KMITL Sci. J. Vol. 5 No. 1 Feb. 2005 !

APPLICATION OF COORDINATE TRANSFORMATION WITH
CLOSE-FORM EXACT ALGORITHM FOR MINIMIZING
MAXIMUM PROCESSING TIME IN THE UNBOUNDED
KNAPSACK PROBLEM

Chanin Srisuwannapa'", Peerayuth Chansethikul?,

'Department of Applied Statistics, Faculty of Science,
King Mongkut ‘s Institute of Technology Ladkrabang, Chalongkrung rd, Ladkrabang,
Bangkok, 10520, Thailand.

“Department of Industrial Engineering, Faculty of Engineering, Kasetsart University, 50
Phahonyothin rd, Lardyaw, Jatujak, Bangkok, 10900, Thailand.

ABSTRACT

We address a variant of the unbounded knapsack problem(UKP) into which the processing time of each
item is also put and considered, referred as MMPTUKP problem. The problem is a decision of
allocating amount of n items such that the maximum processing time of the selected items is minimized
and the total profit is gained as at least as determined without exceeding capacity of knapsack (budget).
In this paper, we proposed the new modified exact algorithm for this problem, CTCFMMPTUKP
algorithms. It applied the coordinate transformation with CFMMPTUKP algorithm, close-form exact
algorithm. We present computational experiments with 4 different type of problems for which data
were generated to validate our ideas and demonstrate the efficiency of the proposed algorithms. It can
be concluded that, for most types of problems, the proposed CTCEFMMPTUKP algorithms performs in
term of solution time faster than the 5 other algorithms.

KEYWORDS: Linear programming, Simplex method, Integer linear programming, Branch and bound
algorithm, Unbounded and bounded knapsack problem, Processing time.

1. INTRODUCTION

One of business and industrial problems that must deal with in nwmerous decisions is to decide which

* subset of n items or projects should be selected such that the total profit sum of the selected items or

projects is maximized, without exceeding the capital budget, called generally the knapsack
problem(KP). This problem can be formulated as mathematical model and is one of an NP-hard
con:xlbinatortal optimization problem which can be solved successfully by various exact algorithms. The
commonly used techniques are the (old fashion) dynamic programming and branch-and-bound methods
aﬁd the (latest fashion) branch-and-cut and branch-and-price methods as described in Toth[1]. This
kind of problem can be applied to many real world situations. In the following, we will provide a short
historical overview of its variant of this problem and various recent algorithms as follows. For the 0-1
knapsack problem(KP). a hybrid algorithm for this problem has been recently proposed by Martello et

al.[2]. For the 0-1 multidimensional knapsack (0-1 MKP), heuristics for it can be found in Freville[3].

" Corresponding author. Tel: 02-7373000 ext 6163, e-mail: chanin sri@yahoo.com

366

KMITL Sci. J. Vol. 5 No. 1 Feb. 2005

For the Multiple Knapsack problem (MKP), the new exact algorithm for it is proposed by Psinger[4]
and a different algorithm is presented by Martello and Toth[5]. For the Multiple-Choice Knapsack
Problem(MCKP) , several algorithms for MCKP have been presented during the last two decades: e.g.,
Psinger[6]. For the budgeting problem with bounded multiple choice constraints (BBMC), the
algorithms for it was presented in Psinger[7]. For the Unbounded knapsack problem (UKP), a new
algorithm (Dynamic programming revisited) was presented by Andonov et al.[8].

For problem of minimizing maximum processing time in unbounded knapsack problem
(MMPTUKP) which is about allocating amount of n items such that the maximum processing time of
the selected items is minimized and the total profit is gained as at least as determined without
exceeding knapsack capacity (budget), to the our best knowledge, this problem has been studied only
by Srisuwannapa er afl.[9, 10. 11, 12] in the literature. Therefore, the objective of this paper is to
propose the new modified exact algorithm, CTCFMMPTUKP algorithm. It applied the coordinate
transformation with CFMMPTUKP algorithm, close-form exact algorithm for solving this kind of
problem. We also made computational experiments with 4 different types of generated data to validate
our ideas and demonstrate the efficiency of new proposed algorithm. Coordinate transformation
appl’i:ed with linear and integer linear programming problem to rearrange data before solving was stated
in section 2. Section 3 is about problem model. The new proposed algorithm was explained in section

4. Results and discussions and conclusions were-stated in section 5 and 6 respectively.

2. COORDINATE TRANSFORMATION WITH LINEAR AND INTEGER

LINEAR PROGRAMMING

Coordinate transformation is method of changing the coordinate system of the LP and ILP to be the
transformed LP and ILP. It is applied at the pre-solve step to arrange data first before solving it (the
transformed LP or ILP). Doing so might believe that it may speed-up the solution time. This reason is
based on the following below concepts.

As applying two-phase method in solving LP, phase I of the simplex method can end at a
basic feasible solution (bfs) that is far from the optimal solution, in which case, phase II will require

many iterations before obtaining un optimal solution. To reduce the effort, we propose changing the

367

KMITL Sci. J. Vol. 5 No. 1 Feb. 2005

coordinate system of the LP in such a way that phase I generates an initial extreme point on the
“proper” side of the feasible region, that is, geometrically closer to the optimal solution.
Now we describe how-to convert the original LP and ILP problem in standard form into the

transformed p'roblcm. Consider an LP in the standard form(for ILP, all x are integer):

min cx
St Ax=b
I€£x=Zu

the coordinate transformation can be implemented by using the following substitution.

{!ﬁ Veorifien=0
w,—v; , if ¢;<0

.’Cj =

After performing this change, the result will be the following equivalent LP and ILP, transformed LP

and ILP (TLP/TILP), in the v-coordinate system:

min v
st. Av="b (TLP/TILE)
0svsi
where
& Ai':j, if ",‘<0
LT e ifde 20
. =l fepe<ld)
’ A, if ¢, 20

n *{uj,if ¢, <0 and u; <+
L, if ¢;20 and I; > =2
TS ztj.—lj, if cj<0 and u; < +eo
L e 2 0and L e
We then solve TLP/TILP with the simplex algorithm or branch-and-bound method to get the optimal
solution, ", for the transformed problem. Finally, the optimal solution for the original problem is:
I, +v,,if ¢,20

X, =
* .
e veifs epe()

368

KMITL Sci. J. Vol. 5 No. 1 Feb. 2005

3. PROBLEM MODEL

The problem studied in this paper can be formulated as follows. The problem is given a knapsack with
capacity C and expected profit of at least B into which we may put n types of objects. All parameters
correspoﬁding to each object of type j such as the profit, pj, the weight, w;, and the processing time, t;
and #,B, and C are all positive integers. The number of copies of each object type are unbounded. The
problem calls for selecting the set of n items with minimizing the maximum processing time, and must
gain profit of at least B-without exceeding the knapsack capacity (budget, "C). Mathematically, the

problem can be expressed as the following integer linear programming formulation.

‘min T
s.L T2t

‘x;20and integer, j=1,2,...,n

4. APPLICATION OF COORDINATE TRANSFORMATION WITH CLOSE-

FORM EXACT ALGORITHM (CTCFMMPTUKP)

For the close-form exact algorithm (CFMMPTUKP) for solving MMPTUKP problem, in solving sub-
. problems, integer bounded knapsack problem(ILPUKP), coordinate transformation technique will be
used first to transform ILPUKP to be the transformed ILPUKP (TILPUKP) and then it will be solved

by branch-and-bound method. CTCEMMPTUKP's steps are as follows:

Step 1: Solve the following unbounded knapsack problem, UKP, by branch and bound method

max Ep’.xj =z
J=l
St SO (UKP)

=
x; 20 and integer, j=1,2,...,n

369

KMITL Sci. J. Vol. 5 No. 1 Feb. 2005 |

and then check whether 2" is greater than B or not. If yes, then let To = Max{:jxj },Tu =To, T1 =0,
vj
then proceed to Step 2. If not, there is no feasible solution and stop.

Diikie
Step 2: from the above problem, compute ratio, —L | for all j, and then sort those above
i
ratios from largest to smallest value by using quick sort.

Step 3: Let T =(Tu+T/)/2 and solve the relaxed bounded knapsack problem from

Step I with the new bounded variable constraints, 0 < x, SI_T* /.t}.J, j=12,..,n, by using close-
form solution method as follows:
Close-form solution method

; : e .
choose x; having the biggest value of ratio —L letx; =m;‘n{C,LT /:IJ}, calculate
W.
i

remaining C, Cy = C - rm’n{C. [_T'/th }, and then repeat by choosing x; having the value of

ratio —~ which is less than the previous one until there is no C remaining.

Y

After that, let x;, = I_);J J, Z p’.,‘c; = 7" and then proceed to Step 4.

i=I
Step 4: Check if 7 is grr;.aler than B or not. If yes, let Tu=T" and then proceed to Step 5. If

not, transform the knapsack problem form Step [with the bounded variable constraints,
0< x, SLT"/IJ._J and integer, j = 1, 2, ..., n, into the transformed bounded knapsack problem as

follows:

min e =
(TIiLPUKP)

o &

subjectto Av =
0< v<u andinteger

and then solve it by the branch-and-bound method. After that find the value of variables by ‘letting
H

x; =l +v,,ifc,20 or 1./ =1~ vj} if ¢, <0, z =Ecjxj and then check if 7" is greater than or
=

equal to B or not. If yes, then let Tu=7", and proceed to Step 5. If not, let TI=T", and then proceed to

Step 6.
370

KMITL Sci. J. Vol. 5 No. 1 Feb. 2005

Step 5: Check if Tu-T! is less than or equal €, then the last obtained solution from Step 2 or 3
is an optimal solution with 7" under tolerance € and stop. If not, proceed to Step 3.

Step 6: Let T'=(Tu+TI)/2 and solve the relaxed bounded knapsack problem from Step 1 with
the new bounded variable constraints, () < S I_T'/er, j=12,...,n, by using close-form solution
method as in Step 3. find value of variables by letting .r: = |_X,- J, EPJ’C; e Hicnimroce=dito

=
Step 7.

Step 7: Check if 2" is grcater than B or not. If not, let 7/=7", and then proceed to Step 6. If

yes, transform the knapsack problem form Step 6 with the bounded variable constraints

0<x, < |_T' /er andinteger, j=1,2,..., n into the transformed bounded knapsack problem,

TILPUKEP, as Step 4 and solve it by the branch-and-bound method. After that find the value of
n
variables by letting 1; =l tvifc 20 et x; =l = if ¢; <0, 2 =chx; , and check if 7" is
=
greater than or equal to B or not. If yes, let Tu=T", and proceed to Step 8. If not, let TI=T", and then
proceed to Step 6.
Step 8: Check if Tu-T1 is less than or equal €, then the last obtained solution from Step 2 or 3
is an optimal solution with 7" under tolerance & and stop. If not, proceed Step 6.
To verify the correctness of the proposed algorithms, the following theorems are proven as

follows.

This following lemma 1 verifies the correctness at step 4 of CTCFMMPTUKP algorithm.

Lemma 1: If objective function value obtained from rounding off x;, Z.z, is greater than or equal to
B , then the objective function value obtained from branch-ana-bound method, Zyy, is also greater than
B.
Proof: Let the objective function value obtained from rounding off x;,be Z,,4 and the
objective function value obtained |'l'0m- branch-and-bound method, Zy,. If B <Z,., since Zyz < Zy, by
definition for maximum problem. then B < Z,. ™

The following theorem | is for verifying the correctness of the algorithm.
Theorem 1: Algorithm terminates with a feasible solution under optimality of T".

371

KMITL Sci. J. Vol. 5 No. 1 Feb. 2005

. B : ; 0 \y:
Proof: Let there exist 7° <T'-¢ be the optimal value of 7" with a feasible solution, X j,VJ and the

total profits Z'> B. Then, solve the bounded knépsack problem(BKP) with the new upper bound L T/
1, with T'=7° for all x; If Z'<B then T° does not exist as claimed. Otherwise, Tu=T° which leads to

the impossible case that Tu > T!. By contradiction, 7" is optimal as stated. O

5. RESULTS AND DISCUSSION

We have investigated how all algorithriis behaves with 4 different types of data generated. All
algorithms were coded in C language and solved with CPLEX 6.5 package. The solution time for the
same problem for which was solved separately by each algorithm was measured in second. For each
problem, 10 instances were generated within any value interval. All experiments were run on a Compaq
Presario B2000 Notebook with specification: Intel Pentium M Processor 1.4 GHz, 256 MB RAM, 30
GB hard drive/4200 rpm. The results in term of median of solution time in second from 1§ generated
instances were presented in table.

In this paper, 4 different types of data were generated both dependently and independently to
validate the efficiency of 6 algorithms especially the new modified algorithm. The tested data were as
follows: uncorrelated, wenkly correlated, strongly correlated, and subset sum data. However, we
believe that level of parameters may affect speed of the solution time of algorithms, so the 2* factorial
design was used to test this hypotheses.

Since stlatistical test of each data’s normal distribution indicated that ail of them were not
normally distributed, so non-parametric statistics such as Mann-Whitney and Kruskal-Wallis tests were

used to test for significances.

372

KMITL Sci. J. Vol. 5 No. 1 Feb. 2005

Table 1 Median of solution time, W’s sig., H-test and H-test’s sig. from 10 generated samples of

uncorrelated data with 10000 variables

Run |Run| Factor |MMPTUK|CTMM-| W |LPMM-|CTLPMM.| W |CEMM-|CTCEMM] W | H-
number|label[A[B[C[D PTUK | sig. [PTUK | PTUK [sig.|PTUK | PTUK [sig. |test(sig)
T [[-|-]-|-| 3335 | 3417 | 032 | 3129 | 3136 [0.85| 2.0349| 2.0248 [0.73] 0.00%
2 | a [+[-|-|-| 35058 [35755 | 034 [33676| 33672 [0.90[20339| 20329 [0.93] 0.00%
3 | b |-|[+|-|-| 6447 | 6490 | 079 | 7627 | 7635 |0.85|19.134 | 19.582 |0.62] 0.00%
4 [ab [+|+|-|-| 3833 | 39.16 | 0.67 | 3660 | 3672 [0.90] 2073 | 20919 [0.62 0.00%
S | c [-|-|#|-| 3562 | 3648 | 021 [3339 | 3345 [0.79] 2048 | 2.065 [057|0.00%
6 | ac |[+|-|+|-| 3700 | 3792 | 0.38 | 3548 | 3550 [0.96| 2.050 | 2042 [0.73] 0.00%F
7 [be [-[+[*|-| 7267 | 7379 | 0.09 |84.151| 84272 [090[21.8759] 20812 [0.67] 0.00%
8 | abc [+|+|+|-| 44431 | 45680 | 0.12 |42.600] 42640 [083] 2127 | 2.135 |0.85] 0.0
9 | d [-|-|-|*| 3453 | 3531 | 0.18 | 3243 | 3246 |0.90] 2064 | 2.045 (027 0.00*
10 | ad |+|-|-|+| 35.604 |36.340 | 030 |34.167| 34187 [1.00] 2044 | 2.037 |067] 0.0
[1 [bd [-|+|-|+| 5424 | 5486 | 0.62 | 5988 | 5984 [0.79] 1337 | 1240 [0.67] 0.00%
12 |abd |[+|+|-|+| 39771 | 40.626 | 0.42 |38.072 | 38.105 [0.96] 2.091 | 2.104 [0.65| 0.00%
13 [od |- |-[+]+] 39.16] [40.148 [0.01**| 36788 | 36815 [0.67] 2070 | 2070 |05 0.00%
14 |acd |+|-|+|+| 37.653 |38.446 | 032 | 36.066| 36074 |0.97]- 2076 | 2060 [0.54] 0.00%
[5 |bed|-|+|+|+| 73322 | 74.262| 0.18 |89.090 | 92200 [0.52| 24897 | 265530 |0.82[0.00%
16 [abed|+|+|+|+| 40509 | 41516 | 0.04* | 38,730 38759 [0.91] 2.105 | 2088 |1.00] 0.00%

#p<0.05, **p< 0.01,

* Factor A = objective function coefficient(c)): low level(-):c; = [1,1000], high level(+):c; = [1,10000], Factor B =

matrix coefficient(w): low level (-): w; = [1,1000], high level (+): w; = [1,10000],

Factor C = right hand size(RHS): low level(-): RHS = 0.2*Sum, high level(+): RHS = 0.8*Sum, where

n
Sum= Z W, Factor D = processing time(r)): low level (=):t; = [1,1000], high level(+):t; = [1,10000]

1%

From test of significance in the above table, it can be concluded that, for all cases,

CFMMPTUK and CTCEMMPTUK perform well equally and better, faster than the other algorithms.

However, LPMMPTUKP and CTLPMMPTUKP which perform equally still perform better than

MMPTUKP and CTMMPTUKP,

373

KMITL Sci. J. Vol. 5 No. 1 Feb. 2005

Table 2 Median of solution time, W s sig.. H-test and H-tests sig. from 10 generated samples of

weakly correlated data with 10000 variables

Run | Run |Factor’| MMPTUK|CTMM- | W sig.|LPMM-|CTLPMM-| W |CFMM-|CTCFMM-| W H

2.

number (label |A|B|C PTUK PTUK | PTUK |sig.| PTUK | PTUK |sig. [test(sig.)|-
1 (1) |=|-]-| 32262 | 32.902 | 0.42 | 28.327 (- 28.327 |1.00| 1.883 1.871 [0.57 0.00*";
2 a |+(-|-| 41532 | 42708 | 021 |39.669 | 39.730 [0.96 2.099 2.113 |0.94] 0.00**

3 b |-|+[-| 34.141 | 35087 | 0.21 | 30.010 | 30.034 [0.76] 1.911 1.917 |0.10(0.00**

4 ab |+|+[-| 43500 | 44.620 0.14 | 41,520 | 41.550 |0.97| 2.086 2.090 |0.91] 0.00**

5 c [-|-|+| 33.125 [33.813 | 021 |29.027 | 29.027 [0.94] 1.860 1.850 0.57| 0.00**

6 ac |+|-|+| 40492 | 41.302 | 0.21 |38.521 | 38.552 [0.85| 2.102 2.132 |0.17| 0.00**

7 be [-|+[+| 35911 | 36.808 | 0.09 31.644 31.653 (0.87] 1.926 1.914]0.52| 0.00**

8 abc |+(+[+]| 40.739 | 41.544 |0.02** 38.857 | 38.920 [0.73| 2.143 2.148 [0.70| 0.00**

*p<0.05, **p< 0.01,

* Factor A = matrix coefficient(w;): low level(-):w; = [1,1000], high level(+):w; = [1,10000], Factor B = right hand

n
size(RHS): low level(-): RHS = 0.2#Sum, high level(+): RHS = 0.8*Sum, where Sum= Z Wj , Factor C =
I=j

processing time(z;) : low level(-) : ;= [1,1000], high level(+): ; = [1,10000], objective function coefficient(c;):

low level(-):c; = [w; -100, w; +100] if w;=[1,1000], low level(+):c; = [w; -1000, w; +1000] if w; = [1,10000]

From test of significance in the above table, it can be concluded that, for all cases,
CFMMPTUK and CTCFMMPTUK perform well equally and better, faster than the other algorithrns.
However, LPMMPTUKP and CTLPMMPTUKP which perform equally still perform better than

MMPTUKP and CTMMPTUKP.

374

KMITL Sci. J. Vol. 5 No. 1 Feb. 2005

Table 3 Median of solution time, W s sig., H-test and H-tests sig. from 10 generated samples of

strongly correlated data with 10000 variables

Run | Run|Factor’[MMPTUK| CTMM- [W sig.[LPMM-|CTLPMM-| W |CFMM-|CTCFMM-| W H-

number (label |A|B|C PTUK PTUK | PTUK |sig.| PTUK | PTUK |sig. [test(sig.)
1 |-|-|-| 17.43 8.00(1)" [0.00%*| 1.732 1.753 [0.70| 0.530 0.536 [0.85| 0.00**
2 a [+[-|-| 4793 32.00(3) | 0.62 [17315 | 17.290 |0.85| 1.472 1.482 [0.65| 0.00**
3 b |-[+[-| 7.230 (1(1) 0.06 | 1.890 1917 |0.671 0.570 0.566 [0.73] 0.00**
4 ab [+[+-| 31.680 32(2) 0.47 | 18501 [18.487 |1.00| 1.467 1462 |0.76] 0.00**
5 c |[-]-[+| 14.880° 10(3) 0.50 | 1.8787 1.887 |0.57| 0.535 0.531 |0.80| 0.00**
6 ac |+|-[+]| 36.39 31(3) 0.97 [16.4496| 16449 |0.73] 1.502 1.492 10.82| 0.00**
7 be +|+] 7.271 9.439]0.01**| 1.933 1.947 0.62| 0.571 0.561]0.94| 0.00**
8 abc |+|+[+| 27.124 2942 |0.01*%*| 16.429 16.599 [0.50f 1.497 1.52"7 0.34| 0.00%*

* p<0.05, ** p< 0.01, * numbet of instances that spend solution time lager than 3600 second:

b Factor A = matrix coefficient(w;): low level(-):w; = [1,1000], high level(+):w; = [1,10000], Factor B = right

hand size(RHS): low level(-): RHS = 0.2*Sum, high

level(+): RHS = 0.8*Sum, where Sum= Z

n

I=j

W

1

Factor C = processing time(r;): low level(-): ;= [1,1000], high level(+): 4 = [1,10000], objective function

coefficient(c)): low level(-): ¢;= w; +100 if w; = [1,1000], high level (+): ¢;= w; +1000 if w; = [1,10000]

From test of significance in the above table, it can be concluded that, for all cases,

CFMMPTUK and CTCFMMPTUK perform well equally and better, faster than the other algorithms.

However, LPMMPTUKP and CTLPMMPTUKP which perform equally still perform better than

MMPTUKP and CTMMPTUKP.

375

KMITL Sci. J. Vol. 5 No. 1 Feb. 2005

Table 4 Median of solution time. Ws sig., H-test and H-tests sig. from 10 generated samples of

subset sum data with 10000 variables

Run |Run|Factor'| MMPTUK|{CTMM-|W sig.LPMM-|CTLPMM-| W [CFMM-|CTCFMM-| W H
number|label{A|B|C PTUK PTUK | PTUK sig. | PTUK | PTUK sig. |test(sig.)
1 M |-1-|- 10.30 5.188 |0.00** 2.85 1.301° |0.00%*| .2:17 0.450 |0.04*| 0.00%*
2 a |+]-|-| 3270 | 4.862 [0.00%| 3.74 2.328 - |0/00%*| 1.70 0.435 0.01*| 0.00**
3 b |-[+-] . 6.55 5.373 | 0.03*| 1.34 1.342 | 0.67 | 0.50 0.491 |0.85(0.00%**
4 ab |+[+|-| 5.13 5213 |.043 | 257 2.58. 042 | 049 0.495 [0.50| 0.00%*
5 c [-|-[+| 1289 | 5.328 |0.00**| 3.18 1.306 [0.01*| 2.44 047 [0.01*| 0.00%*
6 ac [+|-|+ 63.7 4.667 [0.00%*| 15.40 250 | 0.04*| 134 047 |0.13] 0.00%*
7 be [-|+[+| 8.19 5.758 | 0.02*| 1.60 1.522 | 054 [0.52 0.49 [0.30 | 0.00%*
8 abc | +|+|+ 202 5413 {022 | 6.03 2.649 0.03*] 3.66 0.536 | 0.07 | 0.00**

* p<0.05, ** p<0.01,

* Factor A = matrix coefficient(w;): low level(-): w; =[1,1000], high level(+): w; = [1,10000],

Factor B = right hand size(RHS): low level(-): RHS = 0.2*Sum, high level (+): RHS = 0.8*Sum, where

n % :
Sum= ij , Factor C = processing time(s): low level(-): ¢ = [1,1000], high level(+):3; = [1,10000],

I=j

objective function coefficient(c;): low level(-) : ¢;= w; from [1,1000], high level(+): ¢; = w; from

[1,10000]

From test of significance in the above table, it can be concluded that, for most cases,

CTCFMMPTUK performs better than CEMMPTUK and, for all cases, it, of course, performs better

and faster than the other four remaining algorithms. For most cases, CTLPMMPTUKP performs better

than LPMMPTUKP and CTMMPTUKP performs better than MMPTUKP. However, LPMMPTUKP

and CTLPMMPTUKP which perform equally still perform better than MMPTUKP and

CTMMPTUKEP.

6. CONCLUSION

In this paper, we proposed the new modified exact algorithm(CTCFMMPTUKP), which is application

of coordinate transformation with close-form exact algorithm(CFMMPTUKP),

to minimize the

~maximum processing time of the sclected items in unbounded knapsack problem(UKP) in which the

total profit is also guined as at least as determined without exceeding capacity of knapsack(budget),

376

KMITL Sci. J. Vol. 5 Na. 1 Feb. 2005

called MMPTUKP problem. It can be concluded that, for uncorrelated, weakly correlated, strongly

correlated data, CFMMPTUKP and CTCEMMPTUKP perform well equally and, however, they both

perform better and faster than the 4 others as well. But for only subset sum data, application of

coordinate transformation with 3 exact algorithms gives faster solution time than not application of

coordinate transformation with. Finally, for all 4 different types of data, CTCFMMPTUKP performs

faster than the 5 other algorithms. For the further research, we will test efficiency of algorithms with

other type of data such us the inverse strongly correlated, almost strongly correlated, and uncorrelated

data with similar weights.

REFERENCES

[1] P.toth (2000), Optimization engincering techniques for the exact solution of NP-hard combination
optimization problem, European Journal of Operation Research, vol 125, pp.222-238.

[2] S. Martello, D. Psinger, P. Toth (1999), Dynamic programming and strong bounds for the 0-1
knapsack problem, Management Science, vol 45, pp 414-424.

[3] A. Freville, G. Plateau (1986), Heuristics and reduction methods for multiple constraints Linear
Programming, European Journal of Operations Research, vol 24, pp.206-215.

(4] D. Psinger (1999), An exact algorithm for large multiple knapsack problem, European Journal of
Operations Research, vol 114, pp.528-541.

[5] S. Martello, P. Toth (1981), A branch-and- bound algorithm for the zeor-one knapsack problem,
Discrete Applicd Mathematics, vol 3, pp.275-288.

[6] D. Psinger (1995). A minimal algorithm for the multiple-choice Knapsack Problem, European
Journal of Operations Research, vol 83, pp.394-410 |

[7] D. Psinger (2001), Budgeting with bound multiple-choice constraints, European Journal of
Operations Research, vol 129, pp.471-480.

[8] R. Andonow, V. Poirricz, S. Rajopadhye (2000), Unbounded knapsack problem:Dynamic
programming revisited, European Journal of Operations Research, vol 123, pp.394-407.

(9] Srisuwannapa, C., Charnscttikul, P. (2001), A exact algorithm for solving the Unbounded
Knapsack Problem with Minimizing Maximum Processing Time, Proceedings of Seminar in
Applied Optimization, A Publication- of Industrial Engineering Depariment, Faculty of

Engineering, Kasetsart University, Bangkhen, Thailand, pp.83-89.

397

[10] Srisuwannapa, C.. Charnsettikul, P. €2004), Application of Coordinate Transformation with
MMPTUKP for Minimizing Maximum Processing Time in Unbounded Knapsack Problem,
Proceedings of The | st KMITL [nternational Conferences on Integration of Science and
Technology for Sustainable Development, KMITL, Ladkrabang, Bangkok, Thailand, vol: 1, p
25-28.

[11] Srisuwannapa, C., Charnsettikul, P. (2004), Modified exact algorithms for Minimizing Maximum
Processing Time in the Unbounded knapsack Problem, Proceedings of Meeting in Operation
Researches in 2004, Industrial Engineering Department, Faculty ‘of Engineering, Kasetsart
University, Bangkhen, Thailund, pp.207-221.

[12] Srisuwannapa, C., Charnsettikul, P. (2004), Close-form exact algorithm for Minimizing Maximum
Processing Time in the Unbounded knapsack Problem. KMITL SCIENCE JOURNAL, KMITL,

Thailand, Vol 4, 2004, pp. 310-321.

378

