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ABSTRACT

We investigate the use of smoothing splines in logistic regression to estimate the covariate
values that yield a fixed response probability, eg. LC50 or .D50. We develop an algorithm for a
monotonic spline fit and approximate the resulting probability estimates and the fixed-response
covariates. We illustrate our algorithm on data sets from studies of genetic spatial diversity.

KEYWORDS: smoothing splines, logistic regression.
1. INTRODUCTION

A problem in logistic regression using smoothing splines is investigated . In
particular, we develop an algorithm to approximate the covariate values that yield a
fixed response probability. Examples include the LC50, the lethal concentration of a
carcinogen that results is a 50% death probability or the LD50, the lethal dose of a
drug that results in 50% death probability.

Our motivation comes from a problem in evolutionary genetics in which the
geographic prevalence of certain genetic markers is mapped, Jaarola et al. (1997).
A first approach to such a mapping considers the prevalence of the marker as the
prabability of a response that is modeled by a function of a distance from a fixed
point. This typically results in a monotonic S-shaped curve f{x) that defines the
probability of the occurrence of the genetic marker in a population located ata
distance x from the fixed point. Such a curve is called a cline in the biological
literature, Brumfield et al. (2001). Of special interest to evolutionary biologists 18
the distance between the locations that result in 20% and 80% response
prc')babilities‘ Such a distance is called the cline'width, Brumfield et al. (2001). This
cline width informs biologists of the extent of a zone where two species might
hybridize, yielding key measures of the action of speciation.

Our statistical investigations will use smoothing splines in a logistic
regression setting to estimate the covariate values that result in such fixed
response probabilities.
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The data are samples obtained from natural populations located at various
distances from a fixed point. The probability of response or the prevalence of some
genetic trait is related to this distance. Logistic regression is the standard approach
used to model such genetic data. We will investigate the setting of logistic
regression in Section 2. In Section 3 we consider smoothing splines as an
alternative allowing the observed data to indicate nonparametrically the form of a
smooth function of x to model prevalence.

2. LOGISTIC REGRESSION MODEL

Binary data, /,, (1 or 0) indicating the presence or absence of a response, are
often in the form of (X, W), for i=1,2,...,k for some covariate values X, . The goal

is often to find a function of the covariate that predicts the probability of a response:

PW =1|X =x)=7r(x).

A typical form of this response function is the logistic equation:

oo+

e

AC = e
( 1+ea+/}.\

where @ and /3 are parameters to be estimated. This is one of many forms that
guarantee that z(x) always lies between zero and one. This equation can be
transformed to be linear in the covariate,

1—m(x)

i()’—)—J are called the logits and denoted logit(7(x)),

The terms log{
I —m(x)

Agresti(1996).

Maximum likelihood estimates of & and /can be obtained by iteratively
performing a weighted regression of these logits on the covariates. The weights are
chosen inversely proportional to the variance of the logits, see Agresti (1990),
McCullagh (1984).

In many settings, a problem with using logistic regression is the strong
parametric straight-line assumption imposed on the logits. The tails of the logistic
function behave in similar ways. For example. if 3 is positive. the response
function's rate of rise from zero is a mirror image of its rate of approach to one as
the covariate x increases. But many data sets exhibit different behaviors at each
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end of the covariate range. An alternative that allows the observed data to indicate,
nonparametrically. the form of a smooth function of x to model the response is
needed. Smoothing splines allow such an approach: see Hastie and Tibshirani
(1990). Smoothing splines have been used in variety of settings in biology see
Schluter (1988), Brumfield, et al.(2001). Munson and Jernigan (1989), and Culver,
Jernigan, and O’Connell (1994).

3 SMOOTHING SPLINES

Smoothing splints are piecewise polynomials with additional smoothness
properties ensuring continuity of first and second derivatives, Cubic smoothing
splines have been the most use in the statistical literature, see Green and
Silvermean (1994) and Hastie and Tibshirani (1990).

Let x, <x, <..<x, beasetof k ordered distinct covariates. Let n. be the size
of a random sample of ¥ values at covariate X,. Let the probabilities
(%), (X, ).....m(x, ) be a corresponding probabilities of response. The probability
of response at covariate x is given by

f(x)
A

1+e/

Tl =

where f{x) is a smooth function of the covariate x. To fit this model, the logistic
transformation is used to obtain:

(x)
1 = f(x).
n[l*me 4

A penalized maximum likelihood approach is employed to estimate the smooth
function f7x). Following Schluter (1988). the log-likelihood function is represented
by

ll {_1‘, log[;fr(.\’,)]-i-(!?. _ﬁ_\‘;.)log[l —7(x, )]}

!

W= lx. f)=

A penalized log-likelihood function is used, that is. we seek to minimize the
negative penalized log-likelihood function:

fZ!(_x,.ﬂf) +n/1j[f”(.‘c)]:dx
=1
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The integral measures how “rough” the chosen function f'1s. A rough function has
a rapidly changing slope. The parameter 4 is a nonnegative constant called the
smoothing parameter. It controls the roughness penalty on the function /. The
roughness of the smoothing function f can also be indexed by equivalent degrees of
freedom. These degrees of freedom, df, indicate the number of parameters needed
to specity a function of the desired smoothness. For example, as A — oo and the
smooth function f approaches a straight line, the degrees of freedom approach 2
indicating that two parameters, (a slope and an intercept) are needed to specify the
smooth function /. As A — 0, the degrees of freedom can grow until a non-
monotonic interpolation cubic spline polynomial is reached.

In many settings. researchers believe that a smooth monotonic function is the
best function describing their data, see Culver, et al (1994). Monotonicity can be
used to choose values for the smooth parameter A or the equivalent degrees of
freedom df. As the smoothing parameter A decreases from o to 0 or the degrees
of freedom df increase from 2 to oo, our fit goes from being a straight (monotonic)
line to being a relatively rough (non-monotonic) function that interpolates the data.
The smallest value of the smoothing parameters or the largest value of the
equivalent degrees of freedom that specifies this transition from monotonic to non-
monotonic defines a lower bound for our selection of the smoothing parameter A
or upper bound for our selection of the degrees of freedom df , respectively.’
However. this smallest smoothing parameter or the largest degree of freedom that
gives monotonicity will not necessary result in the best fit as measured by the
deviance. a standard goodness-of-fit criterion given by

o=25 o e otn s 22

6,

(3.2)

‘where y_is observed values, and J, is the fitted values. see Gill (2000). Since The

value of D is positive and the smaller the value of deviance. the better the model
fits the data. so we choose our model as the one with smallest deviance under the
restriction of monotonicity.

4. FITTING THE MODEL

Suppose we are given k distinct design points x,,x,,...,X, satisfying
x, <X, <..<Xx, and the relative frequencies p(x, ). p(x, )..... p(x, } which

correspond to the k distinct design points. respectively, based on sample sizes
n.i=12...k. Foralli=1.2...k the mean of p(x.) is 7(x,), the probability of
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z(x)(1=7(x,))

H.

1

response. and the variance of p(x,) is . Forall i=1.2,...k, we

detine the sample logits as, ln(l—p%)—)} which are estimates of the true logits
- P\

f ﬁ——'—) We have
(1-m(x)

‘

Faiin : . b i
ELlogL——ﬁp(l’) ﬂzln[—ﬁ—ﬁ(l') J+l{ 20 ) ]
l=plx): I=m(x)) 2\ nz(x)l—=(x))

Since the sample logits are undefined for p(x;) =0 or 1, a constant value ¢ is used

to define the empirical logits, that is.

/ - k)
ol e s
I = p(x) e e

: v - ;
for p(x )=~ and some constant ¢ > 0. The bias due to the second term 1s
1

reduced by choosing the constant ¢c=1/2..see Agresti (1990), Anscombe (1956),
Cox and Snell (1989) and Gart, Pettigrew and Thomas (1985). Davis (1985)
recommended that a linear function of the reciprocal of the number of design
points is the best choice for the constant ¢ to reduce bias.

The general model becomes:

g(x) B Iog(MW:.f(x, Jees =12,k
li=p (i )iee ) :

where f(x ) is a suitably smooth. but unknown, function of the covariate and the
term ¢, represents random errors satistying E(e ) = 0, E(e,2 = o;2 and
Eie .e )=0 forall i=. Based on the asymptotic normality of the empirical logits,

for large n . the variance of the empirical logits can be approximated by:

1

e = e
na(l=7)

Var(&(x,))

1t
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Since these variances are not.constant, weighted smoothing splines are used.
The weights are the inverse of the estimated variances of the empirical logits,

Var(é(x,)), thatis, forall i=1,2,...,k, the chosen weights, w., are
= n;p('xf)(l Y p(x,))

We seek a smooth function, f , under the restriction of monotonicity, to
estimate the true smooth function, /. Algorithmically, as the degrees of freedom
are increased from a value of 2 to a larger value, the resulting cubic spline fit goes
from being a monotonic straight line to a non-monotonic interpolating function in
a smooth and continuous fashion. The largest df that results in a monotonic fitting
function is the upper bound for our selection of the degrees of freedom, df. - This
largest df that gives monotonicity will not necessary result in the best fit as
measured by the deviance. We choose our fit as the one with smallest deviance
under the restriction of monotonicity.

Iterative algorithm

As with standard logistic regression, the algorithm to minimize the negative

penalized log-likelihood works with the empirical logits of the relative frequencies,

AT

,i=1,2,....k . Given a vector of these empirical logits,
L= plc )t

2= 10g[

denoted [ £(x,)], we smooth them with a smoothing matrix, S, defined by a
weighted smoothing spline. This results in a vector of estimated smoothed
empirical logits [£"(x,)] = S[&(x,)],i =1,2,...,k that are then transformed back to

E*x,)

form estimated smooth response probabilities by p*(x,) = Tt the inverse of
et

the logistic transform.

As with standard logistic regression, this approach requires an iterative
algorithm involving the following steps:

1. Sort the data by covariates to achieve a decreasing curve for the response
probabilities.

2. Set df =2, that is, we begin with the straight line.
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3. Smooth the vector of empirical logits, [£(x,)] as a function of the covariate

points, {x,}, weighted by the inverse of the estimated variances of the empirical
logits,

[w)=[np(x)(1-p(x))],

A smoothing spline fit results in the first iteration of estimated smoothed empirical
logits,

e = Sletelii =02k

4. Transform the estimated smoothed empirical logits £ (x,) back to the form
of estimated smooth response probabilities, p"(x,), by

E*(x
es Xi)

p*(xj) ZW,[ZLz‘...,k.

5. Update the mitial empirical logits by

é"(x,.):log[ pibte }L silaa ) L sy

l-p'(x)+c) (p(x)+e)1=p (x)+c)

which represents the first-order Taylor’s series approximation and update the
weights of the estimated variances of é‘*(xl ), that is,

*

W, =n1p*(:x{)(l—p*(x,)),i—1,7 ke

and repeat from step 3 for another iteration. New estimated smoothed empirical
logits, £ (x,), are obtained by performing weighted smoothing splines of

£7(x ) onto the covariates x, with weights w . The new p (x,). which are
different from the ones in the previous iteration are obtained by

eé'“'t.r,}
*(x)= =i
p*(x)= el s e

l+e
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6. Continue until convergence. Examine the maximum absolute value of the
difference between p’(x,)of the present iteration and the previous iteration and

compare to the tolerance value (we use 107).

7 Calculate the deviance goodness of fit statistic'using equation (3.1) where

V=X

8. Check monotonicity by calculating the maximum value of p’( X e o)
forall j=1.2,...k —1.If this measure is negative, the weighted smoothing splines

is monotone in x . If this measure is positive, stop.

9. If monotonicity persists increase the value of df by 1 and repeat steps 3
through 8.

The df chosen is the one that results in monotonicity of the estimated smooth
response probabilities and smallest deviance. Therefore, p (x,) can be found by

We have applied our technique for fitting model to data sets that examine genetic
markers in field vole (Microtus ugrestis), see Jaarola et al. (1997). Data were
collected from 270 voles for a genetic marker named LUYA and 156 voles for
another marker named JAAROLA The results of fitted curves shown in Figure 1
‘ndicatethat the monotonic smoothing splines result in clines that fit the data well.
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Figure 1 The fitted curves for (a) JAAROLA genetic marker and (b) LUYA
genetic marker. The asterisk denotes the observations.
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