shape recognition.
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1. INTRODUCTION

Although there has been extensive work in the area of shape representation and matching, shape
recognition is still an open research problem. Many shape-matching approaches have emerged, but
high space, time complexity and moderate recognition rate are still the limiting factors for their
acceptance. ;

Some shape-recognition techniques are known as curve outline-based matching methods [3].
They often suffer from one or more of the following drawbacks: asymmetric treatment of the two
curves, sensitivity to sampling, lack of rotation, scaling invariants and sensitivity to articulations
and deformations of parts. Qutline-based methods [4] have the advantage of not requiring ordered
boundary points, but the match does not necessarily preserve the coherence of shapes in that the
relationship among portions of shape in the process of matching may not be preserved.

Zhu and Yuille [5] have proposed a framework (FORMS) for matching animate shapes by
comparing their skeletal graphs, the medial axis of shapes. However, the applicability to inanimate
objects is limited due to the choice of primitives used in modeling. A variant of the medial axis is
the shock structure, which is obtained by viéwing the medial axis as the locus of singularities
(shocks). Many approaches to shock graph matching have emerged. However, these approaches
have not been extensively tested on noisy graphs, occluded scenes or cluttered scenes.
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This paper proposes a technique that significantly reduces space and time requirements while
improving recognition rate. This approach is based on many-to-many graph matching of skeletal
graphs constructed from shapes. The matching algerithm is shown robust to scaling, rotation and
translation. It is less sensitive to noise and occlusion. Experimental results show that this methiod
is significantly better than a recently proposed alternative shock graph represented in the Directed
Acyelic Graph (DAG) methed. :

2.SKELETAL GRAPHS MATCHING

A skeleton is an undirected tree captured from a silhouette of a binary image using the medial-axis
method [6], see Figure 1. A skeleton tree consists of nodes and edges. There is a length associated
with each edge. Each node has a maximum of eight connected neighbors. The angle between
edges is a multiple of 45 degrees. The level of a node is defined as how close it is to the center of
the tree, where a center is a vertex  such that the maximum value of the distances between v and
all other vertices is a minimum. It is a well-known fact a tree has either a single center, or two
centers connected via an edge [9]. A skeletal tree will be represented from the leaf nodes toward
the center(s). The “root” of this representation corresponds to a center node. In the case of two
centers, selecting either as root node will determine the level.of all nodes in the skeleton.

In order to represent a skeletal graph, the topology of its individual nodes, i.c., the nodes’
connected neighbors, the relationship with each neighbor and the length of the edges are capture.
A signature table is constructed to keep information regarding the topology of nodes in the graph.
There is only one table to store the nodes’ information for the entire dataset.

The signature table consists of three attributes: signature, ID and “node detail”, Thus, a row in
the table is a 3-tuple. ID is a positive integer assigned to cach signature. It serves as an
identification of a node’s topology. A signature consists of eight fields, corresponding to eight
possible connected neighbors. Each field identifies the existence of a connected neighbor, the
topology via an ID and the relationship with the node. A field containing 0 signifies there is no
connected neighbor at that angle. A field of 3, for example, indicates there is a connected
neighbor whose topological 1D is 3, while a field of “P” implies the connected neighbor is its
parent node. The fields are filled starting with P (the parent) or the highest ID for root nodes and
going in the clockwise direction. :

Node detail captures the fact that there could be many nodes with the same signature and ID.
It is a linked list of nodes, each in the form node/length/parent node/image_number(list of
children nodes or parent). The length is the length of the edge connecting the node with its
parent_node.

The Table 1 shows the signature table filled with node information of the two example
skeleton trees, Figures ! (a) and (b). The first row encodes the information for all leaf nodes.
They have signature (P,0,0,0,0,0,0,0), which is assigned ID = 1. Node detail is a linked list of all
leaves in both trees in the order of processing. The next type of node, whose ID = 2, has signature
(1,1,1,0,1,0,0,0). There is only one node, node 2 of Figure 1 (a), of this type. Therefore, Node
detail contains 2/0/0/1a (3.4,5,1). The signature and the Node detail indicate that node 2 of Figure
1 (a) is the root node (length = 0, and no parent), whose children nodes are nodes 3, 4, 5 and 1,
counting clockwise.

The last row of Table | describes node 3 of Figure 1 (b). This node is the root node and has
three children nodes: 5, 2 and 4. Its signature indicates that its children node 5 is a node of ID = 4,
node 2 of ID =3 and node 4 of ID = 1, see Figure 1 (b).
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Signature ID Node detail
(P,0,0,0,0,0,0,0) | 1/74/2/1a (2), 3/68/2/1a (2),
4/37/2/1a (2), 5/23/2/1a (2),
1/28/2/1b (2), 4/75/3/1b (3),
6/60/5/1b (5), 7/62/5/1b (5),

8/60/2/1b (2)
-(1,1,1,0,1,0,0,0) 2/0/0/1a (3,4,5,1)

(P,0,1,0,0,0,1,0) | 3 2/14/3/1b (3,8,1)
(P,0,1,0,1,0,00) | 4 5/22/3/1b (3,6,7)
5

(4,0,3,0,0,0,1,0) 3/0/0/1b (5,2,4)

[ge]

Table 1: The signature table for Figures | (a) and (b)

2.1 CONSTRUCTION OF THE SIGNATURE TABLE'

Node’s signature is coded from leaves to root. The procedure to construct the signature table is
given below. For each skeletal graph:

1. While the skeleton tree is not empty,
Code all leaf nodes.

2
3. Temporarily store the configuration of the parent nodes of the leaves (e.g., positions).
4. Delete all leaves from the skeleton tree.

5

Go to step 1.

Figure 1: (a) and (b) two DB skeleton trees and (c) a query skeleton tree

Figure 1(c) shows a query skeleton. This is the 2-root skeleton, (i.e., there are 2 centers, nodes
2 and 3); therefore, two different signature tables are possible, one corresponding to each root
node. Table 2 is the signature table for figure 1(c) with node 3 as root. A new ID, 6, is created
because a new topology was detected.
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Signature ID ; Node detail
(P,0,0,0,0,0,0,0) | 1/28/2/1c (2), 4/75/3/1¢ (3),
] 5/22/3/1c (3), 6/60/2/1¢c (2)
(P,0,1,0,0,0,1,0) 3 2/14/3/1¢ (3,6,1)
3,0,00,1,0,1,0) | 6 3/0/0/1c (2,4,5)

Table 2: The signature table for Figure 1(c) with node 3 as root.

2.2 MATCHING SHAPES

The idea behind this shape recognition is as follows. When a skeleton is a 2-root type, there are
two paossible configurations (Figure 1 (c)). To ensure matching, e.g., between a 2-root query and a
2-root skeleton, both configurations of either need to be compared. One configuration for each
database skeleton, either 1-root or 2-root, is coded. 2-root queries will be coded in both
configurations. Signatures’are used to identify two types of matches: an exact match for two nodes
of the same topology and at the same level, and a close match for two nodes of similar topologies
atany levels. Exact matches can be declared when the two signatures are the same,

Close matches are ones when query node’s children match some children of the DB node.
For example, query signature (P,0,0,0,1,0,1,0) is a close match with the DB signature
(P,0,1,0,1,0,1,0). - When the query node is a root node, the DB signature is compared with all
circular-shiftings of the query signature. For example, query’s signature (3,0,0,0,1,0,1,0) is shifted
to (1,0,3,0,0,0,1,0), where a close match with DB signature (4,0,3,0,0,0,1,0) is declared. For a
close match, the order of the children in “node detail” is updated to reflect the changé in its
signature. The matching algorithm is summarized as follows:

1. Clear all marks on the DB signatures.
2. While there are query signatures, do
i.  Select one query signature,
ii. Identify all DB exact and close matched signatures,
iii. Mark all DB matches accordingly.
iv. Remove the query signature.

To filter out unlikely (close) matches, (DB node_length)/(query node_length) ratios and their
median are computed. Matches whose ratio is outside the range [median ratio — threshold, median
ratio + threshold] are eliminated. For cach of the remaining matching pairs, exact or close match,
the matching score is computed:

Sonre= w(—ai bl o g CPELT)+L 4
max(|7; 1| 7, ) max(|7; || 7, |)

where CN is the number of matched nodes, CP the number of matched nodes whose ratios in the
range [median ratio—threshold, median ratio+ threshold). |T,| is the size of query skeleton tree T,
and | 73| is of DB skeleton tree 75. The w is the weight in [0,1], which is set to adjust the relative
significance of the two terms. In experiments, w = 0.5 and threshold = 0.25.
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2.3 PROPERTIES OF THE ALGORITHM

To prove the properties of the algorithm, the distance measure equivalent is defined to the scoring
function:

N T, G
d(T). Ts) = 1-score = |-w GTs ) -(1-w) CRdLT) 3L
5 max(1 7 [.| 7, 1) max(| 7, |,| T, )

Theorem 1: For any skeleton trees 7), 7> and T the following properties hold true. (See proof at
(8])

LOSd(T), Ty <1

. d(T), T)) =0 < T, is isomorphic to T,

1. d(T), Ty) =d(T,, T})

iv. d(T), Ty) <d(T), To) + d(Ts, T3)

Theorem | indicates that the measure (d(7), T,)) is a distance metric. The matching procedure
based on node topelogy-is translation and rotation invariant, and robust to scaling. Let n be the
number of the nodes of skeletal graphs and m the number of rows (signatures) in the signature
table. The following theorem can also be proved (see proof at [8]).

Theorem 2: The space complexity of the proposed technique is O(») for each query, and the time
complexity is O(mn) for executing a query against the entire database, where m = the number of
rows in the signature table, and n = the number of nodes in the query’s skeletal graph.

Compared with the DAG method, the proposed method is a significant improvement. The
DAG method takes O(n’M) for matching time, where M is the number of database images. In
experiments, there were about m=1,700 signatures for a total of M=4,000 database images. In
terms of storage space, DAG uses eigenspaces of the adjacent matrix, costing O(n®) for each
image.

3. EXPERIMENT STUDY

3.1 DATASETS AND METRICS

The dataset comes from [7] and some images are added to test various features of the proposed
technique. Images are views computed from 3-D graphics models. Each is centered in a uniformly
tessellated view sphere and a silhouette is generated for each vertex in the tessellation. A skeletal
graph is computed for each silhouette with a particular block size. The depth first search algorithm
is used to traverse the graph. A node is marked where the graph changes direction. There are 147
queries, which can be occluded or unoccluded images.
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3.2 CONFIGURATION

Since the block size greatly affects both processing time and recognition rate, the best block size is
determined to construct skeleton trees. Experiments are tested with five different block sizes: 1x1,
2x2, 4x4, 8x8 and 16x16. Respectively, the processing times for these blocks are 28, 17, 11.29,
8.46, and 8 minutes for 4,000 images. The relationship between recognition rates and block size is
more interesting; see Figure 2. When block size is increase from the pixel level to 2x2 to 4x4, the:
recognition rate improves. This indicates that block size 4x4 helps remove noise and smooth out
the skeletal graphs. Recognition rates, however, deteriorate rapidly for larger block sizes. This is
attributed to the fact that the skeletal graphs now become too coarse to capture shapes in sufficient
details. Since block size 4x4 yields the highest recognition rate at reasonable processing time. This
block size 4x4 is used for the proposed technique in subsequent experiments.

3.3 COMPARATIVE STUDY

In this experiment, the proposed technique is evaluated its performance against with the DAG on a
set of unoccluded queries. The same dataset as the DAG’s, consisting of up to 1,408 views of 11
objects, is used and each object having 128 views. The results are summarized below (see Figure 3
and [8]):
- The proposed technique’s recognition rate is consistently better than the DAG’s as the
database size increases.

- For unoccluded queries the proposed method achieves higher recognition rate faster than the
DAG does, as the number of views per object increases.

- For occluded queries, the recognition rates comparably reduce as the percentage of occlusion
grows. Both methods yield recognition of greater than 70, even for 50% occluded objects.
Figures 4 to 7 show the results of some example queries against database of about 4,000

images. For each query, top-ranked images are displayed along with their scores. The higher the
score is, the closer is the match. Table 3 summarizes the results of these queries.

Observe that the ranks of relevant images are very high, and the images are views at various
angles and scaling of the ‘queried object. In the last query, see Figure 7, for heavily occluded
queried objects (dog’s legs are occluded), the proposed approach is still effective to achieve high
recall (compared with the recall in the previous query: “unoccluded dog”, see Table 3).

Figure Query Relevant | Retrieved | Recall
4 Human 63 58 92%
5 Dolphin 52 . 46 88%
6 Dog 28 26 92.8%
7 Occluded 28 26 92.8%
dog

Table 3 Summary of the results of these queries
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Figure 2: Recognition performance with various resolutions
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Figure 3: Recognition performance with various database sizes
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Figure 4: Query image and top-ranked images
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Figure 6: “Unoccluded dog” and top-ranked images
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Figure 7: “Occluded dog” and top-ranked images
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4. CONCLUSIONS

Shape matching is an important yet open problem. This paper proposed a matching algorithm for
skeletal graphs, which are used to represent shapes. The topology of skeletal graphs is captured
and compared at the node level. The present technique achieves a high recognition rate, and at the
same time, significantly reduces space and time complexity of matching. The results show that the
proposed approach is an effective and efficient technique for shape recognition.
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