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ABSTRACT-

There are several techniques for projective coordinate that can be used for speeding up the

computation &P over GF (2"). In this paper we overview all this techniques method in projective
coordinate and introduce a new efficient formula in projective coordinates. This formula used the
idea of reducing the number of underlying field multiplication. Elliptic curve protocols and.
applications can be implemented with better performance using the suggested formula.

KEY WORDS. Elliptic Curves over GF(2"), Projective Coordinate, Cryptography.

E-mail: Igbal501(@yahoo.com

52




KMITL Sci. J. Vol. 5 No. 1 Feb. 2005

1-INTRODUCTION AND PRELIMINARIES.,

Elliptic curve cryptography (ECC) has received considerable attention from mathematicians
around the word ever since the original proposal by Victor Miller and Neal Koblitz in 1985 [1 and
5]. ECC is based on the Discrete Logarithm problem over the points on an elliptic curve.

Elliptic curve public-key cryptosystems over the finite field GF(2") [3] have been

coming into wide use. It is known that these cryptosystems wide n-160 have equivalent security to
the RSA cryptosystem with a 1024-bit modulus.

Elliptic curve cryptosystem, scalar multiplication mP, P a point on the elliptic curve and
m an integer, is the core operation. The scalar multiplication is performed by iterative additions
and doublings on the elliptic curve. Therefore, performing addition and doubling on elliptic curve
fast is crucial for efficient implementation of these cryptosystems. :

Elliptic curves defined over GF(p) or GF (2") are used in cryptography, the arithmetic
of GF(p) is the usual mod p arithmetic, the arithmetic of GF (2") is similar to that of GF(p),
however, there are some differences. Elliptic curves over GF (2") are more popular due to the

space and time-efficient algorithms for doing arithmetic in GF (2"). We proceed now to give a
quick introduction to the fascinating theory of elliptic curves. For simplicity, we shall restrict our

attention to elliptic curves over GF (2" ).

Affine coordinates. Let E be an elliptic curve over GF (2") (briefly, E (GF (2"))), given
by the (affine) equation '
y2 + xp.= x* + ax? +5b,

where aandbd in GF(2"),b # 0.

The set of points on E( GF(2")) also include point O, which is the point at infinity and
which is the identity element under addition.

There is a rule for adding two points on elliptic curve E(GF'(2"))to give a third elliptic

curve point. Together with this addition operation, the set of points E(GF(2") ) forms a group

with O sérving as its identity. It is this group that is used in the construction of elliptic curve
cryptosy-stems.

The addition rule in E(GF(2") ), which can be explained geometrically is presented as
a sequence of algebraic formulae,
1-30 € E(GF(2")), such that VP e E( GF(2")),P+0=0+P=P. (Identity
element)
2-VP e E(GF(2")),3-P c E(GF(2" )), such that, P +(— P)=(~ P)+P = 0, (Inverse)
3-Let P=(x,,y)and Q = (x5, ¥,) be two points on E with P = —(O . Then the
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coordinates of R = P+ O =(x;, y;) can be computed as follows:

(Point addition) Formula (1) | (Point ddubling) Formula (2)
LR =P, 0 RE =P,
x3=/12+/{+x]+x2+a, x3=/12+/1+a,
V=i e A e e =1 ) ek Sy
g el 4] i
where A = TR where A4 = Xy

Thus we see that E( GF'(2") ) forms an abelian group under addition.

v

Figure (1): Adding two points on an Elliptic Curve

4-¥P,Q e E(GF(2")),ifR=P+Q, then R € E(GF'(2")). (Closure)
(see Figure (1)) :
5-¥P,Q e E(GF(2")), P+ Q=0Q+P. (Commutative)

6-P+(Q+R)=(P+Q)+R, VP,Q,R e E(GF(2")). (Associative)

We can notice that addition over E( GF(2") ) requires one inversion, two

multiplications, one squaring and eight additions. Similarly, doubling a point on E(GF(2"))
requires one inversion, two multiplication, one squaring and six additions.

The following algorithm implements the addition of two points on E( GF(2")) in terms
of affine coordinates.
Algorithm]: Addition on E(GF(2")) (affine
coordinates)
INPUT: An elliptic curve E( GF (2" ) )with

parameters a,b € GF(2"), and points
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Pi= (x50 and @ = (Golyn)
OUTPUT: R=P+0.
If P= O then R <— QO and stop
If 0= O then R <— P and stop

If x, = X, then
If y, + ¥, = X, then R« O and stop
else
A Xy +y, /%, x, <« P +A+a, y, < x2 +(A+Dx,,
else
A+ +x,). %, « A +A+x +x, +a,
Yy = (x, X )A 4%+ )y,
Output R < (x,, ;).

2- ADDITION FORMULAS IN PROJECTIVE COORDINATES FOR ECC
OVERGF(2").

When filed inversion in GF(2") is expensive relative to multiplications it may be more efficient

to represent points in projective coordinates since a field division is more expensive than 10
multiplications we use projective coordinates as proposed in [9], then it may pay to keep track of
numerators and denominators separately. In this way, one can replace division by ¢ with
multiplication of the denominator by & .

In standard projective coordinates, the projective point (X, Y, Z),Z # 0, corresponds
to the affine point (X /Z,Y/Z) The projective equation of the elliptic curve  is

YiZ S XY Z = X aiZ T

Given the distinct points P and Q expressed in projective coordinates P =(X .Y,
Z), O=(X,, Y,,Z,) we compute the projective coordinates of the elliptic sum
‘P+Q= (X;,Y;,Z,), the addition formulae for computing 2P are given as multiplications.

The projective addition formula is:

(Point addition) Formula (3)
A= X0 Zi40X IM
B=Y.Z;+¥ IM
(B

D=A*(A+aZ)+Z BC. 4M
X,=4D, IM

55




KMITL Sci. J. Vol. 5 No. 1 Feb. 2005

Y, = CD:+ A% (BX, +AY). M
G _2M
13M

This computation requires 13 field multiplications.

In Jacobian projective coordinates [4], the projective point ( X,Y,Z) ;Z#0 ,
corresponds to the affine point (X /Z>,Y/Z>) and the projective equation of the curve
isY>+ XYZ = X* +aX*Z* + bZ° . The projective form of the adding formula on the curve
Y2 +xp=x+ax’ +b over GF(2") is(X,,Y,,Z,)+(X,,Y, )= (X,,%,,Z,), where,

{Point addition) Formula (4)

W=XZ:+X,. IM

R=—WiZx ¥ M

Z, — W, M.

Vi RX 47 1 2M

T=R+Z,,

X,=aZ; +TR+W", 3M

VAR M
“TTM

In [10], a set of projective coordinates was introduced. Here, a projective point
(X,Y,Z), Z#0, corresponds to the affine point (X /Z, Y/Z?)and the projective

equation of the curve is ¥> + X¥YZ = X°Z + aX*Z*? + bZ* Formulas for addition in mixed
coordinates are: (X ,Y;,Z,) + (X, Y,,]) = (X,,Y,,Z,), where

(Point addition) Formula (5)
H=YZIL ) 1M
B= X7 X M
C=2,8, iM

D = B*(C +aZ}). oM

e @

15= 210k M

A =A*+D+E,

R X b IM
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LY

Y, = EF + 7,G o

Y

[n a new genceral set of projectiv e coordinates was introduced. Here, a projective point (.X;

Y. Z). Z # 0 corresponds to the affine pomt (X' / Z', ¥/ Z* )and the projective equation of the

curve 8V XVl = el pia aape el Formulas for addition in mixed coordinates

are X i)
(Point addition)
K=2)

e s = (X 01720 where
Formula ( 6)

A=X K, 1M

B_idt

IR 1M

U=A4+X,.

=

Z, =KD, 1AM

F=2Zi

R=XF. 1M

T:E+ﬂ,

Xy =AW, + X3)+ X, (E+B). ; oM

Y, =(R+X)TU+Z)+E> (Y% + X,). M
oM

Now we arc going to prove that the previous formula(6), let B, = (X, /Z,,Y,/Z/) and
P, = (X, /Z;,Y2 HZ3)?)be two points on the elliptic curve E. Assume that X, /Z| = x,,
Yz =0 X2 =, Y,/Z))* =y,, and Z, =1, now we are going to show
X2 = xand Y NZ1): = ¥y, where (X5, ;) is generated by (x,,y,)and (x,,y,) by using

the standard

addition formula of affine coordinates, then the

isP| +P2 =(X3’IZ.;~ Y3 /(23[):)'

addition .

X, A+ XD+ X (BB X2 s X)X, (L2 s X7

Z;

KD 2N 25+ X,))"

. s +X}X§ AT +X,JXZZ£ _x), +x,x§ %0 +x,2x2

{‘4\"\2.,? +/\‘,2): (xl +x2)2
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2 2 3 2 2 3 2 2
W T Y, XY XY, XY X0, +x1 +X, X, +xx +x; +ax; +ax;

(63 in ) ok

i 67 +J’2)2 + (7 + v )X +x,) i (x, +x2)3 +a(x, +x2)2

2 2
(o) (et
+¥, ) o+
=R e y3+x,+x2+a:x3,
x, +x, X, + X,

Y, _(R+X)IU+Z)+F’ (¥, +X,)
@e (KD)*

(X Zy+ X)TU + ZD+YZ) + X, Zi
2 (X2, + X))

TUZIX, +TUX, + X, Z) + Y22 +2X,Z2

g 22 n)

CTUZ X, + X))+ X, Z,+ V22

2 AU T

L Kgith K e
2Oz

X
t— ¥
3

gl L
:———EA—AX(XW'FX}J >
Z,

[Sy 1
={—y‘ yz](x,+x3)+x3+y,:y3,
xtx

In formula (6), if i=/ hen P, + P, =(X,/Z,, Y,/Z}) and the number of field
multiplication is nine, and the number of Sanring is five. If i=2 then P, + P, = (X, /Z2,

¥/ Z: ) and the number of field multiplication is also nine, and the number of squaring is
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increased from five to sex, however, the squaring is very cheap in GF(2") and, there fore;

negligible, the Table | show that . In general if i is even or equal one then the number of ficld
multiplication is nine, but if i is odd and not equal | then the number of field multiplication is ten,

In table 3, we illustrate the expected number of ones in the binary representation of % ig
1/2 =n/2, whence the expected running time of Algorithm is approximately »/2 point additions and
n point doublings, denoted 0.5n4+nD. If affine coordinates are used, then the running time
expressed in terms of field operations is 3nM+ 1. 521 where ] denotes an inversion and A/ a field
multiplication. If projective coordinates are-used, then 0 is stored in projective coordinates, while

P can be stored in affine coordinates. The field operation count of Jacobian projective(X/Z >, ¥/Z> )
is 8 5nM~+(2M+ 1) (I inversion and 2 multiplications are required to convert back to affine
coordinates).

4. DISCUSSION AND CONCLUSIONS

Elliptic curve cryptography offers two major benefits over RSA namely; it has more security per
bit and a suitable key size for hardware and modern communication. Thus, this results to smaller
public key certificates, lower power requirements and smaller hardware Processors.

There are two necessary conditions to use a new group over GF(g) for cryptography: one
s the discrete logarithm problem for a candidate group has enough difficulty and the other its
operations can be implemented efficiency. Using the new full addition projective coordinate
formula, the elliptic curve group operations can be reduced.

Three major approaches are used in this paper to enhance the elliptic curve
cryptosystems: reducing the number of the elliptic curve group arithmetic operations, speed up the
underlying finite ficld operations and reducing the size of the transited parameters. A new full
addition in the projective coordinate is introduced, where the analysis for this formula show that
the number of multiplication over the finite field is reduced to nine general field element
multiplication. Thus this reduction will be speed up the addition about 11 percent.

Table 1. Timings for one field operation.

Field operation Time
Multiplication 441
Squaring 0.49
Division 38.01
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Table 2. Operation counts for point addition.

Coordinate system Field operation
M I Total (M+10I)

Affine 2 1 12
Standard projective(X/Z, ¥/Z) 13 13
Jacobian projs:ctive(_?t(/Z2 3 Yf'Z}j I 0 11
Projective (X/Z, Y/Z ) 10 0 10
Projective(X/Z', ¥/(Z')?)

i even or (=] 9

i odd 10 10

Table 3. Rough estimates of point multiplication costs for n=163.

Coordinate system EC operations Field operations
Affine A D M 1 Total®
Standard projective(X/Z, ¥/7) 82 163 490 245 2940
Jacobian projective(\/Z ; ‘, v/Z*) 82 163 1390 ! 1400
Projective(X/Z’, ¥/(Z')?)

) : 82 163 1306 1 1316

ievenori=/

i odd and i#/ 82 163 1348 1 1358

“ Total cost in. field multiplications assuming /7=10M.
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