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ABSTRACT

A modified version of the basis function method, called the modified basis function
method, is proposed for estimating time-varying frequency of nonstationary signals. The

modification  is accomplished by adjusting a TVAR process, used as a linear predictor, and

applying a combinatio’n of both the forward and the backward predictors for calculating TVAR
parameters. The time-varying frequency estimate was extracted from location of the closest pole to
the unit circle in the complex z-plane. Two nonstationary signals, one is chirp and another is of
sinusoidally time-varying frequency, are used as examples. From our results, the prbposcd
approach yielded better accuracy in estimating the time-varying frequency in either noisy or noise-

free situation than using the traditional basis function method.

KEYWORDS: Time-varying autoregressive, Modified Basic function method, Nonstationary

signal, Frequency estimation
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1. INTRODUCTION
Time-varying frequency estimation problems arc addressed in many applications,
including communication, system monitoring, diagnostic, and many more. S;:\'cml approaches,
such as. the short-time Fourier transform, the time-frequency clistributioﬁ‘ and the parametric
method. are cable of estimating the time-varying frequency and spectral. Among those, the
parametric method yields the possible highest frequency resolution. The time-varying
p
autoregressive (TVAR) process, i.c._‘,’[l‘]:—Zai[f]_\’[fgi]+€[a‘], have been used for
i=1

estimating time-varying frequency, where the estimation is done in two steps; first, estimation of

the TVAR parameters a,[f] and then second, frequency extraction from the TVAR parameters

a,[t]. Two general approaches, adaptive algorithm and basis function method, have been
discussed and shown that, while the adaptive algorithms such as LMS, RLS, and RLS with
constraint, are cable of tracking the frequency jump, it fails to track the fast continuous variation.
In contrast, the basis function method is in potent to ecstimate the fast varying frequency or
spectrum [1].

In this work, we propose a method. called “the modified basis function method™, by
making some modification to the TVAR process used as a linear predictor and applying a
combination of both the backward and the forward lincar estimators for improving the frequency
estimation accuracy. Superiority in the time-varying frequency estimation of the proposed method

is shown and discussed.

2. THE BASIS FUNCTION METHOD

The TVAR model that has been used for the non-stationary signal [2] [3] [4] utilizes only

P
forward linear estimation. The forward linear predictor defined as P[] = — Za,.[f]y[f —i] is
1=1
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used in the basis function method, and the TVAR model parameters a,[t] are explicitly modeled

as a summation of weighted time functions as

r,‘
ald=>a; i@ (1)

=0
where a,, i=12,...,p, k=0,1,...,9- are constants, is expansion dimension, and
) 3 ] ady 5 q
/5 (£) are some predefined time-functions that are used as the basis function in the expansion.

With a,[¢]defined in (1), the forward linear estimator can be rewritten as

A= _i[i a i (f)].v[’ =1 (2)

i=l

and the estimation error is

e[t] = yit]+ i(i an.r (t)]y[i —i].

i=l X\ k=0

Parameters @ are calculated by solving a set of p(g+1) lincar equations, cquation (3), which is

| L )
the result from minimizing the mean squared error £ = ———— » | et]]”
2AT - p) z,:‘
Loy
ZGM Gyl )= =€, 7). =12 pand I=0]. ¢ (3)
i=1 k=0
Here cqlid)= == 3 A Ol= e~ 1 | )
T—p f=p . J

y
The parameter estimates @, [/] are obtained by  @,[¢] = Za”{ /. (t). Details of this method arc
Al

in [3]. After obtaining the parameters @[], the frequency estimate can be calculated,
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3. PROPOSED METHOD: THE MODIFIED BASIS FUNCTION METHOD

The proposed method is a. modified version of the basis function method. Here we define
slightly different TVAR processes and use both forward and backward predictors.

Forward estimation:

Ft+1]= Za[tv[t—zHJ .f—p]p T (5)

a[=3 a,f,®

k=0

Forward estimation error:

e [t+1]=ylt+1]= P/ [t+1]= p[t + 1]+ Z(th(er—wl] (6)

i k-0
IJ

Backward estimation: Ple=1]= —Z b [e]yle +i-1] (7)

i=l
For stationary signals, the backward and the forward parameters are time-invariant, and

they are related to each other. As a matter of fact, for stationary signals, the backward parameters
b, arc simply complex conjugates of the forward parameters d,. Inthe case of the non-stationary

signal, the backward and the forward coefficients are not time-invariant, and they may or may nol

be equal to the complex conjugate of each other. However, to develop our approach, we will force
them to be equal by using a constraint b,[t] = a, [t]. Therefore, we can rewrite the backward

estimator as
lr=1]= Za Ve +i=1], =12 .., T-p+l]

and backward estimation error as
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e [z— = 1[r— - 3°[ =1]=y[t=1] +Z[Y‘aﬂjﬂ(r)) vit+i=1 (9

In the basis function method, the estimation of ¢, is achieved by minimizing thé mean square of

only the forward prediction error, but here both the forward and the backward prediction errors are

combined.. We redefine the mean squared error as the combination of both the forward estimation

error and the backward estimation error,

gﬁﬁ{ief[r+1]J2+Tf|'e”[f—1JF} (10

=p-l =1

1
Since | €”[¢][*and | (e”[])" |? are equal, the mean squared error can be rewritten as

5:2( {Z|e’{t+l] +T§||(e [ 1] }

2

=1 Pl

Z y[t+1] +ZZa,Afi(t)yt—z+1]
o l =p-I _ i=1 k=0
e Tprl

-

=1 i=]

yl-1 +i[ia.-k.n(r)},‘[r+f—1]‘

Taking derivative of & with respectedtoa ;, j =1,2,...p,/ = 0,1,...q , and equate to zero.

T-1
e Z( z+1}+22akfk(z)yz—z+1]Jﬁ Oy’ [=7+1]

da, r=p-1 i=1 k=0
7uT=pa] | P 4 i
+ 2 -0+ a Oy [t +i=1 | (Ol + j 1]
=1 i=1 k=0
After rearrangement in the above equation, we will have
p q . . . 3
Y. D auculsi)=—(0,)); j=12...p and 1=0],.g (1)
i=l k=0

where
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i)
t=die e =g 2 Y e e =i+ 5= 1]
: ]

(12)

Salving the equation (11) yields the constant parameters a,,, and then the estimates of the

4
time-variant parameters, @ [¢] = Za,‘j" (/). As can be noticed, equation (11) is exactly the

k=0

same as equation (3), but the cyij) defined in (12) are totally different from that in (4).

Furthermore, the parameter estimate a,[f] from the basis function and the modified basis

function methods are also different in cither their values or time-availability. In the basis function

method, a,[t] are available from time t = p until t = T_ but in the proposcd approach, a,[1] can

be calculated only from time t = | to t =T-1,

Equation (11) is.a set of p(g + 1) lincar cquations. Solving them for ay might be

tedious, especially if p and g are large. However, they can'be changed into a matrix form, and

then lincar algebra techniques can be applied for achicving the solutions. One can write (11) in a

matrix form as

Where

(1,1
d(1,2)
(1, p)
CO(} (I7j)
(D(I,j) A COI (:I?J)

CDf_; (i', J’)

D(2,1)
®(2,2)
D(2, p)

o (4, /)
¢, (4, 7)

6y, G

D(p,1) |
D(p,2)

O(p, p)|

CqO (ls J')_
qu (l! J)

¢,y (0, )]
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al a;(: /?1 Cuu (0~ j)

a, a, 7 ¢, (0, /)
as (o, = :] Tedi= l:' cand ¥, = 5 : 4

_,u arq ; f,') C()q (O’ j)

Computational aspects of the matrix form as in the equation (13) were discussed in Hall
et al. [1983], in which a symmetric property was utilized to reduce the steps of computation. For
the proposed approach, the matrix C is still symmetric. Therefore, the computational reduction,
mentioned in Hall et al. [1983], can still be used in our approach. However, since we employed
both the forward and the backward estimations, the computation for forming the matrix C in (13)

is unavoidably two times as much of that mentioned in Hall’s paper.

4. FREQUENCY ESTIMATION; RESULTS AND DISCUSSION

The proposed approaches, the modified basis function method, were tested in noisc-free
and noisy situation, to estimate the time varying frequencies of two synthetic signals that have
only a single frequency component. The synthetic signals were real and generated such that their
frequencies were exactly known as shown in Figurc |. The first signal is a real (not complex)
chirp signal whose normalized frequency increased linearly from 0.1Fs to 0.41Fs over 32 samplcs,
where s = sampling frequency. The second signal is sinusoid whose frequency varies periodically
er)m 0.1Fs to 0.3Fs with a sweep rate of 0.05Fs. We estimated the time-varying frequency by

first, solving for the vector a in equation (13), and then computing the TVAR parameter estimate

y
by using 4,[t] = Zaﬂ_fj (1), i=1,2, .., p. Once 4,[t] were available, the time-varying
k=0

frequency estimate was obtained from j[t] = angle(z,)  Fs/(2r), where z, is the closest
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pole to the unit circle in the complex z-plane, and is a root of the prediction error filter polynomial

z? £ o[tz Ha, [tz +a,[t]=0.

First, we test the proposed method for signal test 1 and 2 in noise-free environment.
Figure 2 shows results from using basis function and modified basis function to estimate time-

varying frequency of the signal tests 1 and 2. For signal test 1, we used the polynomial basis

k
: t
function f, (f) = (T) where N is the total sample number, and chose p = 2, ¢ =4, while for

: : : et
the signal test 2, we used the cosine function defined as f, () = cos il and selected p=2, q

Signal test 1 :
1 105
2
a!
0.5F -04 g
= o
= | dpa=s
05} {02 g
5
1Lle : ' 1z
0 5 10 1% 20 25 30 35 :
: _Samples :

Signal test 2

o
=

Amplitude
1
o
N
Normalized frequency

sacdy
s 30 ?DU
Samples

Figure 1: Two signals used for the test. Solid = rcal signals. Dot = Normalized frequency varying
with time.

114



KMITL Sci. J. Vol. 5 No. 1 Feb. 2005

=12. The errors shown in the Figure are the averaged errors, calculated from the definitions

1 N %
err = —— Z f[n]—f[n]} . for  the basis function method,  and

n=p+l

Nl ] ;
WZ'f[n]—f[n]‘ for the proposed approach. As seen, the proposcd approach
T & p=2

enl:

using both the forward and the backward estimators yields less estimation error, compared to that
from the traditional basis function method using only the forward estimator. As noticeable for the

signal test 1, the average error from using basis function method is, in fact, about one-step
difference between the adjacent true frequency, lf[n} ~ fln- I][ = 0.01. This error verifics that

the TVAR process used as the linear predictor in the traditional basis function method that have
been used by several researchers, is at best a step-delay version of the true parameter. However,
this error is negligible when the sampling frequency is high. Also noted was that the traditional
basis function method could yield a frequency estimate only after the p" sample. due to the p-
delay required at the initial state, but the proposed approach | allowed the frequency estimate
available for all sampled time except the first and the end samples.

Next, we used the proposed approach to estimate the frequency of the signal test | and 2
in the additive white noise that has signal-to-noise ratio (SNR) of 20 dB. We assumed that the true
model order p is unknown, so we used p >2, which is over-determined. We can sce a benefit of the
proposed approach that utilizes both the forward and the backward estimators, when the model

order is over-determined,

Figure 3 displays results when the model order p=4,q=4 for signal test |, and p = 4, q
=12 for signal test 2. Both cases are of over-determined model orders. As seen from Figures 3(a)
and 3(b), when the signal is noisy and the model order is over-determined, the traditional basis
function method does not yield successfully the estimate of time-varying frequency. However, the

proposed approach yields the frequency estimate that is reasonably accurate.
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Figure 2: Results from using proposed approach to estimate the time-varying frequency of (é)
signal test I and (b) signal test 2.
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. Frequency estimate of signal test 1 in noisy environment
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: Results from using the proposed approach for frequency estimation of (a) signal test |
and (b) signal test 2 in noisy environment and when model order is over-determined.
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One might argue that the reason that the traditional basis function method that utilize only
an forward predictor failed to estimate the time-varying frequency in Figure 3, was because of the
total number of parameters that were needed to be estimated (p.g) was not small, compared to the
number of available data, and that did not follow the rule of thumb or the implication of the
parsimony principle, recommended by Niedzwiecki [2000]'. This argument may be true because
we used for the signal test 1, p =4, g = 4 (p.g = 16), while the number of data = 32 samples, and
for the signal test 2 p = 4, g = 12 (p.q = 48) while the number of available data = 96 samples. To
see that the proposed approach, the modified basis function method did actually improve the
frequency estimation when the model order was aver-determined, we did a few more tests in noisy
20dB-SNR cnyironmcnts where the sample number of signal test 1 and signal test 2 were
increased to be 128, and 224 samples, respectively. The increase in the sample number is to
satisfy the parsimony principle. The results of these tests are summarized in table 1. We
remarked that the true model order was two, since the signal test 1, or the signal fest 2 only had a
single time-frequency component. As seen, when the true model order p=2 was sclected, the
estimation errors from the forward and the proposed approach were not much different, but when
the used model ord_er was increased (over-determined), the estimation errors of both signal tests
from the proposed approach were smaller than that from the traditional basis function method
using the forward predictor alone. This confirms that the proposed method did improve the

frequency estimation.

'« Niedzwiecki, M. [2000] suggested that, based on the principle of parsimony, the total number
of estimated parameters should be much smaller than the number of available data points or satisfy
the inequality pq<0.2N, where p is the model order, g is dimension in time-function expansion,
and N is total number of data. {Source: Maciej Niedzwiecki, Identification of Time-varving
processes, Chapter 6, John Wiley & Sons, Ltd., 2000}
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Table 1: Frequency estimation errors of the proposed approach (the modified basis function

method) and the traditional basis function method as the model order was increased.

Frequency estimation errors
Model Order Using basis function method Using modified basis function method
(2] Signal test | Signal test 2 Signal test | Signal test 2
p=2 0.0029 0.0073 0.0015 0.0054
p=4 0.0083 i 0.0084 0.0004 0.0020
p=6 0.0086 0.0165 0.0003 0.0017

- It should be noted that, as the model order p increases (still satisfying the principle of
parsimony), the estimation errors from the proposed approach tends to decrease. This can be
explained as well. Since the signal was in an additive noise, the TVAR model order-2 that could
sufficiently represent the noise-free signal was no longer valid for the signal in the additive naise
In fact, the TVAR model with limited order is not completely valid to represent a process in an
additive noise, since the signal in the additive noisc algebraically becomes the TVARMA process.
For the:TVAR model to sufficiently represent the TVARMA processes, the model order of the

TVAR process must be of infinite order or large. Proof can be given as following:

A Show that a TVAR process with the additive white noise is equivalent to a TVARMA signal
Let the signal x[7] be the impulse response of the TVAR(1m) processes, and wle) = xle) -
wlr] where w(/] is the additive white noise. The spectral density of x[/] is

| el
3_ D(t.w)

ID.\'.\' (I’ (0) o

M B
1+ Z_ak [t]e A
=

The power spectral density of v[f] is
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1

P + O-'W

Px:t"(t’ Cl)) = Px,\- ([’ a)) oy 0.}3‘ o=

m

}1 + 3 a el
k=l

1+0.D(t,)

1+ Y a,lfle™
k=1

7 9

which is actually the power spectral density of a TVARMA(m,m) process. Therefore, the
TVAR(m) process in the additive white noise becomes a TVARMA(m,m) proceés, whose

coefficients in the numerator of the TVARMA transfer function depend on the power spectral

density of the signal and the noise variance. )

B. Show that the TVAR process with the infinite model order validly represents the TVARMA
process with finite order.
To prove this, we will simply show that the TVARMA(],1) can be changed into the

TVAR form with the infinite order. The transfer function of ARMA(1) is

I bz
H £ il e
ania () 1+a,(t]z 7
i 1+b,[t]z”" < 1 blan )
‘ I¥alz ltelderez +.. €CE) 4R

where the term in the right side is the transfer function of the TVAR(w), and C(z)is the z-

transform of ¢, [#] with respect to k. That is

E g (ald-b)
o Zallls ol ! 1+ b [z
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Take inverse z-transform of C(z2),

l i =10

O -n ey k=123,

Hence the TVYARMA(I,1) process is cquivalent to the TVAR(w), in which the TVAR

parameters ¢, [¢] must be defined as above.

5. SUMMARY
A TVAR model is used in our modified basis function niethod that utilizes the

combination of both the forward and the backward prediction errors to estimate the TVAR
parameters, and then the time-varying frequencies. Posing the constraint b,[f] i&;[l‘] to the

minimization of the summation of the forward and the backward error, was beneficial to the
frequency estimate in that the estimates were approximately equal to the true frequency and could
be obtained for all samples except the first and the last samples. In addition, for the noisy case
where the model order was over-determined, our proposed approach yielded better results in
estimating the time-varying frequency than using the traditional basis function method utilizing
solely forward predictor, and the estimation error from our approach tended to decrease \;sfit-h the
increase of modeled order, provided that the‘ implication of the parsimony principle was still

satisfied.
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