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ABSTRACT
In this paper we will introduce the classes of linear operators in probabilistic normed space, as the
set  of all Certainly bounded Lc_ v, V'). D-bounded LD(V, b strongly  B-
bounded L, (V,V") , and strongly I/ —bounded Lu, (V. V"), we then prove they are linear

space-
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1. INTRODUCTION AND PRELIMINARIES

In 1942 K. Menger introduced the notion of probabilistic metric space as a natural generalization
of the notion of a metric space; specifically, he looked at the distance concept as a probabilistic
rather than a deterministic notion. More precisely, instead of associating a number — the distance

d(p,q) - for every pair of elements p, g one should associate a distribution function qu

and, for any positive number x , interpret F', (x)as the probability that the distance

from p to g be less than x

In complete analogy with the classical case, we then have the notion of a probabilistic
normed space. This was introduced by A. N. Serstnev in 1963 and later improved by C. Alsina, B.
Schweizer, and A. Sklar in 1993.

Before we proceed we must state some definitions, known facts, and, technical results
to be used in the sequel, the concepts used are those of [3] and [9]: The space of probability
distribution functions (briefly, a d.f.) which we will consiaer are

A= [—O? ,00] = [0,1] | F is left-continuous, non-decreasing,
F(—0) = 0and F(+0) =1 }

In particular for any @ = 0, &, is the d.f defined by

(x) Oe = a
£ (x)=
5 Ll i

The space A s partially ordered by the usual pointwise ordering of ﬁJﬁctions, the

maximal element for A" in this order is the d.f. given by

o O <)
E(XxX) =
2 L9t e 02

A triangle  function is a binary  operation on A", namely a
function T : A" x AT > A" that is associative, commutative, nondecreasing and which has
£ as unit, viz. for all F, G, H € A , we have

(g(F,G), H) = 7(F,7(G, H)),
W E,G) =G F),
o(F,H)<t(G,H) if F<G,
7(F,&)=F.
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Continuity of a triangle function means continuity with respect to the topology of weak
convergence in AT Typical continuous triangle functions are convolution and the operations’

Tr and Tpe » which are given by

T GO = isup BF(S): G (1)),

and

77+ (F,G)(x) = inf T"(F(s),G (1)),

i
forall £ ,G in A" andall X in ‘R [9; Secs.7.2 and 7.3] . Here Tisa continuous f-norm, i.c.

a continuous binary operation on [O,I]that is associative, commuta- tive , nondecreasing and has
*
I as identity; T isa continuous f-conorm, namely a continuous binary operation on [U,]]that is

related to continuous t-norm 1 through

T(x, ) =1-T(-x1-y).

The notion of a probabilistic normed space was first introduced by Serstnev in 1963. In
1993, C. Alsina, B. Schweizer and A. Sklar gave a new definition of a probabilistic normed space

[2].
DEFINITION 1.1. A probabilistic normed space is a quadmple(V, VT ‘l'*), where V is a real
vector space, T and Z'*are continuous triangle functions, and V is a mapping from ¥ into
A" such that, for all P .4 inV  the following conditions hold:

(PNI) V, =&, ifandonlyif p =&, @ being the null vector in V

(RN ity

(PNaj o S a(1 )

(PN4) Vp < T (Vy,,Vyiy,) . forall @ in[0,1].

If, instead of (PNI1), we only have Vg = &y, then we shall speak of a Probabilistic
Pseudo Normed Space, briefly a PPN space. If the inequality (PN4) is replaced by the
cquality Vp = TM(V@,, Vi ]_Q)P), then the PN space is called a Serstnev space. The pair (V,V)is

said to be a Probabilistic Seminormed Space (briefly a PSN space) if v: F —> A" satisfies (PN1)
and (PN2).
There is a (&,A)— topology in the PN space (V,V, 7,7 ) which is generated by the

family of neighborhoods, NP of PE Vin the following way:
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N, (&,4) = {N, (&, ssp200m » N, & A = {g €V 1y, (6)>1- 2}

DEFINITION 1.2. Let (V,v,7,7 ) be a PN space and A be the nonempty subset of V. The
probabilistic radius of A is the function R, defined on R by
I"infv (x), xe[0,+ )

R,(x)= pEd
1, X € 00,

where /" f{x) denotes the left limit of the function fat the point x.
The definition of bounded sets in a probabilistic normed space was defined in [6].
DEFINITION 1.3. A nonempty set 4 in a PN space (¥,v,7,7" ) is said to be:
(a) Certainly bounded, if R ;(xy) =1 for some x, € (0,+ ) ;
(b) Perhaps bounded, if one has R ;(x) < 1forevery x € (0,+ ) and /"R ;(+o0) =1;
(c) Perhaps  unbounded, if R, (x,)>0 for somex, € (0,+®) and
I"R,,(+o0) € (0,1); '

(d) Certainly unbounded, if [TR ,(+00) =0,ic.,if R, =¢,.

Moreover, 4 will be said to be dis!ribwiopcm/(v bounded, or simply D-bounded if either
(a) or (b) holds, i.e., if R, € D™ ; otherwise, ie., if R, € A" \D", 4 will said to be D-

unbounded.

The definition of a bounded linear dperator in PN space previously studied by B:
. Lafuerza Guillen, J. A. Rodriguez Lallena and C. Sempi [6], L. Jebril, and R. Ali [3] and 1. Jebril,
and M. S. Noorani [4].

DEFINITION 1.4. Let (V,v,‘z',T*)and(V',lu,o‘,o")be PN spaces. A linear map

T:V — V' is said to be bounded if it satisfies either one of the following conditions.

(a) Certainly bounded: if every certainly bounded set 4 of the space (V,v, 7, 7) has,

as image by T a certainly bounded set 74 of the space (V' y1,0,0 ), ie, if there exists
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Xy € (0,+90) such that V,(x,) =1for all p € A, then there exists x, € (0,+o0) such that

#rp(«‘ﬂ):l forall p € 4.

(b) D-Bounded: if it maps every D-bounded set of ¥ into a D-bounded set of V', i.e,, if,
and only if, it satisfies the implication,
liminfv (x)=1= liminfv,_(x)=1,
x—r+w0 ped 7 x—r+0 ped 7
for every nonempty subset AotV .
(c). Strongly B-bounded. if there exists a constant & > 0 such that, for every peV and
forevery x > 0, Hr, (x) > I (%) , or equivalently if there exists a constant /4 > (0 such that,

forevery peV andforeveryx > 0,
K, (hx) 2 v, (x).

(d) Strongly Y —bounded: if there exists a ¥ :[0,00) = [0,0)such that
W(x)<x, Vx>0so that the following implication holds for every pelV for every

x>0 :
o= — g, (F () > 1 =W (x) .

We shall also need the following lemma which is due to B. Lafuerza Guillen et al [8].

LEMMA 15. it f :(V,v,T, Z") - (R, u,o, G'*) , & is not a positive integer, and Ais
" D-bounded, there is 72 eZ ,suchthatn —1 < @ < n, forevery P € A one has
/Llo:fp 2 /’lnfp :

2. CLASSES OF LINEAR OPERATORS IN PN SPACE.

Let (V,v,7,7%)and (V', 4,0,0%)bec PN spaces, and let L(F,F") be the vector space of
 linear operators T : V' — V',

The following is our definition of some classes in PN space.
DEFINITION 2.1. Let (V,v,7,7 ) and(V", 14,07, 0" ) be PN spaces. Then

1- L.(V,V") is called a Certainly bounded subset, where
Lc (v, V)= {T =S VT s a certainly bounded linear operators }.
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2- LD (V, V') is called a D- bounded subset, where
b ¥, v')= {T :V — V', T is a D-bounded linear operators }.

3- Ly (V,V") is called a B- bounded subset, where
LB (V, V') = {T :V — V', T is a strongly B-bounded linear operators }.

4- LW @ V') is called a |/ — bounded subset, where
LW (V, V') = {T VoV',Tis a strongly ¥/ — bounded linear operators }.

In Definition 2.1, we are going to prove thatLU(V,V“) ,LD(V, V') ) LE(V: V') and
L, (V,V'") are vectors space.

THEOREM 2.2. Lc (V,V") is a vector space.

Proof: Let 1 and S be two certainly bounded linear operators from(V,v,7, r') into
(V, L0 O'*) and let A be certainly bounded subset of e By Definition 1.4, we note that if
there exists X, € (0,+00) such that Vp (x)=1 for-all P € Y| , then there exists
x, € (0,+00) such that £, (x)=1 forall P € A and if there exists x, € (0,+00) such
that VP'(JCZ) =lforall P € A | then there exists x; € (0,+00) such that £, (x;)=1 for
al p € A Also

Hyig, (x, +x,)2 O‘(,Ufp (xl)hl’lgﬂ (x,)) 21,

hence, Hr .o (%, +x;)=1 and T+Sis certainly bounded.

Now let & € R andT € Lc (V, V') . Because of (PN2), it suffices to consider the

case ¢ > 0. Ifeither @ = O or @ =1, thenT is certainly bounded.

Proceeding by induction, assume that @1 € L, (V,R) for a=0L2,..,n—1 with
n € N . Then for every p € A4,
Enry 2 O-(/u(n—l)]"',, ,/,tTP) 2,
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so that i, = 1,ie aT is certainly bounded. Therefore @7 is certainly bounded for every
i
positive integer /7 . If @ is not a positive integer, there is 7 € Z, such thathn —1 < @ < m;
therefore by Lemma 1.5, every D € A one has
luan 2 AunTﬁ ’
and whence
/ua]"p 5 ] )
so that @7 is certainly bounded.
THEOREM 23. L, (V,V") is a linear space, where o7(D”,D") < D”
Proof: Let 7 and OSbe two D-bounded linear operators from (V,v,z‘, 'r'*)into
(V',,LI,O',O'*) . Thus, R'y and R', arein D™ . Since, for every p € A, one has
Py 2 O'(,LJTP Ms, R SR
which belong to D | also RI(T+S),4 belong to D" and T+ is D-bounded.

Now let @ € RandT € L,(V,V"). Because of (PN2), it suffices to consider

case 2 0. Ifeither @ = Oora =1, then &7 is strongly D-bounded.

Proceeding by induction, assume thatal € L, (V, B, i.el

R'{I.,,-_‘I eD fare=0,1,2,...,n—1 withnn € N . Then, for every P € A
/UMT): = o—(/‘l(n—l]?}: ’/uii",'r) ,
and hence

' 1 '
R nTp = J(R (n-1)TA ’R TA ) ’

so that R'”m € D" and N1 is D-bounded. Therefore 717 is D-bounded for every

positive integer #7 . If & is not a positive integer, there is /1 € Z, such that n—l<a <n;

. therefore Lemma 1.5, every P € A one has M 2 M7 . whence Rm = RnTA which
n 7

means that al is D-bounded.

THEOREM 24. L, (V,V") is a lincar space, where ¢ = min .

Proof: Let [ and S be two strongly B-bounded linear operators from (V,V,T,Z'*)into

(V',,U,O'.O‘w ). By Definition 1.4, for every pEV and x>0, there exist kl ,/{l >0 such
that:
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%
Hrp (£) 2V, (), M
ky
and
X
#Sp (x) 2 Vp (k_) 3 (2)
from (1) and (2) we note that: :

Ju(ra;syp(x) = Hrpisp (x) 2 J(ﬂrp (g), Hsy (g))
A3)
)

X X
2 o((vy, (E), Vs (2—’,(2

Choose k = max {2k, ,2k, } +1. Thus, k 2 2k and k = 2k, , this implies that

izi and izi, Vx =0
2%k kR
Thus;
X X X X
—)2v (= d —=)=2vi(=); Vx=0,
V”(Zk,) p(k) an Vp(zkz) p(kJ

; X X X
Thus mm{vp (%),vp (2’72)} zZv, (E)

%X
Now from (3) we get iy, ,(X) 2V, (;),Vx 20, so that T+ §is strongly B-

bounded.

Now let @ €eRand T € LB (V,V'") . Because of (PN2), it suffices to consider
case = 0. Ifeither & = 0or @ =1, then @7 is strongly B-bounded.

Proceeding by induction, assume that al € LB (V,V") for
a=0,1,23,..,n—1with 7(=2) € N from (1) and (2), for every p € A, then,

R (el

X

x X
Hutp (x)2 O-(/u(n—l)Tp (E)r Hsp (E)) 2 O’(V(n—np( E

(o
2k,

k

> oo (%),v,, (f)) > min(v,_,, (ngp (%)) = Vo (%) = ()

So that @1 is strongly B-bounded. Therefore al s strongly B-bounded for every
positive integer ¥ . If & is not a positive integer, there is # € Z 'such that n—1l <@ <n:
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therefore Lemma 1.5, cvery P € A one has #aﬁ 2 ’U“Tp . which means that aT is strongly
B-bounded. This implics that T+S is strongly B-bounded. Hence LB(V,V') is a linear

space.

THEOREM 2.5. Lw (V,F"") is a lincar space, where & = min .

Prooh: Lt T 2ndiS be. two stebnply W = boundell:linear bperator from i (Vavie, © Jinto
(V'.it,0,0°). By Definiton 13 for evoy P EV and x>0, there cxis
W,(X) <X and ¥.()) < V. such that:
v () > 1 =x = pp (9 () > 1=y (x) |
v l-v=ue (W, () > 1=y, (),
e (X + ) =, (X)+, () <x+y.ifv,(x+p)>1=(x+p) then
Hirasy, W+ YD =ty s (9, () T4, ()
= o(py, (w,(x), 415, (W2 (1))
2 min(uy, (i, (x), s, (9 (1))
>1—w(x+ ).
So T + 8 is stronghy 1 — bounded.

Now let @ € R ad T € Lw(V’ V'). Because of (PN2), it suffices to consider

casea = 0 Ifcither @ = 0 ore =1, then &7 is strongly ¥ — bounded.

Proceeding by induction, assume that al e L (V.,V') fora=0,1,2,....,n—1 with

ne N . Then, forevery P € A et w(x + 1) > w, (X)) +w,(»)
Hyr, (wlx+ ) 2oy, Iy, CF (e itaon) > L= e £ )

So that al s strongly ¥/ —bounded. Therefore al s strongly 1/ —bounded for

cvery positive integer /2. If @ 1s not a positive integer, there is neZ, such that

n—1<a < n;theretore Lemma 1.4, every P € A one has Har, 2 [,z , which means that
}

al is strongly ¥/ — bounded.
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