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Abstract

This work investigates the transmission model of MERS-Cov using SEIR model which divides the
total human population into four subclasses: susceptible, exposed, infected and recovered. Two
equilibrium points were exhibited: the disease-free equilibrium E,” and the endemic equilibriumE, .
The basic reproduction number was computed via the next generation method. Two types of global
stability of these equilibrium points were investigated through the theory of Lyapunov.

Specifically, the exponential stability was investigated using a square type Lyapunov candidate
function; while the asymptotic stability was investigated through a Logarithm type Lyapunov
candidate function. It is theoretically shown that, when the reproductive number is less than unity.

The disease-free equilibrium state is globally asymptotically stable, and the endemic equilibrium
state is globally asymptotically stable if the reproductive number is greater than unity. Numerical

results with parameters obtained from the previous work also illustrates the global asymptotical
stability of the MERS-Cov system. These results can further be used for the design of a controller
that drives the MERS-Cov system and the effective control reproductive number is less than 1 so
that the stability of the controlled system would be similar to that of the uncontrolled disease-free
system.
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1. Introduction

MERS-Cov is the short name for Middle East Respiratory Syndrome. Cov has been added since
the disease was caused by a corona virus. It was first detected in 2012 in Saudi Arabia as a case of
severe viral pneumonia which developed to a case of acute respiratory distress syndrome and
death [1]. In Thailand, the first case was a 75 years old male from Oman, who was reported with
the symptoms on 18 June 2015. On 23 January 2016, a second case from an Arab person was
reported.The third case was reported in a person from Kuwait on 30 July 2016.MERS-Cov
transmission has been found in many countries around the world; Asia, Europe, the United States
and North Africa. World Health Organization (WHO) reported 2,123 laboratory-confirmed
infection cases with corona virus world wide, including at least 740 deaths in 27 countries during
September 2012 to January 2018 [2].

On 23 August 2017, the one additional Middle East Respiratory Syndrome (MERS-Cov)
case was reported by the national IHR focal point of the United Arab Emirates (UAE) [3].The risk
assessment by WHO indicates that MERS-Cov causes severe human infections resulting in high
mortality and has demonstrated the ability to transmit between humans. So far, the observed
human-to-human transmissions have occurred mainly in health care settings. Figure 1 shows the
confirmed cases of infections and deaths in 2016, with peaks around March, July and October. It is

implied that MERS-Cov infection cases occur worldwide.
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Figure 1. Confirmed global cases and death of MERS from 1 January 2016 to15 November 2016 [4].

In 2013, Aburizaiza et al.[5] investigated the Anti-Middle East Respiratory Syndrome
Antibodies in Blood Donors and Slaughterhouse workers in Jeddah and Makkah. Their
investigation looked for the antibodies using immune fluorescence assay (IFA), a differential
recombinant IFA, and a plaque-reduction serum neutralization assay. Altogether, 130 blood
donors were sampled during 2012 in Jeddah and 226 slaughter house workers were sampled in
October 2012 in Jeddah and Makkah, Saudi Arabia. In 2014, Chowell et al. [6] formulated a
mathematical model to study the outbreak of MERS-Cov during April-October 2013 in Arabian
Peninsula. Kim et al. [7] studied MERS-Cov transmission dynamics in South Korea, resulting in
the formulation of SEIAHR model (susceptible-exposed- infectious- infection but asymptomatic-
hospitalized-recovery). They found the basic reproductive number in two periods. First period was
very large due to the superspreader. The second period was reduced significantly after intensive
interventions to reduce the basic reproduction number. The literature reviews arouses our interests
in the development of the mathematical model and Lyapunov stability analyses. This work
considers the global dynamical transmission model, where three types of stability, namely, local,
exponential and asymptotic stabilities were investigated through the use of the Lyapunov function

113



Current Applied Science and Technology Vol. 19 No. 2 (May - August 2019)

candidates. Specifically, the square-type Lyapunov functions were used to show the exponential
stability of the equilibrium points, while the logarithmic-type Lyapunov candidates was chosen to
illustrate the global asymptotical stability of the equilibrium points. The next generation method
was also applied to compute the basic reproductive number.

2. Formulation of the Model and Stability Analyses

In this model, we study Susceptible-Exposed-Infected-Recovered (or SEIR) model to describe the
dynamical transmission of MERS in Thailand. We assume that the transmission of corona virus is
possible only through the pathway of person-to-person contacts, not through the camel-to-person
contacts, which would be possible if we were considering the situation in Saudi Arabia. The
human population is classified into four sub-classes: susceptible individuals(S"), exposed

individuals (E") , infected individuals (1 ") and recovered individuals (R") . The total population of
the human at time t is denoted N"(t)where N"(t) = S"(t) + E"(t) + I"(t) + R"(t) . Human recruitment

rate is denoted as s and ddenotes the rate at human-to-human MERS-Cov contract occurs. The rate
hyh

of expose for susceptible human is given by NP The rate at which the exposed human

become infected is denoted as,, . Recovery rate of human with MERS-Cov is y. where , and  are

the natural death rate and the additional disease death rate due to the MERS-Cov infection,
respectively. The number of members in the susceptible class is increased by the human
recruitment rate 8 and reduced by infection and the natural death. The exposed population is
increased by the infection of a susceptible, but is reduced through natural death. The infected
population increases when an exposed person becomes infectious but is diminished by recovery
from the disease, natural death and additional disease death. The recovered population is increased
by the recovery of infected person and decreased by a natural death. The transmission schematic is
shown in Figure 2.
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Figure 2. Flow chart of transmission model of human population

The transmission flow chart admits the following system of differential equations defined:
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The non-negativeness of the solutions

Proposition 1 Let (S"(t),E"(t),1"(t),R"(t)) be the solutions of equations (1)-(4).

Denoting also the invariant setqﬁ:{(S“,Eh,lh,Rh)e RY:N" SB}. Then the closed setgis positive
7

invariant.

B
Proof We begin by setting N"(t)=(S"+E"+1"+R") and assume that N" =— . Note that the total
u

population N"is non-negative definite on R* Then we have:

dN"  dS" dE" dI'" dR"
—_— =t —t—+—
dt dt  dt dt dt

h h hyph
dd'\i=B—[/¢+(L|h]S“+5Ehl ~(U+QE"+@E"—(u+a+p)I"+y1" - uR"
dd—sz—yNh—athB—yNh
t

h

dt

.+ B _
Then it follows that <00on0<N"(t)<N"(0)e™ +;(l—e “Y. As t— 0,6 > o0 and we have

. ah B . B .. : : .
lim N*(t) < P N"(t) approaches;l . Since the region of all solutions of #is inR!

2.1 Equilibrium Points

Proposition 2 Equations (1)-(4) have two equilibrium points: for R, <1 the equilibrium points is
the disease free steady state E"(S",E™,1",R") = {B,O,O,Oj eg¢.For R, >1, the equilibrium point is
7

the endemic steady state E,"(S",E™,1",R") e ¢ and satisfies S",E™,1"",R" >0, where

. BN
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£ _ BSI™ ©
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jr_ Boy —uN"(@+y + p)(u+y) 7
Sla+y+u)(u+y)
and

.o
R =2 )

M

Proof Steady states (S™,E™,I™,R™) of our equations are found by setting equations (1)-(4) to
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oS
(" =0
PE"—(u+a+p)I1"=0
yI" = uR"=0
. " BN"
From equation (9) we have S" =————
uN" + 51
Equation (10) implies:
v oS
N"(u+p)
5 BN" [
£ uN" + 51"
N"(u+ @)
e BSI™

(o)1 + N
Equation (11) implies:
[ :Lh*
a+y+u

(p( BsI™ j
e\t )S1" + N

a+y+u
(e _ Bop—uN"(a+ 7+ i)(u+ )
Sla+y+m)(u+o)
Equation (12) implies:
R"™ = "

Y2

(10)

an
(12)

Remark 1 The local stability of E,"is obtained by next generation matrix [8-9]. We identify

classes E and I as being relevant. The disease-free steady state E,"(S",E™,I",R") = [B,O,O,Oj
7]

GainstoE : (5S"I") /N
) Gainstol : 0
Gains and losses: N
Losses fromE : (u+9)E

Losses from| :|—pE" + (u+a + @)1"

Ther (gains) and V (losses) matrices
o (ssM” 0
8E{ N ] e

B o (os™" 0
8I“[N" ] ar©
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R, is the dominant eigenvalue of the matrix G=FV™". Then we have
oBS
R = h
uN" (p+ ) +a+)

(13)

2.2 Exponential stabilities of the equilibrium states

ol
Theorem 1 LetEl*=(S“*,E“*,I“*,R“*)=(B,0,O,Oj, and aszmax(,u+N,,u+y). The disease free
U

dF
equilibrium E,” is exponentially stable in the ——= B—uN"—ad" <B—uN"when R, <1.

dt
Proof Consider the following Lyapunov candidate:
_1 h\2 1 )2 1 )2 1 2
\/1_5(3 ) +§(E) +5(| ) +5(R) (14)

.
Letx= [Sh E" P Rh] be the vector of states. It is obvious from the Lyapunov candidateV|
that the following in equality is satisfied:

2 2

ax <M (x)<a | (15)
where o, and «, are both unity. Consider differentiating the Lyapunov candidate in the trajectory
of the system:
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Vﬂmz—ﬂy—(y—ﬂ]@wz—Eﬁ?“i{y+yxﬁy+I%%%{u+a+ﬂ0hy+ﬂR14sz
2 n|2 2 2
<a(|s°f +JE'| | +IRT )
<o (16)
Hence it follows that the differential inequality:
v(gs%vghqy@) (17)

2
OrV (x) < |V (x,)|e =t which hereby implies the exponential stability of the MERS-Cov system.

h*

Theorem 2 LetE; = (s".E™.1".R"), and that 7 =='—, #=cy . The endemic equilibrium E,"is
. . dF _ h h < h .
exponentially  stable in  the e B—uN"—al"<B-uN when R, >1 with

_ S eps )
% _max[[ﬂ+ N j’uN(uﬂo)Ro]

Proof Consider the following Lyapunov candidate:
1 1 1
V,=—(S-S )Y +=E*+=1I’ 18
> 2( ) SE 43 (18)

The derivative of v, (x) in the trajectory of the model is given by:

h h heph
V,'= BS”—(,u+5NIh ](Sh)z—s*{B—[,u+§Nlh ]Sh]— EN5hI —(/1+}/)(Eh)2+(plhEh—(,u+a+}/)(lh)2

2

S—[u+f\::J(Sh)2 —(,u+7)(Eh)2 —(,u+a+]/)(|h) —y(Rh)2
<A (") +(E") + (1) +(R")) (19)

where 3, = max[[ Ll 9o ] . It then follows again thatV,'(x)< %Vz(x) =BV,(x), or
2

N j’uN (u+o)R,
V,(x) < |V, (x,)|e ” which thus implies exponential stability of the system.
2.3 Global stability of the equilibrium states

Bo
Theorem 3 LetE =(S",E™,1™,R") = (B,O,O,O] , and a:W . The disease free equilibrium E," is
P u

dF
globally asymptotically stable in the Iy =B—uN"—ad" <B-uN"when R, <1.
Proof We consider a Lyapunov function P(S",E",1",R")=(S"-S"InS")+E"+1"+R", then we
have P(S™,E™,I" R"™) = P(B,O,O,O] =0 and the derivative with respect to time in the trajectory
U

of the system yields:

e
aP _gw 1—5—h +E" +1" +R"
dt S
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hyh h* hyh
LZT{B—AJS“—&E: J[l—sshj+5ilhl—(,u+(p)Eh+(th—(,u+a+7/)Ih+ylh—,uRh

hyh h* hyh
(:E_(B—ush—éil: ][1_2“}6?\1“' —UE" —E" + gE" — ul" —al" — 1" 1" — 4R

dp ss"" s"™) &St

e hgh*
(:;::B[l—sshj—ysh +,uSh*+5IN§ —ol" = uE" — p" — 1R"

. B
Substituting S" =— yields:
u

h* h
®_ [1—2]—ys“+”3+ Bi: —al" = uE" — ul" — 4R"

dP " h h o h

dt_B[l—Sh]—yS +B—uE" —pul” - R

?;3:5(155':}8738:8 HE" = 1" — uR"

Ci:::B[l—SShh*j+B(l—'u:h)—,uEh ul" = pR"

Z’:=B[1—SST]+B[1 s“h*J HE" = ul" — uR"

‘E_B[z—zf—:;]—y? ul" = uR"

ﬁ:—s[(shs*hﬁsshh)zl—uE“—ﬂl“—uR“
ﬁ:—[B[W}yEumwth}o (20)

dP dP
Then we have o <0 and all terms in Equation (20) are non-positive witha =0 if and only if

S" =S" E"=0,1"=0 and R"=0in the equations (1)-(4) . Using LaSalle’ s extension to
Lyapunov’s method [10], the solution does not exist for E,"(S",E"™,1",R") e ¢ . Therefore, the
globally asymptotically stable of the disease-free equilibrium E,” is satisfied.

Theorem 4 LetE; =(S",E™, 1", R"). IfR, > 1, then the endemic equilibrium point E; is globally

drF
stable in the P B—uN"—al" <B—uN"

Assume that
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_ss™
7=

B
Hosm

Proof Let a Lyapunov function candidate be K(S",E",1",R") =(S" -=S" nS") +E" +1"
Then we have

g S"

o =(s“’—?sh')+ E" 41"
i:t(:[B—ySh—gls\:Jh}[l—SSTj+5§hlh—(,u+(p)Eh+¢7Eh—(,u+a+7)lh

(iTl:: B[l—Ssr:j—ysh+y5h*—,uEh—,ulh—alh

%T: B[l_SST]—E;E;+BSS:—ﬂEh —ul"—al”

%T: B[ —zh:]+ B[l—:;J—th —ul"—al”

(L—T:—B%—/Eh—ylh—alh

‘:;::{B(S:h_sih)sz“ +ul" +alh}<0,V(S“*,Eh*,l“*,Rh*)e¢ (21)

Hence, the derivative(:j—fsO,V(Sh*,Eh*,Ih*,Rh*)e¢withciIK:Oif and only if " =S" E"=0

and 1" = 0in the equations (1)-(4). Hence by LaSalle’s extension to Lyapunov’s method [10], the
endemic equilibrium state E; is globally asymptotically point on ¢.

3. Results and Discussion

In this section, we give some numerical results of the presented system. The parameters are taken
from the work of Lamwong et al. [11] for the Thai population only.

Table 1. Parameters used in the numerical simulation [11]

Parameter name Value
B 1/(75%365)
N" 2000
o 0.05
y7 1/(75%365)
¢ 1/50
a 1/365
V4 1/50
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.
The numerical solutions with the initial condition of [Nh -2,0, 0,0] are plotted in the

graphs as shown in Figure 3(a-d). Form Figure 3(a). the trajectory of the susceptibles starts at a
value close to 2000, which then decays and steadies at around 400 around t=1000 days. The plots
of the exposed and infected populations start at zeros, peaking at around t=600 days, before
reaching the steady state at a value near zero at around t =1000 days. The plot of the recovered
population response in Figure 3(d) shows the reverse case of the plot of Figure 3(a). Specifically,
there is zero initial response in the recovered population compartment. This number then increases
exponentially and is steady at approximately 1400 after 1000 days. The steady state being reached
by each compartments of the system is a nonzero number, thereby depicting an endemic
equilibrium which is asymptotically stable.

4. Conclusions

In this work, we analyzed the standard dynamical modeling method where both types of typical
Lyapunov candidate functions used for investigating epidemiological models were chosen. An
exponential stability was investigated with the use of the square-type Lyapunov candidate, while
the logarithm type Lyapunov candidate was chosen to show the global asymptotic stability of the
equilibrium points. The model exhibits two equilibrium point, namely the disease-free steady state
E,” and the endemic steady state E,". The basic reproductive number is calculated by using the

next generation method. If basic reproductive number is less than one, the disease-free equilibrium
state is globally asymptotically stable. The endemic equilibrium state is globally asymptotically
stable if the reproductive numberis more than one. Four theorems were proposed as regards the
stability of the MERS-Cov transmission using Lyapunov stability theories. Theorems 1 and 2
proved the exponential stability of the MERS-Cov system, while Theorems 3 and 4 proved the
global asymptotical stability of the MERS-Cov system.

3(a) 3(b)

3(0) 3(d)
Figure 3. (2) The susceptible population (b) The exposed population (¢) The infected population
and (d) The recovered population.
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