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Abstract 
 

The two-dimensional cutting stock problems pose mathematical challenges due to the nature of 

mixed integer linear programming resulting in NP-hard problems.  At the same time, the problems 

are industrially important in manufacturing, logistic and supply chain industries. The ability to 

solve large-scale two-dimensional cutting stock problems could have a great impact on research 

community as well as industries. The objective of this work is to develop a framework of solution 

method for two-dimensional cutting stock problems using a modified column generation method. 

Two-stage Guillotine cutting patterns are considered. The relationship between the cutting patterns 

in the first and second stages gives rise to additional constraints that are not previously found in 

one-dimensional cutting stock problems. As a result, the column generation method was modified 

to handle these additional constraints. In order to further simplify the problem, LP relaxation is 

used in conjunction with the column generation. Integer solution can be obtained by rounding of 

LP solution. The lower bound of the problems may be estimated from the minimization of LP 

problem; allowing the optimality of solution obtained to be assessed in terms of, for example, the 

worst performance ratio. With the instance problem studied in this work, the modified column 

generation method performs well and produces the optimal result that is only 1% less than optimal 

solution obtained from the exact algorithm, which is the effect of rounding. In terms of speed, the 

proposed method requires only 1/200 floating point operations compared to the full problem with 

all feasible solutions (from the instance problem studied here). The proposed method may be 

further fine-tuned both in terms of rounding techniques with some tweaks in the column 

generation method in the future. The special structures of the problems should be further exploited 

for the advantage of the solution methods for large-scale problems. 
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1. Introduction 
 

There is a wide variety of industrial applications of the two-dimensional cutting stock problems 

such as those in wood, glass and paper industries. The goal of a two-dimensional cutting stock 

problems is to minimize the number of standard-size stock sheets to be cut into pieces of specified 

sizes. In general, the standard-size stock sheets can be cut into either regular (rectangle, circular, 

etc.) or irregular shapes depending on the applications. The mathematical model and solution 

procedures of the cutting-stock problems can also be applied in other problems such as bin-

packing, knapsack, vehicle loading, pallet loading and car loading problems. According to 

Delorme et al. [1], the number of articles having the titles related to either “cutting stock 

problems,” “bin-packing problems,” or both increased from approximately 30 articles per year 

before 2000 to 130 articles per year in 2014 in Google Scholar database. 

For the two-dimensional rectangular guillotine cutting stock problems considered in this 

study (further explained in the next section), Gilmore and Gomory in 1965 [2] proposed the 

solution procedure based on an integer programming model with a cutting pattern (column) 

generation procedure by solving two one-dimensional knapsack problems. In 1966, Gilmore and 

Gomory [3] further elaborated the cutting pattern generation procedure based on dynamic 

programming recursions. Since the cutting-stock problems are NP-hard problems, it becomes 

more complex to generate all feasible cutting patterns as the size of problem increased, which is 

typically found in practice. Heuristic and metaheuristic procedures represent more practical 

approaches, e.g., the partial enumeration heuristics of all feasible patterns by Benati in 1997 [4], 

the linear programming (LP) relaxation with the rounding procedure by Johnson in 1986 [5], the 

three-stage-sequential heuristics by Suliman in 2005 [6], genetic algorithms by Hopper and Turton 

in 1999 [7], and the ant colony optimization by Levine and Ducatelle in 2004 [8].  

Even though the heuristic and metaheuristic approaches could alleviate some of our 

difficulties in terms of the complexity of large-scale cutting stock problems in practice, they are 

still not an absolute mean to solve such problems. Furthermore, there is no guarantee that the 

solution obtained will be optimal or at least close to optimal. Because of this gap, the objective of 

this paper is to develop a solution procedure for large-scale two-dimensional rectangular guillotine 

cutting stock problems. The method should also provide the lower bound as a gauge to check the 

optimality of the solution. Consequently, this study proposes the solution procedure based on the 

LP relaxation i.e. the column generation and the rounding. 

 

 

2. Materials and Methods  
 

2.1 Two-dimensional (2D) cutting stock problem  
 

2.1.1 Mathematical model 

 

For two-dimensional cutting stock problems, the standard-size stock sheets are cut into pieces of 

specified sizes subjected to 2 stage guillotine constraint-uninterrupted cuts going from one end to 

the opposite end of the sheet in two perpendicular directions sequentially as shown in Figure 1 

while minimizing the number of standard-size stock sheets used. Gilmore and Gomory [2] 

developed the mathematical model for n-stage cutting stock problems of two and more 

dimensions. Their 2 stage two-dimensional cutting stock (with trimming) mathematical model is 

adopted in this paper. In the first stage cut, the standard size sheet of 𝑊 × 𝐿 will be cut into strips 

with given cutting patterns shown in Figure 1.  

 



Current Applied Science and Technology Vol. 20 No. 2 (May-August 2020) 

219 

 

 

 
 

Figure 1. The 2-stage guillotine cutting pattern with trimming wasted material shown in the 

rendered area. The standard size sheet was 𝑊 × 𝐿 and pieces with sizes 𝑤𝑖 × 𝑙𝑗 

 

The number of total strips 𝑁𝑤𝑖
 with 𝑤𝑖 width obtained from the first stage cut will then 

be:  

 

 
 

where 𝑥𝑝 was the number of standard sheets cut with 𝑝 pattern at stage 1. The 𝑝 cutting pattern 𝑎𝑖𝑝 

is defined as the number of strips 𝑤𝑖 cut along the width of standard size. Note that 𝑖 is the index 

for the widths of strips running from 𝑖 = 1, … , 𝐼, where 𝐼 represents the total number of widths of 

strips. Figure 1 showed the strips of sizes 𝑤1 = 6 units and 𝑤2 = 7 units, i.e. 𝐼 = 2. If 𝑝 = 1 in 

Figure 1, the cutting pattern in the first stage for strips 𝑤1 and 𝑤2 is: 

 

𝑎𝑖1 = {
0
2

}. 

 

Note that the summation of the strip widths in the cutting pattern must be less than W, i.e. 

 

   

 

(1) 

 

 In the second stage, the cutting will be performed in the perpendicular direction, i.e. the 

vertical direction along the 𝑤𝑖 strips with 𝑞 cutting pattern 𝑏𝑖𝑗𝑞. Noted that 𝑗 is the index of piece 

lengths running from 𝑗 = 1, … , 𝐽. For 𝑤2 strips in Figure 1, the cutting pattern 𝑞 = 1, 2 for the 

pieces with 𝑙1, 𝑙2 and 𝑙3, respectively, are: 

 

𝑏2𝑗1 = {
1
2
0

} and 𝑏2𝑗2 = {
2
0
1

}. 
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Remember that the strip with 𝑤𝑖 width can also be trimmed in to narrower pieces as illustrated in 

Figure 1. Constraint (1) must also be satisfied along the length of the strip 𝑤𝑖 : 
 

 

 

(2) 

 

As the total number of strip 𝑤𝑖 is limited by 𝑁𝑤𝑖
 from the first stage, the relationship 

between the number of strips 𝑤𝑖, 𝑦𝑞
, and 𝑥𝑝  is related via: 

 

 (3) 
 

 

After the cutting process in both stages, the number of pieces 𝑤𝑖 × 𝑙𝑗 must be at least 

equal to the demand of such pieces 𝑑𝑖𝑗 :  
 

 

 

(4) 

with the objective to minimize the total number of standard-size stock sheet used in the cutting 

process: 

 

 

 

(5) 

 

In summary, the mathematical model for a two-stage cutting stock problem in two-

dimensions is:  

 
 
2.1.2 Instance problem 

 

Let us consider the instance problem of 2-stage cutting stock in two-dimension with the standard-

size stock sheets of width 𝑊 and length 𝐿 of 15 and 20 units, respectively. The demands 𝑑𝑖𝑗  for 

pieces with size of (𝑤, 𝑙) = (6,6), (6,7), (6,8), (7,6), (7,7) and (7,8) are 30, 15, 5, 5, 15 and 25, 

respectively. The problem instance is summarized in Table 1. 
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Table 1. The summary of problem instance 

 
Standard-size stock sheet 

𝑊 15 

𝐿 20 

Demand size and demand 

The width of the strip The length of the piece Demand 

𝑤1 = 6 

𝑙1 = 6 30 

𝑙2 = 7 15 

𝑙3 = 8 5 

𝑤2 = 7 

𝑙1 = 6 5 

𝑙2 = 7 15 

𝑙3 = 8 25 

 

The mathematical model of the problem with all feasible cutting patterns following 

constraints (1), (2) is formulated in Microsoft Excel 2013 in the matrix form as:  

 

 
 

Where: 

 
 

All feasible cutting patterns 𝑎𝑖𝑝 and 𝑏𝑖𝑗𝑞 are generated by means of the search tree resulting in the 

number of cutting patterns for 𝑎𝑖𝑝, 𝑃 = 5 and the number of cutting patterns for 𝑞1𝑗𝑞 + 𝑞2𝑗𝑞 , 𝑄 =

13 + 49 = 62. Therefore, the total number of decision variables 𝑥𝑝 and 𝑦𝑞, and constraints are 67 

and 8, respectively. The optimal solution was determined by Microsoft Excel Solver with Simplex 

LP, constraint precision of 1 × 10−6, automatic scaling, and integer optimality of 1%. For the 

optimal solution, the total number of standard-size stock sheets needed to be cut to meet the 

demands exactly of 175. The cutting patterns in the first stage 𝑎𝑖𝑝 and 𝑥𝑝 for the optimal solution 

are:  

 

 
 

and the cutting patterns in the second stage 𝑏𝑖𝑗𝑞 and 𝑦𝑞 for the optimal solution are as follows: 

Strip 𝑤1 = 6 : 
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and strip 𝑤2 = 7:  
 

 
 

where the cutting patterns in the upper section of 𝑏2𝑗𝑞 for strips 𝑤2 = 7 corresponds to the cutting 

patterns for the strips with 𝑤1 = 6 while the lower section corresponds to those for the strips with 

𝑤2 = 7. Remember with the strips of 𝑤2 = 7, pieces with the width of either 𝑤1 = 6 or 𝑤2 = 7 

can be cut from them.  

 

2.2 Column generation method  
 

2.2.1 One-dimensional (1D) cutting stock problems 

 

As the size of cutting stock problems increase, the number of all feasible cutting patterns grows 

rapidly. It becomes impractical, even impossible, to include all the cutting patterns into the 

problems even it is a one-dimensional cutting stock problem. Instead, the column generation 

algorithm is used to solve the problem. In column generation algorithm [9], the problem is 

formulated as a restricted master problem (RMP) with as few decision variables (as well as cutting 

patterns) as possible, i.e. the model with 𝑃 ⊂ 𝑃𝑎𝑙𝑙  and 𝑄 ⊂ 𝑄𝑎𝑙𝑙 . The new decision variables and 

cutting patterns are brought into the basis as needed in a similar manner to the simplex method via 

the following sub-problem:  

 

 
 

𝑅𝐶𝐶 and 𝜋𝑖 are a reduced cost coefficient and a shadow price from the restricted master problem. 

This sub-problem is indeed a knapsack problem which has been studied extensively and may be 

solved efficiently by many algorithms, e.g., dynamic programming. As in the simplex method, the 

criterion for possible improvement is min 𝑅𝐶𝐶 < 0 or max(∑ 𝜋𝑖𝑎𝑖𝑝
𝐼
𝑖=1 ) > 1 and the 

corresponding column 𝑎𝑖𝑝 , i.e. the cutting pattern will be enter the master problem as the basis 

and at the optimal solution, min 𝑅𝐶𝐶 ≥ 0. 
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2.2.2 Two-dimensional (2D) cutting stock problems 

 

For two-dimensional cutting stock problems, the Guillotine constraint and relationship between 𝑥𝑝 

and 𝑦
𝑞
 impose certain constraints on column 𝑎𝑖𝑝 and 𝑏𝑖𝑗𝑞of the restricted master problem as seen 

in the matrix form of the instance problem discussed above. Two modifications are proposed here 

to handle the two-dimensional cutting stock problems.  

First, as the structures of columns of matrix 𝐴 are having different structures, the sub-

problem for each structure shall be formulated individually. Let us take the example of the 

instance problem. There are three different structures for columns of 𝐴 in response to the cutting 

patterns for the first stage, those for the second stage with the strips of 𝑤1 width, and those for the 

second stage with the strips of 𝑤2; there will be three different formulations for the Knapsack sub-

problems. The decision variables for sub-problems are only the cutting patterns 𝑎𝑖𝑝 and 𝑏𝑖𝑗𝑞 while 

constants 0 and -1 in those columns are treated as a constant contribution in sub-problems. 

The second modification comes from the fact that there will be three columns generated 

at each stage rather than just one column, in the case of the instance problem discussed above; 

thereby three newly generated columns will be added as the bases to the problem concurrently at 

the end of each iteration. 

The solution of master and sub-problem continues until the optimal solution has arrived - 

either when 𝑅𝐶𝐶 ≥ 0 or there are no new independent columns generated. 

It should be noted that to get the shadow price for the knapsack problem, the (restricted) 

master problem has to be relaxed to LP problem - the integer constraint was removed from the 

problem. As a result, the LP solution obtained may not necessary be integer and required further 

rounding procedure to round them into integer. Elaborate methods such as branch-and-bound may 

be used but as the preliminary study of the extension of column generation algorithm for two-

dimensional cutting stock problems, simply rounding to the nearest integer is adopted at the end of 

optimal solution from relaxed LP problem. 

The optimal solution of LP problem may also be used as a lower bound to evaluate the 

worst performance ratio 𝑊𝐶𝑃𝑅 = 𝑧∗/𝑧𝐿𝑃 of the solution procedure. 

 

 

3. Results and Discussion 
 

The modified column generation technique was applied to the instance problem in section 2.1.2. 

The procedure started from as few decision variables as possible but sufficient to generate feasible 

solutions. Master and sub-problems were solved sequentially over and over until the optimal 

solution converged. Among some different initial conditions experimented in this study, the 

column generation algorithm took less than 10 iterations to arrive at the relaxed optimal solution. 

The LP optimal solutions for all the cases are 175 coincide well with the exact solution in section 

2.1.2. The optimal solutions with cutting patterns, 𝑥𝑝 and 𝑦
𝑞
 are: 
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With the rounding, the (sub) optimal solution from the solution procedure is 176. With the worst 

performance ratio = 176/175 = 1.006, it is clear that the solution from the procedure is only 0.6% 

higher than the lower bound, i.e. the LP solution, which is typically lower than the integer 

programming model; the solution procedure produces satisfactory result. More elaborate rounding 

procedure is necessary to improve our method and shall be studied in the future.  

The column generation method proposed here only adds four more cutting patterns 𝑏𝑖𝑗𝑞 

(columns), i.e. adding four new decision variables to the problem. In total, there are only 12 

decision variables to be considered in the column generation procedure. Comparing the number of 

decision variables to those from the exact LP problem in section 2.1.2, the column generation 

method only deals with 12 decision variables or only about 20% of the full problem resulting in 

almost 200 times faster in terms of SIMPLEX floating point operations. Moreover, with the 

column generation method, it is not necessary to generate all feasible cutting patterns which can be 

rather challenging for large-scale problem. 

Along the course of solution determination, it is observed that at the beginning, the 

columns corresponding to the cutting patterns in the first stage of cutting process 𝑎𝑖𝑝 are generated 

and dominated the whole process. This suggests the method tried to generate stocks of strips with 

different widths as the resource of the second-stage cutting process. Later on, columns in response 

to the cutting patterns in the second stage are added. Most of these cutting patterns are for wider 

strips, 𝑤2, with cutting patterns for pieces with mixture of 𝑤1and 𝑤2. This should be the result that 

the wider strips are more flexible in terms of patterns to be cut; the solution is driven into that 

direction. 

 

 

4. Conclusions 
 

The main contribution of this paper is to develop an alternative algorithm to solve large-scale two-

cutting stock problems based on the column generation with LP relaxation. The mathematical 

models of such problems are derived from Gilmore and Gomory [2]. Guillotine constraint and the 

relationship between 𝑥𝑝 and 𝑦
𝑞
 impose certain constraints on columns 𝑎𝑖𝑝 and 𝑏𝑖𝑗𝑞;  hence the 

column generation algorithm has to be modified to cope with the change. The restricted master 

problems (relaxed LP) and knapsack sub-problems were solved sequentially until the optimal 

solution are reached. Rounding was applied at the end of the process resulting in slightly less than 

1% optimal solutions compared to the full exact solution. The lower bound of the optimal solution 

may be estimated from 𝑧∗ of LP. Consequently, the worse-performance ratio can be evaluated and 

the optimality of the obtained solution can be gauged. It should be noted that in terms of floating 

point operations, the column generation method requires less 1/200 of those required by exact 

solution. In other words, the column generation method is 200 times faster than the full exact 

solution. 

  There are several aspects that can be done in the future: to refine the column generation 

method, to improve the rounding technique such as branch-and-bound method, and to exploit the 

special structures of problems for large-scale problems. Further comparison with other solution 

procedure shall be carried out to benchmarking the performance of the proposed method.  
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