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1. Introduction

We consider the problem of estimation of a binomial proportion 6 based on

X ~B(n,0), n beingknown, 0<8<1, 6 being unknown. We compare two standard
estimators of @, namely, 7;=X/n,the maximum likelihood estimate [1] and
Ty=[X+~n/ 2]/ [n+«f5], the minimax estimate under the squared error loss

function [1]. In this paper we compare’; and7; on the basis of Multiple Criteria

" Decision Making (MCDM) method. This method is briefly described in Section 2 and

Section 3 contains the main results of this paper. Our recommendation is to use T
rather than 7 for most reasonable values of n on binomial proportion. For detailed

discussion on MCDM, we refer to Zeleny[2].

2. Multiple Criteria Decision Making procedure (MCDM)

2.1 Introduction of MCDM

Multiple Criteria Decision Making (MCDM) has recently been recognized as an
efficient statistical method to combine component ‘indices’ arising from many
‘sources’ into a single overall meaningful index. Such an index can be effectively used

to compare relevant ‘facilities’. The basic premise is a data matrix X = (x;) : KxN

where the rows represent facilities which need to be compared or ranked with respect
to the element x;'s, the columns represent various sources of the elements x;'s and
x;'s themselves represent some quantitative information about the facilities. In the
context of environmental science, the x;'s may represent levels of pollutants,
facilities represent the sources of the pollutants (e.g., chemical or nuclear facilities)
and the columns represent different types of pollution. Since usually it is difficult to
compare the facilities on a multiple scale, MCDM provides a statistical method to
combine the elements in any row into a single value which can then be used to

compare the rows on a linear scale.

MCDM is a procedure to integrate multiple indicators into a single meaningful and
overall index by combining (x;,...,x;v) for row i across all indicators
Jj=12,..,N. We can define an Ideal Row as one with the smallest observed value
for each column

IDR = (min;x;p,...,mingxpv) = (up,...,up)
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and a Negative-ideal Row (NIDR) as one with the largest observed value for each

column

NIDR = (max; ;. ....maxpxipy) = (V[ ....VN)
For any given row/, we now compute the distance of each row from ldeal row and

from Negative Ideal row based on a suitably chosen norm. Under L;-norm, we

compute

N e ==l it N =

Zt.\u l!j|1171, 3 Z[x” I{f]w,f
I K j

= Zf:/"(i i Zml'\'t'

Li(i.IDR) =

L(i,NIDR) - iﬂ%'ﬁ- Z\:m

> >
=z . = X
Vi fp! =17

where ...y are suitably chosen nonnegative weights between 0 and 1. The
denominator above plays the role of a “norming’ factor. An objective way to select the

weights is to use Shannon’s [5] entropy measure ¢ based on the proportion

py; forthe jth column where
L
s Z,‘:,ﬂ'\fj

For the jth column. ¢, is computed as

&
g, = —Zp” In(p,) / [In(K}].
1=l

The quantity ¢ essentially provides a measure of closeness of the different

proportions. The smaller the value of ¢.  the larger the variation among the

proportions tor classifying the rows. So we can select the weights as

Wm0 G =

!

[n addition to Shannon's entropy measure. we can also use the sample variance of
these proportions. given by

v
\,- prop = Z( pﬁ," _JI—)j W ([\' o l)

p=
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If x; and s

directly proportional to s'f- /:Tc?, which is the square of the sample coefficient of

variation cv;. Therefore we propose touse w; = CV;.

The various rows are now compared based on an overall index computed as

Ly(i,IDR) g o @.1)

Libx) = e
(e s r )

Similarly, under L,-norm, we compute

N

Ly(i,IDR) = [ (x;=u;)*w;]"?
74l
N

Lz(i.N]DR) = [Z(xrj_vj)zwfjvz
=l

The various rows are now ranked based on an overall index / computed as

Ly(i,IDR)

, =l G :
Ly(i,IDR) + Ly(i,NIDR) @:2)

L? (Index,) =

2.2 An application

In this section we apply the previously described MCDM method to the air pollution
data from Bangkok, Thailand for our numerical example. The main air pollutants in
Bangkok are carbon monoxide (CO,), nitrogen dioxide (NO2) and sulfur dioxide (SO;)

which are released directly from motor vehicles. The photochemical reaction on the

oxide of nitrogen is ozone (O3) which is a secondary pollutant.

The data sets were provided by the Pollution Control Department of Thailand
and were recorded by 10 monitoring stations in Bangkok during 1998 —2001. The

monitoring stations are as follows:

1. Ramkhamhbeang University 2. National Housing Authority
3. Huai Khwang 4. Nonsee Vitaya School

5. Singharatpitayakom School 6. Thonburi

7. Chokchai 4 e 8. Dindaeng

9. Meteorological Department 10. Ratburana.
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The locations of 10 monitoring stations in Bangkok are shown in Figure 1.
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Figure 1 : Location of 10 monitoring stations in Bangkok area

At each station, the signals from the instruments were sampled every five seconds and
hourly average values were calculated and stored. For our analysis, we have used the
annual averages of each pﬁl]utant. The entire data set appears in a Technical Report
(Lertprapai et al.[3]).

To apply the MCDM method, we use both the distance measures L, and L, as well as
ﬂle two choices of weights based on phi and coefficient of variation (cv). We show
below the results in four sets of the values of combined indices for each year. The
final ranks of the rows are then based on the average index. We also compute the
standard deviation to show the closeness of the four indices in a row. Tables 1 — 4
present all the results for years 1998 - 2001.

From Tables 1-4, we observe that most often (1998, 2000, 2001) first rank is
Meteorological Department station which means this station is expected to be good in
terms of air pollution. On the other hand, Dindaeng station performed poorly. We
selected these two stations to represent their performances graphically in Figures 2 — 3.
These figures also depict their ranks for each season separately, rainy, summer and
winter, glong with the overall ranks. Details of seasonal analyses appear in the

Technical Report [3].

424




KMITL Sci. J. Vol. 5 No. 1 Feb. 2005

Table 1 : Results of MCDM method on air pollution data in 1998.

I I
Monitoring station ul Mean SD, rank
_ W, Ws W, W
(1) Ramkhamheang 0.3574 0.3610 | 0.3891 03922 | 0.3749 0.0183| 6
University
(2) National Housing | 703 03023 | 03327 03359 | 03173 00197| 4
Authority
(3) Huai Khwang 04423 04461 | 04390 04425 | 04425 0.0029| 9
(4) Nonsee Vitaya school| 02934 0.2896 | 03271 03235 | 0.3084 0.0196| 3
) iﬁf&”ﬁp‘tayak"m 03707 03685 | 03932 03937 | 03815 0.0138| 7
(6) Thonburi 0.4255 04293 | 04281 04316 | 04286 0.0025| 8
7) Chokchai 4 0.3685 03665 | 03716 03698 | 03691 0.0021| 5
(8) Dindaeng 0.8054 0.7983 | 0.6909 0.6855 | 0.7450 0.0657| 10
(9) Meteorological 0.0387 0.0402 | 0.0492 0.0503 | 0.0446 0.0060| 1
Department
ilbutana 0.1217 0.1236 | 0.1828 0.1858 | 0.1535 0.0356| 2
Table 2 : Results of MCDM method on air pollution data in 1999.
L] L2
Monitoring station Mean SD rank
W] W2 Wl WZ
(1) %af.nkha.mhea“g 0.4414 04374 | 04683 0.4667 | 0.4534 00163| 9
niversity
(2) National Housing | 3701 03954 | 03709 03634 | 0.3445 0.0269| 3
Authority
(3) Huai Khwang 0.4271 04172 | 0.4287 04190 | 04230 0.0058| 7
(4) Nonsee Vitaya school| 03519 03367 | 03745 03621 | 03563 0.0160| 4
® i’éﬁiﬁ?ﬁtpnayak"m 04193 04004 | 04328 04169 | 04174 00133 6
(6} Thonburi 0.4499 04451 | 0.4464 04411 | 04456 0.0036| 8
(7) Chokchai 4 03654 03609 | 03665 03615 | 0.3636 0.0028| 5
(8) Dindaeng 0.7386 07341 | 0.6180 0.6146 | 0.6763 0.0694| 10
(9) Meteorological 0.1890 0.1984 | 0.2448 02518 | 02210 0.0319| 2
Department :
(10) Ratburana 0.1382  0.1404 | 0.1831 0.1851 | 0.1617 0.0259| 1
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Table 3 : Results of MCDM method on air pollution data in 2000.

Monitoring station L L, Mean SD rank
W1 Wj W1 Wz
(1) Ramkhamheang 0.4031 04041 | 04141 0.4150 | 0.4091 0.0064| ©
University
(2) National Housing | 5409 (02470 | 02951 02930 | 02713 0.0264| 4
Authority
(3) Huai Khwang 03090 03190 | 0.3038 03126 | 03111 0.0064| 7
(4) Nonsee Vitaya school| 0.2067 0.2305 | 0.2485 0.2660 | 0.2379 0.0254 2
() Siff;amtpitayakom 03392 03315 | 03600 03558 | 03466 00135| 8
(6) Thonburi 02907 02958 | 0.2909 02948 | 02930 0.0026| 5
(7) Chokchai 4 03010 03143 | 02929 03045 | 03032 0.0089| 6
(8) Dindaeng 07350 07544 | 0.6410 0.6489 | 0.6948 0.0582| 10
(9) Meteorological 0.1420 0.1320 | 0.1599 0.1548 | 0.1472 0.0126| "1
Department
10) Ratburana 02370 02243 | 03049 02983 | 02661 0.0414| 3
Table 4 : Results of MCDM method on air pollution data in 2001.
Monitoring station L Ly Mean  SD | rank
W, W, W) W,
(1) Ramkhamheang 0.4144 03669 | 0.4595 0.4356 | 04191 0.0394| 8
University
(2) National Housing | s 3074 3006 | 03512 03411 | 03250 0.0248| 7
Authority
(3) Huai Khwang 02739 02891 | 0.2730 02850 | 0.2803 0.0081| 6
(4) Nonsee Vitaya school| 0.1967 02082 | 0.2155 02226 | 0.2107 0.0111| 3
(5) Sit’l‘g;’laratpitayak"m 04501 0.4371 | 0.4554 0.4414 | 0.4460 0.0083| O
SCno
(6) Thonburi 0.1853 0.2000 | 0.1865 0.1991 | 0.1927 0.0079| 2
(7) Chokchai 4 02237 02342 | 02238 02331 | 02287 0.0057| 4
(8) Dindaeng 0.5948 0.6508 | 0.5424 0.5680 | 0.5890 0.0464| 10
(9) Meteorological 0.1684 0.1544 | 0.1954 0.1852 | 0.1759 0.0181| 1
Department
(10) Ratburana 02131 0.1946 | 0.2675 02539 | 02323 0.0341| 5
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METEOROLOGICAL DEPARTMENT STATION

rank
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L Method : MCDM

Figure 2 : Order of rank of Meteorological Department station for 1998-2001.

DINDAENG STATION

rank

T T
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Method : MCDM

Figure 3 : Order of rank of Dindaeng station for 1998-2001.
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2.3 Binomial proportion
According to a ‘continuous’ version of this setup would involve xjj's where
the index j would vary ‘comtinuously’. In the context of our problem of comparing Tj

and 7, for estimation of &, obviously K =2, x,j's are chosen to represent the mean

squared errors of 7] and T3 for various values of &, and L;-norm and Lj-norm

would be redefined as

5 3

Li(i,IDR) = J[x,»(@)—u(Q)]w(G)dG 2.3)
2
g

Li(i,NIDR) = [P -x©@]w@®)do @4)
6
B

Ly(i,IDR) = |[(:(0)-u(0))*w(®)de (2.5)

L (i, NIDR) (x,(8) - v(6))*w(8)d8 C (2.6)

I
e LR
D e, DI I

where u(6) = min{x;(8)}, v(0) = max{x;(9)},and § <0 < 6.

Comparison of estimates is then based on the overall index defined as

[x,(8) - u(@)]w(®)do

ICbt___.le

L,(Index;)- = > = 3
[[x.0) - u@]w©)do + [[v(O)~x@)]w©)do
8 : a
7
\f [ (5,0)~u(@)*w(0)d0
Ly (Index ;). = = : > _ >
\/ [ (x(0)-u(©))’ w(©)db + | [ (x;(6)—=7(9))’ w(6)db
g g

pi=lE K

3. Main Result
In this section we consider two standard loss functions, namely, absolute error loss

(Li-norm) and squared error loss (Ly-norm).
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3.1 Analysis based on L;-norm

We first prove a general result in the case of L;-norm, showing that the
MCDM approach in this case is equivalent to a standard Bayesian approach. Such a
result does not hold under the Ly-norm. Suppose 7,...,Tx are some estimates of 8 to

be compared with respect to their mean squared errors V(MSE)

MSE(T; )=x;(6),i=1,...,K, where § <0 <86.

Theorem 3.1 : Under Li-norm, 7; is better than TJ,- if

q 7
J‘x,-(e)w(a)de < ij(a)w(e)de. G.1)
g g

Proof : 7; is better than 7 if

Ly(Index;) < Ly(Index )

LG.IDR) _ Li(J.IDR)

<= ; %
L,(i, NIDR) L,(j, NIDR)
g 5
[lx,0)-u©) w@)a0 [lx,@)~u®) |we)as
e & < &
[v@-x@weyde [[vO)-x;©) w0
{2 ]

—

7] 7] a 7]
{jx,- (©) w(8)do — AHB— _‘.xj(ﬁ)w(ﬂ}dﬁj(cc |iJ.xj_-(6')w(t9)d6’ 2 AHB— jx,.(a)»a(e)da}
8- 8 4 9 :

where
] g
e ju(a)w(e)de and B = jv(@)w(&)d@.
o 8
Therefore
7 g
[B—A]i:ij(ﬁ)w(ﬁ)dﬁ—Ixj(ﬁ)w(ﬁ)dﬂ} <0
8 9

Since [B—A] > 0, thus 7; is better than Tj if
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7 g
_[x,-(t?)w(@)d@ < [x;@we)d.
8 2]

This completes the proof.

Corollary 3.2 : Let # be a binomial proportion, 0 <8 <1. If the weight function is
defined by w;(6) = 6°7(1-0) with a= f=/n/2, To(x)=[x +/n/2]/[n++/n] is
the best estimate of § under the MCDM approach.

The robustness of T,(x) for some other choices of a and S can be seen from the
following cases where we mention values of 7 for which Ty(x) is better than 7j(x).
Casel: a=f=1:nell,19] Case2: a=f=15:n¢e(l,41].

Case3: a=f=2:n¢e1,71]. Case 4 : a;ﬁ=3:ne[1,155].

Case5: a=1,8=2:ne[,19]. Case6: a=15 f=3:ne [1,33].

Case7: =1 f=4nec|l7]. 'Case8: a=2 B=3:ne |t

Case9: a=2, ﬁ=4:ne[1,47]. ;

Following Filar [4], we now consider two additional choices of w(8). The first one,
denoted by w,(0), is based on the notion of entropy between MSE(7] ) and
MSE(T, ) for various values of 6, and the second one, denoted by w3(6), is based
on the coefficient of variation of MSE (T, ) and MSE( T, ) for various values of 4.

In the context éf binomial parameter estimation problem, recall that X ~B(n,0),

Ti(x)=x/n, Ty(x)=[x+n/2/[n+n], MsE(T;)= 91=9)
1

and MSE(T,) =

n ¥
—————. It then readily turns out that
4(n+ Jn )2
1-¢(@
wig)- =t (3.2)
Jl1-p(6)120
0
where
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6(1-9) 6(1-0) |
g ] n : n |
loemaee e | w0 |
no o 4(n+n)’ no Mnealn)?
e S VR REER G
4n++/n)? - 4(n++/n)*
ey ge(l—'9)+ n
no 4n++n)? g ey
and
0(1-6)  n
] 4(n ++/n)?
ws (8) = e (”+n e (3.3)
+
n.  4n+n)?

Verification of (3.1) for these two weight functions has been carried out for various

values of », using MATHEMATICA. The results are stated below.

Corollary 3.3 : Let 6 be a binomial proportion, 0 <8 <1. Under wa (), Tr(x) is
better than 7j(x) forall » > 1.

Corollary 3.4 : Let § be a binomial proportion, 0 <6 <1. Under wy(6), Th(x) is
better than 7j(x) forall ne] 1519]:
3.2 Analysis based on L;-norm

In the case of L,-norm with a general weight function w (8),

proceeding as before, it is easily seen that 7; is better than T jif

Lz (fndexr-) < Lz (]ndexj)

L,G.IDR) | L;(j,IDR)
L, (i, NIDR) L,(j,NIDR)

—_— D
— D

[x,6) - u(@)F w(@)do [x,0)-u (497)]2 w(0)do

0

A

(3.4)

[x,0)-v(®) | w©)ds [x,©)-v@ [ we)yde

T e, Tl
1D D
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We now simplify (3.4) in the case of our problem of comparison of 7; and T,
for estimation of the binomial proportion . Obviously MSE(7; ) < MSE(7; ) holds

whenever cj(n) <@ <cy(n), where

2
=)
ci(n)= ci] (3.5)

[\e]

and

2
1 1—( a J
o ;’*‘/; ‘ (3.6)

Moreover, the Ideal row and Negative-ideal row are easily obtained as

u(0): IDR=

{9(1;9) 0<a(, +nJE)2 b 9(1;9) . cz(n)}
v(0): NIDR =
Alald 6(1-6) n _ ]
{4(n+\/;)2 10 <c(n), iei(n) <@ <ey(n), Z(mg >c2(n)}».
For i = I, applying equations (2.5) and (2.6), we get
_ ca(n) o) 2
Ly(1,IDR) = S it (9) do
2( ) I [ = 4(}1-;-\/;)2J W
c(n)
L,(1,NIDR) = C](f) i olm) 2w(9) L ‘I n_ 831-6 2W(9)d9_
v 0 4(”'*‘\/;)2 Lt i) 4(n+'\/;)2 2

For i =2, applying equations (2.5) and (2.6), we obtain
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iy s1-0)) ; oi-6))
' Ly(2.IDR) = . O e Jii - A=6)} woue
0 4n+~n)? I o 4(n+'\/;) 7
cy(n) 2
“rl 8(1-86) n
Ly(2, NIDR) = - w(6) dé .
: \/C|(£)[ % 4(” + '\/;)2 J :
Therefore equation (3.4) is now simplified as
9' 9 2 ¢ h) or1—0 2
| ( ”fz—”‘ )] w(8) df < I[(H‘)_ "J_ZJW(H)de
d<ci(n)ub>cy(n) Afn+n) 4 y aln) 4(n++/n)
o
' 61-6)) 2 o1-0))
[ L e L Y09 ) ab.
o \4(n+n)? ﬂ dn+In) n

c(n)

(G.7)

Theorem 3.5 : Let & be a binomial proportion, 0 <8 <1. If the weight funciion is

defined by w(8)= 6*"'1-6)2! for some a,fp >0, then T,(x) is better than

Ti(x) based on Ly-norm if » satisfies (3.8).

Proof : Since w(6)= 6*"'11-6)f~1, (3.7) reduces to

[ 2 , 2 2
J‘ n % Grl—-0) +H (1-8) Ha_](t—g)ﬁ‘i 40
i i6(n+x/;)4 2(n+\/;)2 nz

cafn),

: 2 i 2
5 .[ n 0 61 9)2+2a (12 6) %L1 _ 0,81 4o
8(n++n) (n+~n) n
C']ff’?)
=S,
P B L | DfarUT(A+1) | Tfa+2)L(p+2)

ibfn»r\f;)hl [Ma+f) 2(n+-\/;)2 Ila+p+2) n2 I(a+f+4)
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Cz(”)‘ ) | B-1 a yil na+1 b+1
. J‘{né’ a-6)f7' e*a-0)% 26%'(1-9) }d@.

e 8(n++n)t (n++n)? n?
(3.8)
We now consider some special cases of @ and f and indicate values of n for which
(3.8) holds. :
Casel: a=f=1:nell,14]. Case2: a=p=15:n¢[l1,26].

Case3: a=pf=2:ne|l,41]. Cased: a=p=3:n¢e[l,82]

Case5: a=f=+n/2:nel*. Case6: a=1,f=2:n€l,14].
Case7: a=15 f=3:nell,22]. Case8: azl,ﬁ=4:ne[1,7].
Case9: a=2, f=3:ne[l,41]. Casel0: a=2, f=4:ne[1,30].

It is interesting to observe that in this case also, 7, outperforms 7 for all values of n

under the minimax prior distribution.
As in the case of L;-norm, here also we considered the other two weight functions

wy(0). and wy(6), and verified (3.7) for various values of n, using

MATHEMATICA. The results are stated below.

Corollary 3.6 : Let @ be a binomial proportion, 0 <6 <1. If the weight function is
defined by (3.2) then T, is better than 7; based on Ly-norm for all n=1.

Corollary 3.7 : Let @ be a binomial proportion, 0 <6 <1. If the weight function is
defined by (3.3) then T}, is better than 7} based on Ly-norm if n €[1,14].

4. Conclusion

Based on the above analysis under ;- and L- norms, our recommendation is

to use 7, rather than 7} for small values of .
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