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ABSTRACT

In this paper we present various matrix analogs of notions and inequalities in convex
geometry. We employ the well known notion of mixed determinant — an analog of
the notion of mixed volume in convex geometry, and introduce the matrix version of
Blaschke summation — an analog of the notion of Blaschke summation for convex bodies.
With these notions we then can develop some matrix analogs of the convex geometry. In
this paper we also present one new inequality analog — the matrix version of Kneser-Siiss
inequality.
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1. INTRODUCTION

The Brunn-Minkowski theory is a core part of convex geometry. At its foundation lies
the Minkowski addition of convex bodies which led to the definition of mixed volume
of convex bodies and, implicitly, to the famous Brunn-Minkowski inequality. The latter
dates back to 1887. Since then it has led to various notions and a series of inequalities
in convex geometry. Various matrix analogs of these notions and inequalities have been
well known for a century and have been widely use in mathematical and engineering
applications. Our purpose here is to develop an equivalent series of inequalities for
positive definite symmetric matrices. Toward this goal we employ the well known notion
of mixed determinant — an analog of the notion of mixed volume in convex geometry,
and introduce the matrix version of Blaschke summation — an analog of the notion of
Blaschke summation for convex bodies. With these notions we then can develop some
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niatrix analogs of the convex geometry. In this.paper we also present one new inequality
analog - the matrix version of Kneser-Siiss inequality.

We begin by restating the definition of the mixed determinant, D(A4,, Az, - AT
analogous to the mixed volume of convex bodies (see [1] or Lutwak [2] for a de-
tailed discussion) and the cofactor matrix, CA. Here and thereafter, all matrices are
n x n. For two square matrices, 4 and B, we introduce the Blaschke Summation

T

A4+ B. Letting 4- B = Z a;bi;, we use the axiomatic properties of the mixed
1,7=1

determinant to show the equivalency of CA - B and n times a mixed determinant

. D(A+eB)— DA

nD(A,--- A B), and to prove CA . B = lim ( ) (4)
——

£—0 £

(Theorem 6) and

n—1

1 A4+:-B)-D(A
—_IGB ‘A= Iing} DUt e Dl Tl (Theorem 7). Subsection 2.3 focuses on three

n €
equivalent matrix inequalities. The first two were known before in matrix theory, but
the last one is a new addition. All these three inequalities have their analogs in convex
geometry and we refer to the Appendix A for their statements.

2. MATERIALS AND METHODS

2.1. MIXED DETERMINANT AND COFACTORS. A well known matrix analog of the
convex geomeétry notion of mixed volume is called mixed determinant. Its definition is
restated here as follows:

Definition 1 (Mixed Determinant!). Let Ay,--- , A, be n x n symanelric matrices,.

A1y, An be positive scalars. Then the determinant of \y Ay +- -+ A, A, can be written

as
DAL+ + XA) =D XA, D(Ayy, -, A,

where the sum is taken over all n-tuples of positive integers (i), - Jiy) whose entries

do not exceed r. The coefficient D(Ai, - A,). with Ay, 1 < k < 1 from the sel

{A1,- -, A}, is called the mixed determinant of the matrices A; -+ | A,

Properties of Mixed Determinants: Let A, - LAy A B and B’ be nxn matrices,
Aty s+, A be positive scalars.

1
D(A4,-- A B)=D(A, - ,A B, A)
e R

n—1 =2

=D(A, B, A, - A)
2
=D(B, A, A)
N —

n—1

IThe author choose to restate this definition of mixed determinant in a way analogous to the
definition of mixed volume in convex geometry [1], [2].
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In fact, the mixed determinant is symmetric in its arguments, so in a larger
generality one has:

n—k k k n—~k

We use the notation D(A, n—k; B, k) to represent any of D(A,--- A, B,--- ,B), -
—

S
n—k k

(2) D{)\IAla st [ /\TLAT'L) o AI LSk )\11D(A1> s :An)-

(3) D(Ay, An 1, B+ B)Y=D(Ay, - Ay 1,B)+D(A,--- A, _1,B").
In particular,

DA A BB A AR A A B
| N’ L

n—1 n—1 n—1
The properties in (2) and (3) follow from the n-linearity of the mixed determinant.

One can show that for n x n matrices A and B:

a bl
1 : ag
(4) D(A,--- ,A,B) == e B ;
ramTe AL Qp—1 )
n—1 b” o

of which the generalization gives an alternative definition of the mixed determinant as
in the following remark:

Remark 2. A mized determinant D(A, Aa, - | A,) of n x n matrices Ay, Aa, -+, Ay
can be regarded as the arithmetic mean of the determinants of rn.’,e.'.pass-ib.'fe malrices which

have exactly one row from the corresponding rows of Ay, Ay, - | A,,.

Definition 3 (Colactor Matrix). The cofactor mairir. CA, of an n x n wmalric A, is
the transpose of the well knoun classical adjoint of A. thus il is defined by
(5) (€A)y; := (=1)" D(A(i5))

where A(i|7) denotes the (n — 1) x (n — 1) wmalrir obtained by deleting the i-th row and

the j-th column of the matriz A.

We use a similar notation in matrix theory to represent an analog of the mixed volume
Vi(K, L), where K and L are convex bodies, as follows:
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Definition 4. D(A, B) is the following mized determinant of n x n matrices A and
B
Di(A,B)=D(A, - ,A B)

(6) \_\:l_a

2.2 BLASCHKE SUMMATION AND Two ANALOGS OF MIXED VOLUME BE-
TWEEN Two CoONVEX BODIES. Learning the properties of the notion of Blaschke
summation of convex bodies in convex geometry, we introduce its analog in matrix
theory as follows: :

Definition 5 (Blaschke Summation).

The Blaschke Summation of the n x n matrices A and B, denoted by A+ B, is defined
as the matriz whose cofactor matriz is the surn of the cofactor matrices of A and B;

that s, it satisfies the following equality:

(7) C(A+B) = CA +CB.

Theorem 6. Let A = (ai;],..,. . B = [bijl,un- If
A 0 B: Z aijbij,
129

then, for any positive scalar =,

D(A +¢eB) — D(A)

(8) nDy (A, B)=CA. B = lim -
e—0 £
Proof Let (CA),; be the (ij)-th entry of CA. Then
251 b1
: i ag
CA-B=3 (@A) by=| " |+ +|. |,
i Q] :
by Qn
or. using (4), we have
(9) CA-B=nD(A,- -, A B).
R T
n—1

For A and B of dimension n X n, and a positive scalar €. we have

T

DA+eB) =Y (?)siD(A,n e

: 1
1=0
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where D(A,n —1; B,1) represents D(A,--- ,A; B, ,B). Thus
N e

D(A +¢B) -
DA ) T et D)
N e £—0 c

n—1

ar, by (9), we obtain
D(A+¢eB)—D(A)
€

CA- B =Ilm
e—0
O

It is natural to regard the product €A - B as an equivalent of the mixed volume between
two convex bodies A and B. The previous theorem was proved by the asymptotic
expansion of the determinant of A + B which is similar to the Steiner’s polynomial for
the volume of A + B, where A and B are convex bodies. Another equivalent of the
mixed volume between two convex bodies A and B is provided by the next result.

Theorem 7. Let A, B be n x n positive definite symmetric matrices, € be a positive

scalar. Then

by Dldie D) s D0

n—1 e—0 c

(10)
where ¢ - B = t/(»-1) B, 0O
Here we have symmetry up to a constant. This theorem can be proved in a similar way

using also the definition of Blaschke summation and axiomatic properties of the mixed
determinant. : :

2.3. THE MATRIX ANALOGS OF THE BRUNN-MINKOWSKI, THE MINKOWSKI,
THE KNESER-SUSS INEQUALITIES. The following theorem is a well known inequality
proved by Minkowski.

Theorem 8 (Minkowski, “The Brunn-Minkowski inequality ” [3], [4], [5], [6]). Let A, B
be n x n positive definite symmelric matrices. Then

(11) D(A + B)Y™ > D(A)Y/™ + D(B)"/,

with equality if and only if A = c¢B. a

It is called Minkowski’s determinant inequality [3], [4], [6], and is a matrix analog of the
Brunn-Minkowski inequality in convex geometry. And hére are couple of others.

Theorem 9 (“The Minkowski inequality” 2). Let A, B be n x n positive definite sym-

metric matrices. Then

1

(12) Di(A, B) = D(A)*= D(B)*,

with equality if and only of A = ¢B.

9= . . . . . . -
“Despite lacking of reference literature, the author believes that this theorem is a well known theoren:

in matrix theory.
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Proof Using AM-GM inequality: 1 tr @ > D(Q)M™ for any positive definite matriz Q,
and A B := Z aijbij, it can be eatily proved that for n x n positive definite symmetric
matrices A ar:j B,
(13) : tr(AB) = A- B > nD(A)Y/"D(B)Y/",
and the equality holds if and only if AB = cl, or A is a multiple of B~'; that is,
A =cB~1. Then it follows directly from (13) that

CA - B > nD(CA)* D(B)*’

=nD(A)* D(B)*,

and equality holds if and only if c;A=! = CA = c; B~ or A = ¢B, where ¢;, ¢y, ¢ are

constant. 0

This inequality is a matrix version of the Minkowski inequality in convex geometry. It

~can also be shown that the analog of the Brunn-Minkowski inequality ( 11) is equivalent
to the analog of the Minkowski inequality (12). First we shows (12) implies (11). For
any positive definite symmetric matrix @, it follows from (12) that

(14) CQ-Q = nD@)"V"DE@)V"
= nD(€Q)"/"D(Q)"/"
Letting @ = A + B, where A, B are positive definite symmetric matrices, we have
.  CQ.(A+ B)
D(A + B)Yr = nD(EBQWH)
CR-A CQ- B
" nD(EQ)" " nD(EQ)"
CQ- A CQ- B

nD(Q)*F  nD(Q)*
= B L DB
The last inequality follows from (12). This concludes that (12) implies (11). We will
now show (11) implies (12). By (11) and with € being a positive scalar, we have
D(A+¢eB) — D(A)

m

{D(A-FSB)U”)“_D(A)

e

(DA™ + b(sB)l/n)" — D(A)

=

m

(D(A)/" +eD(B)Y™)" — D(4)
2
(D(rl) 4 (T)D(A}(n—])/nsD(B)l/n e (';)D(A)(n—z)/nEQD(BJZ/u S ) B D(4)

£

and as ¢ approaches 0, we infer that
. D(A+eB)— D(A)
lim

t—0 £

> (”) D(A)*= D(B)*,
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which is

CA B > nD(A)*5 D(B)*

or
1 1

Di(A,B) > D(A)" D(B)>
This concludes the proof that (11) implies (12).

Theorem 10 (“The Kneser-Siiss inequality”). Let A, B be n x n positive definite sym-
metric matrices. Then

(15) D(A+ B)“’_ > D(A) L D(B)*+

with equality if and enly if A = cB.

Proof To prove this matriz version of Knesser-Siss inequality, it suffices to show that

i is equivalent to the analog of the Brunn-Minkowski inequality (11). Using (11) we

have

D(CA + €B)/m
D(@A)lf" + D(EB)Y/n
D(A)= + D(B)*=

Il

(16) D(A+B)**=

v

Il

This shows that (11) implies (15).

It can be easily verified that an n x n matriz A is positive definite symmetric if and only
if its cofactor matriz CA is a positive definite symmetric. Let X = CA, Y = CB. Since
A and B are positive definite symmetric then so are X and Y. Using the definition of
Blaschke addition and (15), we obtain

(17) DX +Y)!"™ = D(CA+ECB)Y™

D(C(A+ B))l/“

D(A+B)*

n—1

(

2 DA HD(B)
= D(e )1/71+D(GB)1/1:
= DR D Yy

This shows that (15) implies (11), and the theorem is proved. O

The last inequality was unknown in matrix theory. One may recognize the equivalent of
this inequality in convex geometry, where volumes replace the determinants and convex
bodies replace matrices. The convexity version of the last two theorems are given in

Appendix A.
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3. CONCLUSIONS

. ; : 1
The matrix version of Blaschke summation and the AM-GM inequality, —tr@ >
n

D(Q)'™ as in the proof of Thearem 9, play important roles in the derivation of matrix
analogs of notions and inequalities in convex geometry. These analogs look very similar
to their convex geometry version ones. The author believes that a plethora of other
matrix inequalities can be obtained by choosing strategic positive definite matrices Q
in the AM-GM inequality. :
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APPENDIX A. THE BRUNN-MINKOWSKI INEQUALITY, THE
MINKOWSKI INEQUALITY AND THE KNESER-SUSS
INEQUALITY IN CONVEX GEOMETRY

Theorem 11 (The Brunn-Minkowski inequality [1], [2], [6]). Let K, L be conver bodies
in R™. Then

(18) V(K + L)V™ > V(K)Y? + v (L),

with equality if and only if K and L are homothetic. O
The theorem now named after Brunn and Minkowski was discovered (for dimensions
< 3) by Brunn (1887, 1889) [7], [8]. Its importance was recognized by Minkowski, who

gave an analytic proof for the n-dimensional case (Minkowski 1910 [9]) and characterized
the equality case; for the latter, see also Brunn (1894) [10].

Theorem 12 (The Minkowski inequality (1], [2], [6]). Let K, L be convex bodies in R™.
Then

(19) Vi(K, L) = V(K)F V(L)*,
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with equality if and only if K and L are homothetic. ]

Theorem 13 (The Kneser-Stiss inequality [2]). Let K, L be conver hodies in R™. Then

(20) V(K + L) 2 VIK)T + V(L)
with equality if and only if K and L are homothetic. 0
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