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Abstract 
 
This work investigates the transmission model of MERS-Cov using SEIR model which divides the 

total human population into four subclasses:  susceptible, exposed, infected and recovered.  Two 

equilibrium points were exhibited: the disease-free equilibrium *
1E and the endemic equilibrium *

2E . 
The basic reproduction number was computed via the next generation method. Two types of global 

stability of these equilibrium points were investigated through the theory of Lyapunov. 
Specifically, the exponential stability was investigated using a square type Lyapunov candidate 
function; while the asymptotic stability was investigated through a Logarithm type Lyapunov 
candidate function. It is theoretically shown that, when the reproductive number is less than unity. 

The disease-free equilibrium state is globally asymptotically stable, and the endemic equilibrium 

state is globally asymptotically stable if the reproductive number is greater than unity. Numerical 

results with parameters obtained from the previous work also illustrates the global asymptotical 
stability of the  MERS-Cov system. These results can further be used for the design of a controller 
that drives the MERS-Cov system and the effective control reproductive number is less than 1 so 
that the stability of the controlled system would be  similar to that of the uncontrolled disease-free 
system. 
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1. Introduction 
 
MERS-Cov is the short name for Middle East Respiratory Syndrome.  Cov has been added since 
the disease was caused by a corona virus. It was first detected in 2012 in Saudi Arabia as a case of 
severe viral pneumonia which developed to a case of acute respiratory distress syndrome and 
death [1]. In Thailand, the first case was a 75 years old male from Oman, who was reported with 
the symptoms on 18  June 2015.  On 23 January 2016, a second case from an Arab person was 
reported.The third case was reported in a person from Kuwait on 30 July 2016.MERS-Cov 
transmission has been found in many countries around the world; Asia, Europe, the United States 
and North Africa.  World Health Organization (WHO) reported 2,123 laboratory-confirmed 
infection cases with corona virus world wide, including at least 740 deaths in 27 countries during 
September 2012 to January 2018 [2]. 

On 23 August 2017, the one additional Middle East Respiratory Syndrome (MERS-Cov) 
case was reported by the national IHR focal point of the United Arab Emirates (UAE) [3].The risk 
assessment by WHO indicates that MERS-Cov causes severe human infections resulting in high 
mortality and has demonstrated the ability to transmit between humans.  So far, the observed 
human-to-human transmissions have occurred mainly in health care settings. Figure 1 shows the 
confirmed cases of infections and deaths in 2016, with peaks around March, July and October. It is 
implied that MERS-Cov infection cases occur worldwide. 
 

 
 

Figure 1. Confirmed global cases and death of MERS from 1 January 2016 to15 November 2016 [4]. 
 

In 2013, Aburizaiza et al. [5]  investigated the Anti–Middle East Respiratory Syndrome 
Antibodies in Blood Donors and Slaughterhouse workers in Jeddah and Makkah.  Their 
investigation looked for the antibodies using immune fluorescence assay (IFA) , a differential 
recombinant IFA, and a plaque-reduction serum neutralization assay.  Altogether, 130 blood 
donors were sampled during 2012 in Jeddah and 226 slaughter house workers were sampled in 
October 2012 in Jeddah and Makkah, Saudi Arabia.  In 2014, Chowell et al.  [6]  formulated a 
mathematical model to study the outbreak of MERS-Cov during April-October 2013 in Arabian 
Peninsula. Kim et al. [7] studied MERS-Cov transmission dynamics in South Korea, resulting in 
the formulation of SEIAHR model (susceptible-exposed- infectious- infection but asymptomatic- 
hospitalized-recovery). They found the basic reproductive number in two periods. First period was 
very large due to the superspreader. The second period was reduced significantly after intensive 
interventions to reduce the basic reproduction number.  The literature reviews arouses our interests 
in the development of the mathematical model and Lyapunov stability analyses. This work 
considers the global dynamical transmission model, where three types of stability, namely, local, 
exponential and asymptotic stabilities were investigated through the use of the Lyapunov function 



Current Applied Science and Technology Vol. 19 No. 2 (May – August 2019) 

114 
 

candidates. Specifically, the square-type Lyapunov functions were used to show the exponential 
stability of the equilibrium points, while the logarithmic-type Lyapunov candidates was chosen to 
illustrate the global asymptotical stability of the equilibrium points.  The next generation method 
was also applied to compute the basic reproductive number. 

 
 

2. Formulation of the Model and Stability Analyses 
 
In this model, we study Susceptible-Exposed-Infected-Recovered (or SEIR) model to describe the 
dynamical transmission of MERS in Thailand.We assume that the transmission of corona virus is 
possible only through the pathway of person-to-person contacts, not through the camel-to-person 
contacts, which would be possible if we were considering the situation in Saudi Arabia.  The 
human population is classified into four sub-classes:  susceptible individuals ( )hS , exposed 

individuals ( )hE , infected individuals ( )hI and recovered individuals ( )hR . The total population of 

the human at time t is denoted ( )hN t where ( ) ( ) ( ) ( ) ( )h h h h hN t S t E t I t R t    .  Human recruitment 

rate is denoted as B anddenotes the rate at human-to-human MERS-Cov contract occurs. The rate 

of expose for susceptible human is given by 
h h

h

S I

N


.   The rate at which the exposed human 

become infected is denoted as .  Recovery rate of human with MERS-Cov is γ. where  and  are 
the natural death rate and the additional disease death rate due to the MERS-Cov infection, 
respectively.  The number of members in the susceptible class is increased by the human 
recruitment rate B  and reduced by infection and the natural death.  The exposed population is 
increased by the infection of a susceptible, but is reduced through natural death.  The infected 
population increases when an exposed person becomes infectious but is diminished by recovery 
from the disease, natural death and additional disease death. The recovered population is increased 
by the recovery of infected person and decreased by a natural death. The transmission schematic is 
shown in Figure 2. 
 

 
 

Figure 2. Flow chart of transmission model of human population 
 
The transmission flow chart admits the following system of differential equations defined: 

       
h h

h
h

dS I
B S

dt N


 

   
 

             (1) 

                                             ( )
h h h

h
h

dE S I
E

dt N

    
                                 

(2) 

                                              ( )
h

h hdI
E I

dt
      

                                
(3) 

                   
h

h hdR
I R

dt
                               (4) 
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The non-negativeness of the solutions 
 
Proposition 1 Let ( ( ), ( ), ( ), ( ))h h h hS t E t I t R t be the solutions of equations (1)-(4). 

Denoting also the invariant set 4( , , , ) :h h h h h B
S E I R R N



 
   
 

. Then the closed set is positive 

invariant. 

Proof We begin by setting ( ) ( )h h h h hN t S E I R     and assume that h B
N


 . Note that the total 

population hN is non-negative definite on 4R  Then we have: 

 

  
h h h h hdN dS dE dI dR

dt dt dt dt dt
     

( ) ( )
h h h h

h h h h h h
h h

dN I S I
B S E E I I R

dt N N

         
 

            
   

 

h
h h hdN

B N I B N
dt

        

 

Then it follows that 0
hdN

dt
 on 0 ( ) (0) (1 )h h t tB

N t N e e 


     .  As , tt e     and we have 

lim ( )h

t

B
N t


 , ( )hN t approaches

B


 . Since the region of all solutions of  is in 4R  . 

 

2.1 Equilibrium Points 
 

Proposition 2 Equations (1)-(4) have two equilibrium points: for 0 1R  the equilibrium points is 

the disease free steady state * * * * *
1 ( , , , ) ,0,0,0h h h h B

E S E I R 


 
  
 

. For 0 1R  , the equilibrium point is 

the endemic steady state * * * * *
2 ( , , , )h h h hE S E I R  and satisfies * * * *, , , 0h h h hS E I R  , where 

    *
*h

h
h

h

BN

N
S

I 



                            (5) 

               
*

*
*( )( )h

h
h

h

I
E

B

I N


   


                             

(6) 

    * ( )( )

( )( )
h

hB N
I

      
     
   


  

            (7) 

and 

                              
*

*
h

h I
R




                                          (8) 

Proof  Steady states * * * *( , , , )h h h hS E I R of our equations are found by setting equations ( 1) -( 4)  to 
zero. 

                         0
h

h
h

I
B S

N


 

   
 

                              (9) 
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         ( ) 0
h h

h
h

S I
E

N

                (10) 

       ( ) 0h hE I                  (11) 

                      0h hI R               (12) 

From equation (9) we have *
*h

h
h

h

BN

N
S

I 



 

Equation (10) implies: 
* *

*

( )

h h

h
h I

E
N

S
 




 

  

*
*

*

( )

h
h

h

h
h

h

BN

N

N

I
I

E


 

 

 
  


 

  
*

*
*( )( )h

h
h

h

I
E

B

I N


   




 

Equation (11) implies: 

  
*

*
h

h E
I



 


 

 

  

*

*
* ( )( )

h

h h
h

B

N

I

I
I


   

  

 
  







 

  * ( )( )

( )( )
h

hB N
I

      
     
   


  

 

Equation (12) implies: 

  
*

*
h

h I
R




  

 
Remark 1 The local stability of *

1E is obtained by next generation matrix [8-9] .  We identify 

classes E and I as being relevant. The disease-free steady state * * * * *
1 ( , , , ) ,0,0,0h h h h B

E S E I R


 
  
 

 

Gains and losses:

   

: ( ) /

: 0

: ( )

: ( )

h h h

h

h h

Gains to E S I N

Gainsto I

Losses from E E

Losses from I E I



 
   


   

 

The F  (gains) and V (losses) matrices 
 

(0)

(0)

h h

h h h

h h

h h h

S I

E N E
F

S I

I N I





   
               
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 

 

( ) ( ( ) )

( ) ( ( ) )

h h h
h h

h h h
h h

E E I
E EV

E E I
I I

     

     

          
         

 

Then we have   

  

0 00 0

00
h

hh

F F BS
NN




  
       
     

 

  
0

V
  

  
  

    
 

  1 1

0( )( )
V

   
     

   
      

 

  1

1

( )( )

1
0

V


      

  



 
     
 
   

 

  1G FV  

  

1
0 0

( )( )

0 1
0h

G B

N


      




  

 
             
       

 

  

0 0

( ) ( )( )h h

G B B

N N

  
        

 
   
     

 

0R is the dominant eigenvalue of the matrix 1G FV . Then we have 

       0 ( )( )h

B
R

N

 
     


  

          (13) 

 
2.2 Exponential stabilities of the equilibrium states 

Theorem 1 Let * * * * *
1 ( , , , ) ,0,0,0h h h h B

E S E I R


 
   

 
, and 3 max ,

I

N

       
 

.  The disease free 

equilibrium *
1E is exponentially stable in the 

h h hdF
B N I B N

dt
       when 0 1R  . 

Proof Consider the following Lyapunov candidate: 

          2 2 2 2

1

1 1 1 1

2 2 2 2
h h h hV S E I R             (14) 

Let
Th h h hS E I R   x be the vector of states.  It is obvious from the Lyapunov candidate 1V

that the following in equality is satisfied: 

    2 2

1 1 2V  x x x            (15) 

where 1  and 2 are both unity. Consider differentiating the Lyapunov candidate in the trajectory 

of the system: 
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         2 2 2 2

1 '( )
h h h

h h h h h h hI E S I
V S S E I E I IR R

N N

                        
 

x

           
22 2 2

2

hh h hS E I R      
 

 

          
2

3 x                (16) 

Hence it follows that the differential inequality: 

   
  3

3
2

' ( ) ( )V V V
 


 x x x                  (17) 

or 3
0( ) ( ) tV V e x x which hereby implies the exponential stability of the MERS-Cov system.  

 

Theorem 2 Let * * * * *
2 ( , , , )h h h hE S E I R , and that

*hS

N

  , *h

B

S
  .  The endemic equilibrium *

2E is 

exponentially stable in the 
h h hdF

B N I B N
dt

      
 

when 0 1R   with

 2
0

max ,
I

N N R

  
  

        
. 

Proof Consider the following Lyapunov candidate: 

   
* 2 2 2

2

1 1 1
( )

2 2 2
V S S E I              (18) 

The derivative of  2V x  in the trajectory of the model is given by:  

       2 2 2*
2 '

h h h h
h h h h h h h

h h h

I I E I
V BS S S B S E I E I

N N N

         
    

                              

         2 2 2 2
h

h h h h
h

I
S E I R

N

      
 

         
 

 

    
        2 2 2 2

2
h h h hS E I R                         (19) 

where
 2

0

max ,
I

N N R

  
  

        
.  It then follows again that   3

2 2 3 2
2

' ( ) ( )V V V
 


 x x x , or

3
2 2 0( ) ( ) tV V e x x which thus implies exponential stability of the system. 

 
2.3 Global stability of the equilibrium states 

Theorem 3 Let * * * * *
1 ( , , , ) ,0,0,0h h h h B

E S E I R


 
   

 
, and h

B

N




 . The disease free equilibrium *
1E is 

globally asymptotically stable in the 
h h hdF

B N I B N
dt

       when 0 1R  . 

Proof We consider a Lyapunov function *( , , , ) ( ln )h h h h h h h h h hP S E I R S S S E I R     , then we 

have * * * *( , , , ) ,0,0,0 0h h h h B
P S E I R P


 

  
 

 and the derivative with respect to time in the trajectory 

of the system yields: 
*

1
h

h h h h
h

dP S
S E I R

dt S

         
   
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*

1 ( ) ( )
h h h h h

h h h h h h
h h h

dP S I S S I
B S E E I I R

dt N S N

         
  

              
  

 

*

1
h h h h h

h h h h h h h h h
h h h

dP S I S S I
B S E E E I I I I R

dt N S N

         
  

              
  

 

*

1
h h h h h

h h h h h
h h h

dP S I S S I
B S I E I R

dt N S N

     
  

          
      

  

* *
*1

h h h
h h h h h h

h h

dP S I S
B S S I E I R

dt S N

     
 

         
 

 

Substituting *h B
S


  yields: 

                 

*

1
h h

h h h h h
h h

dP S B B I
B S I E I R

dt S N

     
 

 
         

     

                

*

1
h

h h h h
h

dP S
B S B E I R

dt S
   

 
       

 
 

*

1
h h

h h h
h

dP S B S
B B E I R

dt S B

   
 

       
 

 

*

1 1
h h

h h h
h

dP S S
B B E I R

dt S B

   
   

         
     

*

*
1 1

h h
h h h

h h

dP S S
B B E I R

dt S S
  

   
         

   
 

*

*
2

h h
h h h

h h

dP S S
B E I R

dt S S
  

 
      

 
 

* *2 2

*

2 h h h h
h h h

h h

dP S S S S
B E I R

dt S S
  

  
    

 
 

* 2

*

( )h h
h h h

h h

dP S S
B E I R

dt S S
  

 
     

 
 

  
* 2

*

( )
0

h h
h h h

h h

dP S S
B E I R

dt S S
  

  
       

             
(20) 

 

Then we have 0
dP

dt
  and all terms in Equation (20)  are non-positive with 0

dP

dt
  if and only if 

* , 0, 0h h h hS S E I    and 0hR  in the equations (1)-(4) .  Using LaSalle’ s extension to 
Lyapunov’s method [10], the solution does not exist for * * * * *

1 ( , , , )h h h hE S E I R  . Therefore, the 

globally asymptotically stable of the disease-free equilibrium *
1E is satisfied. 

Theorem 4 Let * * * * *
2 ( , , , )h h h hE S E I R . If 0 1R  , then the endemic equilibrium point *

2E is globally 

stable in the 
h h hdF

B N I B N
dt

        

Assume that 
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*

*

h

h

h

S

N
B

S









 

 

Proof Let a Lyapunov function candidate be *K( , , , ) ( ln )h h h h h h h h hS E I R S S S E I    . 

Then we have  
*

( )
h

h h h h
h

dK S
S S E I

dt S
      

 
*

1 ( ) ( )
h h h h h

h h h h
h h h

dK S I S S I
B S E E I

dt N S N

       
  

            
  

 

*
*1

h
h h h h h

h

dK S
B S S E I I

dt S
    

 
       

 
 

* *

* *
1

h h h
h h h

h h h

dK S BS BS
B E I I

dt S S S
  

 
       

 
 

*

*
1 1

h h
h h h

h h

dK S S
B B E I I

dt S S
  

   
         

   
 

* 2

*

( )h h
h h h

h h

dK S S
B E I I

dt S S
  

       

 
* 2

* * * *
*

( )
0, ( , , , )

h h
h h h h h h h

h h

dK S S
B E I I S E I R

dt S S
   

 
        

 
           (21) 

Hence, the derivative * * * *0, ( , , , )h h h hdK
S E I R

dt
   with 0

dK

dt
 if and only if * , 0h h hS S E   

and 0hI  in the equations (1)-(4). Hence by LaSalle’s extension to Lyapunov’s method [10], the 
endemic equilibrium state *

2E is globally asymptotically point on  . 

 
 

3. Results and Discussion 
 
In this section, we give some numerical results of the presented system. The parameters are taken 
from the work of Lamwong et al. [11] for the Thai population only. 
 

Table 1. Parameters used in the numerical simulation [11] 
 

Parameter name Value 
B 1/ (75 365)  

hN  2000 

 0.05 
 1 / (75 365)  
 1/50 

 1/365
  1/50 
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The numerical solutions with the initial condition of 2,0,0,0
ThN   are plotted in the 

graphs as shown in Figure 3(a-d). Form Figure 3(a). the trajectory of the susceptibles starts at a 
value close to 2000, which then decays and steadies at around 400 around t=1000 days. The plots 
of the exposed and infected populations start at zeros, peaking at around t=600 days, before 
reaching the steady state at a value near zero at around t =1000 days. The plot of the recovered 
population response in Figure 3(d) shows the reverse case of the plot of Figure 3(a). Specifically, 
there is zero initial response in the recovered population compartment. This number then increases 
exponentially and is steady at approximately 1400 after 1000 days. The steady state being reached 
by each compartments of the system is a nonzero number, thereby depicting an endemic 
equilibrium which is asymptotically stable. 

 
 

4. Conclusions 
 
In this work, we analyzed the standard dynamical modeling method where both types of typical 
Lyapunov candidate functions used for investigating epidemiological models were chosen.  An 
exponential stability was investigated with the use of the square-type Lyapunov candidate, while 
the logarithm type Lyapunov candidate was chosen to show the global asymptotic stability of the 
equilibrium points. The model exhibits two equilibrium point, namely the disease-free steady state

*
1E  and the endemic steady state *

2E .  The basic reproductive number is calculated by using the 

next generation method. If basic reproductive number is less than one, the disease-free equilibrium 
state is globally asymptotically stable.  The endemic equilibrium state is globally asymptotically 
stable if the reproductive numberis more than one.  Four theorems were proposed as regards the 
stability of the MERS-Cov transmission using Lyapunov stability theories. Theorems 1  and 2 
proved the exponential stability of the MERS-Cov system, while Theorems 3  and 4  proved the 
global asymptotical stability of the MERS-Cov system. 
 

 
 

        3(a)         3(b) 
 

 
                                                 3(c)                                             3(d) 
Figure 3. (a) The susceptible population (b) The exposed population (c) The infected population 

and (d) The recovered population. 
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