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Abstract 

 

Given a weighted complete graph ( nK , w), where w is an edge weight function, the minimum weight 

k - cycle problem is to find a cycle of k vertices whose total weight is minimum among all k - cycles. 

Traveling salesman problem (TSP) is a special case of this problem when k = n. Nearest neighbor 

algorithm (NN) is a popular greedy heuristic for TSP that can be applied to this problem. To analyze 

the worst case of the NN for the minimum weight k - cycle problem, we prove that it is impossible 

for the NN to have an approximation ratio. An instance of the minimum weight k - cycle problem is 

given, in which the NN finds a k - cycle whose weight is worse than the average value of the weights 

of all k - cycles in that instance. Moreover, the domination number of the NN when k = n and its 

upper bound for the case k = n – 1 is established. 
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1. Introduction 
 

Traveling salesman problem is one of the most famous problem in mathematics and computer 

sciences [1]. Let G be a graph and cycle C be a subgraph of G whose vertex set V(C) are the same 

as V(G), the vertex set of G. C is called a Hamiltonian cycle or tour. Given a complete graph nK  

with a weight function w from the edge set of nK  to the set of positive real numbers, the symmetric 

traveling salesman problem (STSP) seeks for a tour which has the minimum total weight among all 

tours in the graph. The asymmetric traveling salesman problem (ATSP) is defined similarly to the 

STSP by given a directed complete graph nK
t

 instead of a complete graph nK . The TSP is well-

known to be NP-hard [2, 3], so it is difficult to find an optimal solution of the TSP with large number 

of vertices. There are no polynomial time algorithms to solve either the ATSP or the STSP, unless 

P = NP. Since the problem has been introduced, many popular heuristics for constructing a tour for 

the TSP such as greedy heuristics [4], nearest neighbor heuristics [4, 5] and local search heuristics 

[4, 6] have been proposed. 
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There are many generalizations of the TSP studied throughout the years. Gutin and 

Karapetyan [7] have considered the generalized traveling salesman problem. This generalized 

version is to find a minimum weight cycle C in nK  whose vertex set is partitioned into M partite 

sets and C is composed of exactly one vertex from each partition set. Khachay and Neznakhina [8] 

have worked on the generalization of the TSP in the sense of the cycle cover problem (CCP). 

In this research, we consider the minimum weight k - cycle problem, which is to find a 

minimum weight k - cycle among all k - cycles in a complete undirected graph nK  with weight 

function w for a fixed integer k n . When k = n, the minimum weight k - cycle problem and the 

traveling salesman problem are the same, so we can say that the minimum weight k - cycle problem 

is a generalization of the STSP. Hence, the minimum weight k - cycle problem is NP - hard. 

Gutin et al. [9] have shown that greedy type heuristics are not appropriate for the TSP since 

for each greedy type heuristic they consider, there is an instance of the TSP such that that heuristic 

constructs a poor result. Precisely, they also show that the domination number of pure greedy 

heuristic and the NN are 1, and the domination number of the repetitive nearest neighbor heuristic 

for the STSP is at most 2n – 3. 

However, when the size of a minimum weight cycle is not n, we cannot ensure that the 

domination number of the NN is still 1. In this work, we concentrate on the domination number of 

the NN for some specific values of k, and also consider some other aspects for worst case analyses, 

namely approximation ratio and no worse than average guarantee. 

 

 

2. Materials and Methods 

 

We evaluate the NN using three different methods: approximation ratio, no worse than average 

guarantee and domination number. 

The approximation ratio is the most popular way to analyze a heuristic. Many studies use 

the approximation ratio to analyze heuristics for the TSP. Brecklinghaus and Hougardy [10] find 

the approximation ratio of the greedy algorithm for some special cases of TSP and that of the Clarke-

Wright savings heuristic for the metric TSP. Nilsson [4] refers to the approximation ratio as an 

evaluation of some of tour construction heuristics and tour improvement heuristics. 

We denote G = (V(G), E(G)) a graph with vertex set V(G) = {1, 2, 3, …, n} and edge set 

E(G). For any u, v   V(G), denote e = {u, v} an edge from vertex u to vertex v. We call a pair of 

complete undirected graph nK  and its weight function w an instance ( nK , w) of the minimum 

weight k - cycle problem. Denote w (u, v) a weight of an edge {u, v} of graph G and w(G) the sum 

of the weights of all edges in graph G. We denote w(S) the maximum weight of a k - cycle 

constructed by heuristic and w(T) the weight of a minimum k - cycle. 

 

Definition 2.1 A heuristic A  for the minimum weight k - cycle problem has the approximation 

ratio 1   if for each instance with minimum k - cycle T, the heuristic A  finds a k - cycle S such 

that 
( )

( )

w S

w T
 . 

We also analyze the heuristic by checking whether it is worse than average. The idea of 

not worse than average heuristic is introduced in Russian literature. Punnen et al. [11] used average 

value based analysis on some heuristics for the bipartite boolean quadratic programming problem. 
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Definition 2.2 For each instance I, the average value of weights of all k - cycles is called the average 

value of I, and heuristic A  is said to be not worse than average if heuristic A constructs a k - cycle 

of weight less than or equal to the average value of I for all instance I. 

The domination number suggested by Glover and Punnen [12] is a new approach for 

evaluating heuristics. They propose a heuristic for the TSP with complexity O(n) and give the 

domination number for that heuristic. Gutin et al. [9] studied the domination number of some greedy 

type heuristics for TSP. 

For an instance of the minimum weight k - cycle problem, let H and S be k - cycles, we say 

that H dominates S if ( ) ( )w H w S . 

 

Definition 2.3 The domination number of a heuristic A  for the minimum weight k - cycle problem 

on nK  is the maximum integer d(n, k) such that, for any instance of the minimum weight k - cycle 

problem on n vertices, A  produces a k - cycle K which dominates at least d(n, k) cycles in I including 

K itself. 

Among all greedy type heuristics studied in Gutin et al. [9], the nearest neighbor heuristic 

(NN) is a heuristic that we are interested since it can be directly applied to our problem. Let u be a 

vertex in graph G with vertex set V(G). A vertex v is called nearest vertex from u if w (u, v) = min 

{w (u, h): h   V(G)}. 

The NN starts constructing a cycle from a fixed vertex 1i , goes to 2i , which is the nearest 

vertex from 1i  ( 1 2 1 1( , ) min{ ( , ) }:w i i w i j j i=  ), and adds edge { 1i , 2i }, then to 3i , the nearest vertex 

from 2i  distinct from 1i  and 2i , and adds edge { 2i , 3i }. Repeat until we collect k vertices. Then add 

edge { ki , 1i }. 

In this work, we represent a path P = (V(P), E(P)) where V(P) = 1 2{ , , }kv v v  and E(P) =

      1 2 2 3 1, ,  , ,...,  ,k kv v v v v v− as 1 2( , , )kv v v . Denote Pn a path with |V(P)| = n. We say that P 

has length n – 1. The graph C constructed from a path P by adding an edge 1{ , }kv v  is called a cycle, 

denoted by 1 2 1 1( , , , )k kC v v v v v+=  = . 

 

 

3. Results and Discussion 

 

Henceforth, denote w(S) the maximum weight of a k - cycle constructed by the NN and w(T) the 

weight of the minimum k - cycle. 

In the following theorem, we show that approximation ratio is not appropriate for analyzing 

the NN for the minimum weight k - cycle problem on nK . For any positive integer 3n   and for 

each 1  , we can find an instance of the minimum weight k - cycle problem on nK  such that the 

ratio of w(S) and w(T) is greater than or equal to  . 

 

Theorem 3.1 Let n and k be positive integers where 4n   and 3 k n  . For any 1  , there 

exists an instance of the minimum weight k - cycle problem on complete graph nK  such that

( )

( )

w S

w T
 . 
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Proof Let 1  and 3 k n  . The following instance of the minimum weight k - cycle problem 

on nK  is considered. Assume that edges {i, i + 1} for 1 1i n  −  and edge {n, 1} have weight  , 

edge {k, 1} has weight 
2 ( 1) ( 1)k k + − − , and all remaining edges have weight 2 . Applying 

the NN starting at vertex 1, the NN constructs the k - cycle C = (1, 2, 3, …, k, 1). Then 
2 2( ) ( ) ( 1) ( ( 1) ( 1)) ( 1)w S w C k k k k    = − + + − − = + . 

Next, we show that k - cycle T = (1, 2, 3, …, k – 1, n, 1) is a minimum k - cycle. Suppose 

that H is a k - cycle such that w(H) < w(T). Note that edges of weight   are the cheapest edges. The 

weight of {k, 1} is 
2 ( 1) ( 1) 2k k  + − −  . Moreover, T contains k – 1 edges of weight   and 

one edge of weight 2 . Then H contains k edges of weight  , which is impossible. 

Since T = (1, 2, 3, …, k – 1, n, 1) is the minimum k - cycle, we have

( ) ( 1) 2 ( 1)w T k k  = − + = + . 

Therefore, 

2( ) ( 1)

( ) ( 1)

w S k

w T k






+
 =

+
. 

In case of k = n, there exists an instance of the minimum weight k - cycle problem defined 

as follows: 

 Assume that any edge {u, u + 1} where 1 1u n  −  and the edge {n, 1} have weight  , 

the edge {n – 3, n – 1} has weight 1 − , the edge {n – 2, n} has weight ( 2)n n  − + , and all 

remaining edges have weight 2 . It is possible that the NN starting at 1 constructs k - cycle 

(1,2, , 3, 1, 2, ,1)C n n n n=  − − −  with 2( ) ( 1) 1 ( 2) 1w C n n n n    = − − + − + = + − .  

Next, we claim that the tour (1,2, , ,1)T n=   is a minimum k - cycle with ( )w T n= . 

Suppose that H is a k - cycle such that w(H) < w(T). Thus, H is composed of the only edge that has 

weight less than  , which is {n – 3, n – 1} of weight 1 − , and a Hamiltonian path P from n – 3 

to n – 1.   

If there is an edge of weight 2  or ( 2) 2n n  − +   in P, then 

( ) ( 3, 1) ( ) 1 ( 2) 2 1 ( )w H w n n w P n n n w T     = − − +  − + − + = + −  = , 

a contradiction. Hence, all edges in P are of weight  . Therefore, n – 3 is adjacent to n – 4 or  

n – 2, and n – 1 is adjacent to n – 2 or n. Since 4k n=  , n – 2 cannot be adjacent to both n – 3 and 

n – 1. Hence, an edge incident to n – 2 has weight at least 2 , a contradiction. Therefore, T is a 

minimum k - cycle.  

Hence, 
2( ) 1

.
( )

w S n

w T n

 




+ −
    

In the next proposition, we find a general formula of the average value of the weights of all 

k - cycles for any instance. 

 

Theorem 3.2 Let n and k be positive integers where 3n   and 3 k n  . For an instance of the 

minimum weight k - cycle problem ( nK , w), the average value of the weights of all k - cycles is

( )

2
( )

( 1)
ne E K

k
w e

n n −
 . 
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Proof We find the number of all k - cycles in a complete graph nK . There are 
n

k

 
 
 

 ways to choose 

k vertices from n vertices to be in a k - cycle. Since the number of cycles composed of distinct k 

vertices is 
( 1)!

2

k −
, the number of all k - cycles in a complete graph nK  is 

( 1)!

2

n k

k

  −
 
 

. Next, we 

find the summation of weights of all k - cycles. We consider an arbitrary edge {a, b}. To construct 

a k - cycle, we find a path of k vertices from a to b. There are 
2

( 2)!
2

n
k

k

− 
− 

− 
 possible paths of k 

vertices from a to b. Thus, the summation of weights of all k - cycles is 
( )

2
( 2)! ( )

2
ne E K

n
k w e

k 

− 
− 

− 
 . 

The average value of weights of all k - cycles is  

( )

( )

2
( 2)! ( )

2 2
( ).

( 1)( 1)!

2

n

n

e E K

e E K

n
k w e

k k
w e

n n nk

k





− 
− 

− 
=

−  −
 
 


  

Hence, the average value of the weights of all k - cycles is 
( )

2
( )

( 1)
ne E K

k
w e

n n −
 .  

 

Next, we show that the NN for the minimum weight k - cycle problem can be worse than 

average by constructing an instance such that the NN constructs a cycle of weight greater than the 

average value of the weights of all k - cycles in that instance. In the case that k = n = 3, the NN 

constructs the optimal solution for all instances since there is only one possible k - cycle in each 

instance. Then we consider the case when 4n   and 3 k n  . 

 

Theorem 3.3 Let n and k be positive integers where 4n   and 3 k n  . There is an instance such 

that the NN for the minimum weight k - cycle problem is worse than average. 

 

Proof Consider an instance of the minimum weight k - cycle problem on nK  such that all edges 

have weight 1 except edge {1, k} where (1, ) 1 ( 1)
2

n
w k n= + − . The average value of this instance is 

2
{ ( 1) 1 ( 1) 1} 2 .

( 1) 2 2

k n n
n n k

n n
− − + − + =

−
 

Apply the NN starting at vertex 1. One of the cycles that we can obtain from the NN is the 

k - cycle S = (1, 2, 3, …, k, 1) with weight 1 1 ( 1) ( 1) 2
2 2

n n
k n k n k− + + − = + −  . Thus, the NN for 

the minimum weight k - cycle problem is worse than average.  

We consider the domination number of the NN for k = n – 1 and k = n. We first show an 

upper bound of the domination number of the NN for the case k = n – 1. 

 

Theorem 3.4 Let n be a positive integer where 4n  . The domination number of the NN for the 

minimum (n – 1) - cycle problem on nK  is at most 
1

( 2)! 1
2

n − + . 
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Proof For any edge { , } ( )ni j E K , we define weight function w as follow: 

        

 

.

      

        

       

; 1 2, 1

1; 2 2, 2

( , ) 1; 1,3 2 or 

( 1)( 2) 1; 1, 1

1 1          ; ,

in i n j i

in i n j i

w i j n i j n j n

n n n i j n

i n j n

  − = +


+   −  +


= + =   − =
 − − + = = −


= − =

 

Suppose that the NN starts at vertex 1. Then the (n – 1) – cycle constructed by the NN is 

(1,2,3, , 1,1)NNC n=  −  where 
2

1

( ) ( 1)( 2) 1
n

NN

i

w C n i n n N
−

=

= + − − + . We consider an (n – 1) - cycle 

H that does not contain edge {1, n – 1}. Since 

(1, 1) ( 1) { ( , ) |{ , } ( ) \{{1, 1}}}, ( ) ( )n NNw n n max w i j i j E K n w H w C−  −   −  . 

We can see that the number of (n – 1) - cycles which do not contain edge {1, n – 1} is 

( 2)! ( 2)!
2

n
n n− − − . 

In the next step, we consider (n – 1) - cycle NNC C  which contains edge {1, n – 1}. This  

(n – 1) - cycle C is composed of an edge {1, n – 1} and the path P of length n – 2 starting from 1 

and ending at n – 1, where 1 2 3 1(1 , , , , 1)nP v v v v n−= =  = − . Assume that C does not contain vertex 

n. Let 1 1(} }{{ , ) |i i i iB v v E P v v+ +=   . Since NNC C , B is not empty. Then  

1

1

{ , }

( ) ( ) ( ) ( 2) ( ).
i i

NN i i NN

v v B

w C w C N v v n w C
+

+



 + − + −   

Thus, the (n – 1) - cycle NNC C , which contains edge {1, n – 1} and does not contain vertex n, is 

not dominated by NNC . The number of these (n – 1) - cycles is (n – 3)! – 1. 

Next, we consider the case when C contains vertex n. Assume that iv n= . Let u be a vertex 

that does not show in (n – 1) - cycle C and 1 1{{ , } ( ) | , }.j j j j jB v v E P v v v n+ +
 =     Then 

1

1 1

{ , }

( ) ( ) ( ) ( ) ( 2) .
j j

NN i j j

v v B

w C w C v u N v v N n 
+

+ +


 + − + − + −   

Since 
1

1

{ , }

( ) 0
j j

j j

v v B

v v N
+

+


−  , we have 1( ) ( ) ( ) ( 2)NN iw C w C v u N n + + − + − . If 1 0iv u+ −  , we 

can conclude that ( ) ( )NNw C w C . Hence, we count the number of (n – 1) - cycles which contain 

edge {1, n – 1} and vertex n where 1iv u+  . We see that the number of ways to choose vertices u 

and 1iv +  satisfying the condition u > 1iv +  is 
1

( 3)( 4)
2

n n− − . Since the path P is a sequence of n – 

1 vertices starting with 1 1v =  and ending with 1 1nv n− = − , we just need to fill in the remaining n – 

3 positions by the n – 3 vertices other than vertices 1, u and n – 1, so that n is followed by the given 

1iv + . There are (n – 4)! ways to complete this step. Thus, the number of ways to construct  

(n – 1) - cycle satisfying the condition is 
1

( 3)!( 4)
2

n n− − . 

From all cases, there are at least  

( )
1 2

( 2)! ( 2)! ( 3)! 1 ( 3)!( 4) ( 2)! ( 3)! 1
2 2 2 2

n n n
n n n n n n n

−   
− − − + − − + − − = − − − −   

   
 



Current Applied Science and Technology Vol. 20 No. 2 (May-August 2020) 

 

184 

 

(n – 1) - cycles that are not dominated by NNC . Note that the number of all (n – 1) - cycles in nK    

is ( 2)!
2

n
n − . Then NNC  can dominate at most 

2 1
( 2)! ( ( 2)! ( 3)! 1) ( 2)! 1

2 2 2 2

n n n
n n n n

−
− − − − − − = − +   

(n – 1) - cycles including itself. Hence, the domination number of the NN for the minimum weight 

(n – 1) - cycle problem is at most 
1

( 2)! 1
2

n − + . 

We can slightly modify the instance used in the proof of Theorem 3.4 to give an instance 

in which the NN gives the unique maximum weight k - cycle. As a result, the domination number 

of the NN for the minimum weight k - cycle problem for k = n is 1. Since our problem becomes the 

STSP when k = n, the next theorem offers a verification for the domination number of the NN for 

the STSP, which is mentioned without proof by Gutin et al. [9]. Hence, the proof is omitted. 

 

Theorem 3.5 Let n be a positive integer where 3n  . The domination number of the NN for the 

minimum weight n - cycle problem on nK  is 1. 

 

 

4. Conclusions 

 

We point out that approximation ratio is not an appropriate method to analyze the NN for the 

minimum weight k - cycle problem. We show that for any 1  , there is an instance of the minimum 

weight k - cycle problem such that the ratio of the maximum weight of k - cycle constructed by the 

NN and the weight of a minimum k - cycle is greater than or equal to  . 

Secondly, we find the average value of the weights of all k - cycles for each instance, and 

construct an instance of the minimum weight k - cycle problem such that the weight of a k - cycle 

constructed by the NN is greater than the average value of the weights of all k - cycles in the instance. 

Thus, the NN for the minimum weight k - cycle problem can be worse than average. 

Finally, we establish an upper bound 
1

( 2)! 1
2

n − +  for the domination number of the NN 

for the minimum (n – 1) - cycle problem. Moreover, we prove that the domination number of the 

NN for the STSP is 1.  

Even the NN can give the unique worst solution for some instance of the TSP, the 

domination analysis shows that it is more promising when k n . The output from the NN can be 

used as an initial solution in more complicated heuristics to get a better solution. 
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