

## Comparative Study on Group Sequential Procedure

Hideyuki Douke

Department of Mathematical Sciences  
School of Science, Tokai University  
Hiratsuka, Kanagawa, 259-1292, Japan

### Abstract

The group sequential procedures have used to reduce the average sample size and to terminate early the decision in the repeated significance test for comparing the efficacy between two treatments. The group sequential procedure is characterized by the group sequential design based on the repeated confidence boundaries for realizing the test. In this study we compare the representative methods to construct the repeated confidence boundaries in the group sequential procedure in terms of the average sample size in the simulation studies.

*Key Words and Phrases* : average sample size; some group sequential procedures; repeated confidence boundaries; simulation study

### 1. Introduction

The group sequential procedure is the method to test sequentially the hypothesis of no difference between two treatments based on the accumulated data in clinical trials when a response variable is normal(or binary). Pocock(1977) proposed first the group sequential procedure based on the repeated confidence boundaries constructed by the use of recursive formulae of numerical integrations in Armitage *et al.*(1969). Many authors like O'Brien and Fleming(1979), DeMets and Ware(1980), Whitehead(1983), Fleming Harrington and O'Brien(1984) and so on, have presented the different methods which obtain the repeated confidence boundaries under the probability of Type I error specified in advance. Lan and DeMets(1983) proposed an unique method to construct the repeated confidence boundaries by using  $\alpha$  spending function. In general we use the group sequential procedure to reduce the average sample size and to terminate early the decision in the repeated significance test from the ethical point of view in clinical trials. In the simulation studies, we compare five representative methods in

group sequential procedures in terms of the average sample size after constructing the repeated confidence boundaries.

## 2. Group Sequential Procedure

We consider a group sequential procedure that tests the hypothesis of no difference in efficacy between a new treatment (treatment  $A$ ) and a standard treatment (treatment  $B$ ). In advance we specify the total number of test  $K$  and the probabilities of Type I error (significance level)  $\alpha$ . We suppose that each group of patients arrives successively and the  $k$  ( $k = 1, \dots, K$ )th stage has sample size  $2g$ . In a group,  $g$  patients are randomly allocated to receive treatment  $A$  and the other  $g$  patients are randomly allocated to receive treatment  $B$ . Each response on treatment  $A$  and  $B$  is denoted by random variables  $X_A$  and  $X_B$ , and they are independently distributed according to normal distribution  $N(\mu_A, \sigma^2)$ ,  $N(\mu_B, \sigma^2)$  respectively, where  $\mu_A, \mu_B$  are means and  $\sigma^2$  is a known variance. Thus  $2g$  observations obtained at the  $k$ th stage,  $x_{A,n_{k-1}+1}, x_{A,n_{k-1}+2}, \dots, x_{A,n_k}$  and  $x_{B,n_{k-1}+1}, x_{B,n_{k-1}+2}, \dots, x_{B,n_k}$  are samples from  $N(\mu_A, \sigma^2)$ ,  $N(\mu_B, \sigma^2)$  respectively, where  $n_k = gk$ .

**Table 2.1** Group of observations

| Stage    | Group of observations |                   |          |             |
|----------|-----------------------|-------------------|----------|-------------|
| 1        | $x_{A,1}$             | $x_{A,2}$         | $\dots$  | $x_{A,n_1}$ |
|          | $x_{B,1}$             | $x_{B,2}$         | $\dots$  | $x_{B,n_1}$ |
| 2        | $x_{A,n_1+1}$         | $x_{A,n_1+2}$     | $\dots$  | $x_{A,n_2}$ |
|          | $x_{B,n_1+1}$         | $x_{B,n_1+2}$     | $\dots$  | $x_{B,n_2}$ |
| $\vdots$ | $\vdots$              | $\vdots$          | $\vdots$ | $\vdots$    |
| $K$      | $x_{A,n_{K-1}+1}$     | $x_{A,n_{K-1}+2}$ | $\dots$  | $x_{A,n_K}$ |
|          | $x_{B,n_{K-1}+1}$     | $x_{B,n_{K-1}+2}$ | $\dots$  | $x_{B,n_K}$ |

Now we give the null hypothesis  $H_0$  against the alternative hypothesis  $H_1$  as

$$H_0 : \mu_A = \mu_B, \quad H_1 : \mu_A \neq \mu_B. \quad (2.1)$$

Here we let

$$\bar{x}_{A,k} = \frac{\sum_{i=1}^{n_k} x_{A,i}}{gk}, \quad \bar{x}_{B,k} = \frac{\sum_{i=1}^{n_k} x_{B,i}}{gk}$$

then  $\bar{x}_{A,k} - \bar{x}_{B,k}$  is distributed according to  $N(\mu_A - \mu_B, \frac{2\sigma^2}{gk})$ . We will write the distribution as

$$\bar{x}_{A,k} - \bar{x}_{B,k} \sim N\left(\mu_A - \mu_B, \frac{2\sigma^2}{gk}\right) \quad (2.2)$$

Thus

$$y_k = \frac{k\sqrt{g}(\bar{x}_{A,k} - \bar{x}_{B,k})}{\sqrt{2\sigma^2}} \sim N\left(\frac{k\sqrt{g}\delta}{\sqrt{2\sigma^2}}, k\right), \quad (2.3)$$

where  $\delta = \mu_A - \mu_B$ .

### 3. Repeated Confidence Boundaries

The group sequential procedure is characterized by the repeated confidence boundaries under the null hypothesis  $H_0$  by Armitage *et al.* (1969).

Let  $X_1, \dots, X_K$  be series of random variables distributed according to  $N(0, 1)$  independently. Then

$$S_k = \sum_{i=1}^k X_i \sim N(0, k).$$

Here we need determine the repeated confidence boundaries  $b_1, \dots, b_K$  so as to satisfy the following relations

$$\Pr(|S_1| > b_1) = \alpha_1^*,$$

⋮

$$\Pr(|S_1| \leq b_1, \dots, |S_{k-1}| \leq b_{k-1}, |S_k| > b_k) = \alpha_k^*, \quad (3.1)$$

⋮

$$\Pr(|S_1| \leq b_1, \dots, |S_{K-1}| \leq b_{K-1}, |S_K| > b_K) = \alpha_K^*,$$

where  $\alpha_k^*$  is the probability that the test terminates first by rejecting  $H_0$  at the  $k$ th stage under  $H_0$ . Furthermore,  $\alpha_k^*$  must satisfy  $\alpha = \alpha_1^* + \dots + \alpha_K^*$  for a specified significance level  $\alpha$ . The repeated confidence boundary  $b_i (i = 1, \dots, K)$  in (3.1) can be obtained by using the following integrations by Armitage *et al.*

$$\alpha_1^* = 1 - \int_{-b_1}^{b_1} f_1(u) du, \quad \text{where } f_1(u) = \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}}, \quad (3.2)$$

$$\alpha_k^* = 2 \int_{-b_k}^{\infty} \int_{-b_{k-1}}^{b_{k-1}} f_{k-1}(u) \frac{1}{\sqrt{2\pi}} e^{-\frac{(v-u)^2}{2}} du dv, \quad k = 2, \dots, K, \quad (3.3)$$

where  $f_{k-1}(u)$  is the probability density function of  $S_{k-1}$  at  $(k-1)$ th stage. Thus we call  $b_1, \dots, b_K$  the upper boundaries and  $-b_1, \dots, -b_K$  the lower boundaries in the repeated confidence boundaries. Then we define the necessary average sample size  $E(n_k)$  for treatment  $A$  and treatment  $B$  as

$$E(n_k) = 2g \left[ \sum_{k=1}^{K-1} k\alpha_k^* + K \left\{ 1 - \left( \sum_{k=1}^{K-1} \alpha_k^* \right) \right\} \right] \quad (3.4)$$

When the repeated confidence boundaries  $b_1, \dots, b_K$  are determined, the decision rules in the group sequential procedure are as follows:

(i) The case of the  $k$  ( $k = 1, \dots, K-1$ )th stage.

If  $|y_k| \geq b_k$ , then one accepts the hypothesis  $H_1$ . Otherwise, one tests again in terms of  $y_{k+1}$  at the  $(k+1)$ th stage.

(ii) The case of the  $K$ th stage.

If  $|y_K| \geq b_K$ , then one accepts the hypothesis  $H_1$ . Otherwise, one accepts the hypothesis  $H_0$ .

Here we show the repeated confidence boundaries in the group sequential procedure in Fig. 3.1.

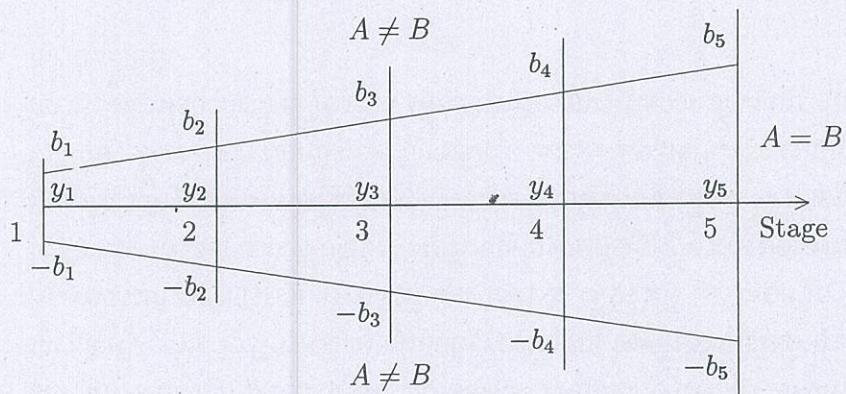


Fig.3.1: Repeated confidence boundaries

#### 4. Representative Methods

We introduce three representative methods for deciding the repeated confidence boundaries.

##### (1) Pocock's method(1977)

This method is to adopt the repeated confidence boundaries

$$b_k = Z \cdot \sqrt{k}, \quad k = 1, \dots, K, \quad (4.1)$$

when  $\sum_{i=1}^K \alpha_i^*$  is equal to the significance level  $\alpha$  by using the common value of  $Z$  through all the stages.

##### (2) O'Brien and Fleming's method(1979)

This method is to adopt the repeated confidence boundaries

$$b_k = U \sqrt{\frac{K}{k}} \sqrt{k} = U \cdot \sqrt{K}, \quad k = 1, \dots, K, \quad (4.2)$$

when  $\sum_{i=1}^K \alpha_i^*$  is equal to the significance level  $\alpha$  by using the value of  $U \sqrt{K/k}$  through all the stages. The value of  $U$  is decided by Monte Carlo simulation.

##### (3) Lan and DeMets' method(1983)

The method is to define the following three  $\alpha$  spending functions. We assign the significance level  $\alpha$  for each stage and decide the repeated confidence boundaries based on the Armitage's method.

**(a) Normal method**

In this method,  $\alpha$  spending function is defined by

$$\alpha(k) = 2 \left\{ 1 - \Phi \left( Z_{\frac{\alpha}{2}} \sqrt{\frac{K}{k}} \right) \right\}, \quad k = 1, \dots, K, \quad (4.3)$$

where  $\Phi$  is the standard normal distribution and  $Z_{\frac{\alpha}{2}}$  is the  $\frac{\alpha}{2}$  point of standard normal distribution.

**(b) Log method**

In this method,  $\alpha$  spending function is defined by

$$\alpha(k) = \alpha \times \log \left\{ 1 + (e - 1) \frac{k}{K} \right\}, \quad k = 1, \dots, K. \quad (4.4)$$

**(c)  $\alpha t$  method**

In this method,  $\alpha$  spending function is defined by

$$\alpha(k) = \alpha \times \frac{k}{K} = \alpha t, \quad k = 1, \dots, K. \quad (4.5)$$

By the above methods, we calculate  $\alpha(k)$  and decide  $\alpha_k^*$  for each stage by  $\alpha_k^* = \alpha(k) - \alpha(k-1)$ . Then  $\alpha_k^*$  must satisfy the following equation.

$$\alpha = \sum_{k=1}^K \alpha_k^*. \quad (4.6)$$

## 5. Simulation Studies

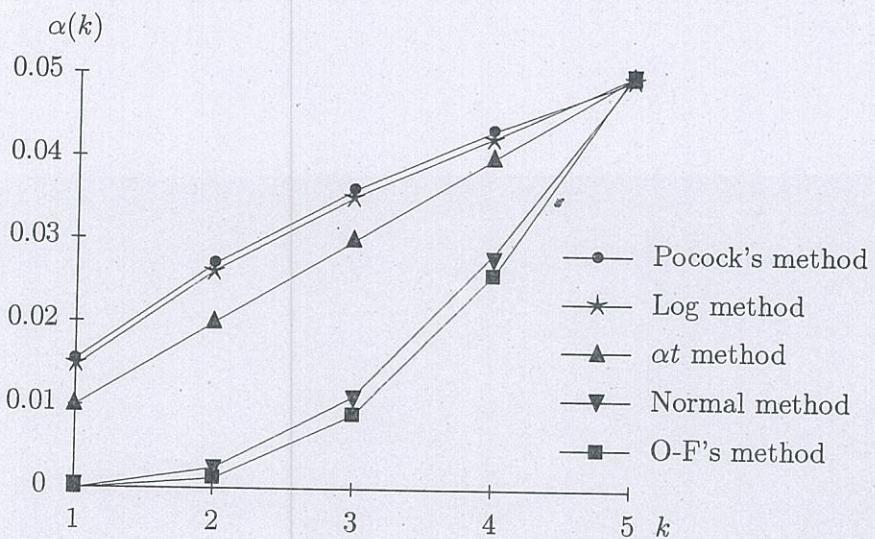
The purpose of the simulation studies is to compare the representative methods in the group sequential procedure in terms of the average sample size. First we calculate the value of  $\alpha(k)$  ( $k = 1, \dots, 5$ ) at each stage on five methods in Section 4 after constructing the repeated confidence boundaries under  $K = 5$  and  $\alpha = 0.05$ .

Table 5.1 shows the values of  $\alpha(k)$  on five methods. In Table 5.1, Pocock's method and Log method take larger values at the first stage and increase slightly with the change of  $k$ . Normal method and O'Brien- Fleming's method take smaller values at early stage and increase largely with the change of  $k$ . The  $\alpha t$  method shows that a rate of increase is equal through all the stages. Fig.5.1 illustrates the change of  $\alpha(k)$  for each five methods in Table 5.1.

In Fig.5.1, Pocock's method and Log method take the large values at the first stage and show the increasing curve with the change of  $k$ . Normal method and O'Brien and Fleming's method increase loosely at early stage and increase largely with the change of  $k$ . The  $\alpha t$  method shows a straight line.

**Table 5.1** The value of  $\alpha(k)$ 

| Stage ( $k$ )     | 1       | 2       | 3       | 4       | 5       |
|-------------------|---------|---------|---------|---------|---------|
| Pocock's method   | 0.01552 | 0.02718 | 0.03614 | 0.04341 | 0.04953 |
| Log method        | 0.01477 | 0.02616 | 0.03543 | 0.04324 | 0.05000 |
| $\alpha t$ method | 0.01000 | 0.02000 | 0.03000 | 0.04000 | 0.05000 |
| Normal method     | 0.00001 | 0.00194 | 0.01139 | 0.02843 | 0.05000 |
| O-F's method      | 0.00001 | 0.00128 | 0.00899 | 0.02582 | 0.05043 |

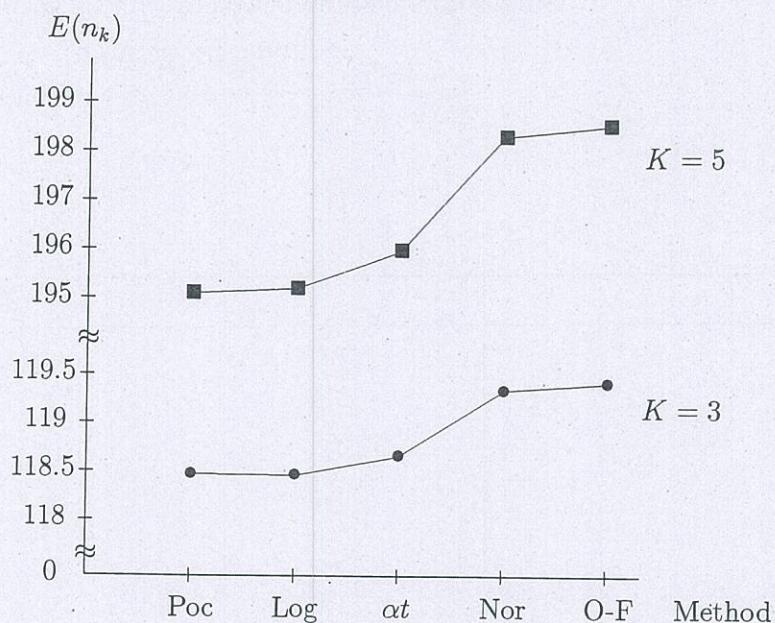
**Fig.5.1** Comparison of the value of  $\alpha(k)$ 

In Table 5.2 we show the average sample size  $E(n_k)$  of two treatments  $A$  and  $B$  on five methods under  $g = 20$ ,  $\alpha = 0.05$  and  $K = 3, 5$ . From Table 5.2,  $E(n_k)$  of Pocock's method and Log method take the small values than  $E(n_k)$  of the other methods. But  $E(n_k)$  of Normal method and O'Brien-Fleming's method take the large values than  $E(n_k)$  of the other methods.  $E(n_k)$  of  $\alpha t$  method take intermediate values among these methods.

Fig.5.2 shows the comparison of the value of  $E(n_k)$  on five methods based on Table 5.2. Thus we confirm Pocock's method and Log method are available because  $E(n_k)$  of these methods take the small values.

**Table 5.2** Average sample size  $E(n_k)$ 

| Methods | Pocock | Log    | $\alpha t$ | Normal | O-F    |
|---------|--------|--------|------------|--------|--------|
| $K = 3$ | 118.48 | 118.47 | 118.67     | 119.35 | 119.43 |
| $K = 5$ | 195.11 | 195.22 | 196.00     | 198.33 | 198.56 |



**Fig.5.2** Comparison of the value of  $E(n_k)$

## 6. Conclusions

In this study, we focus the comparative studies of the average sample size on five methods in the group sequential procedure from the ethical point of view in clinical trials. In the simulation studies we can see that  $E(n_k)$  take the small value, when  $\alpha(k)$  take larger values at the early stage. Thus we confirm that Pocock's method and Log method can reduce effectively the average sample size. Furthermore we will develop the group sequential design for reducing the average sample size in the future.

## References

- [1] Armitage, P., McPherson, C. K. & Rowe, B. C. (1969). Repeated Significance Tests on Accumulating data, *J. R. Statist. Soc. A.* **132**, 235–244.
- [2] DeMets, D. L. and Ware, J. H. (1980). Group Sequential Methods for Clinical Trials with a One-sided Hypothesis, *Biometrika* **67**, 3, 651–660.
- [3] Fleming, T. R., Harrington, D. P. and O'Brien, P. C. (1984). Designs for Group Sequential Tests, *Controlled Clinical Trials* **5**, 348–361.
- [4] Lan, K. K. G. & DeMets, D. L. (1983). Discrete Sequential Boundaries for Clinical Trials, *Biometrika* **70**, 659–663.
- [5] O'Brien, P. C. & Fleming, T. R. (1979). A Multiple Testing Procedure for Clinical

Trials, *Biometrics* **35**, 549–556.

[6] Pocock, S. J. (1977). Group Sequential Methods in the Design and Analysis of Clinical Trials, *Biometrika* **64**, 191–199.

[7] Whitehead, J. (1983) : *The Design and Analysis of Sequential Clinical Trials*, Chichester, Ellis Horwood.