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Abstract

Using the so-called characteristic method, continuous solutions of the fourth order polynomial-like
iterative equation

feX)+a, f3(x)+a,f2(x)+a,f(x)+a,x=0
were determined subject to certain natural conditions on its characteristic roots. The result so
obtained complements earlier work in the cases of second and third order equations.
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1. Introduction

For ne N, the n" iterate of a function f is defined by
fr(x)=f(f"(x)), F°(x)=x .
A polynomial-like iterative equation is a functional equation of the form
fr () +a, , f" () +...+a,x=F(x) , (1.1)
where a, eR (i=0,12,..,n-1), Fis a given function, and f:R — R is an unknown function.
The homogeneous case of (1.1) (i.e., when F(x)=0)
fr(x)+a,_, F"H(X)+..+a,x =0 (1.2)

is of interest here. There have appeared a number of recent works [1-4] attempting to solve (1.2)
using a technique mimicking that of Euler for solving linear differential equations with constant

coefficients, which proceeds by assuming a solution of the form e™. Substituting this into the
differential equation and simplifying, an algebraic equation in r, called its characteristic equation
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is obtained. Solving the characteristic equation yields linearly independent solutions of the
differential equation, and the general solution follows by taking a linear combination of these
independent solutions. In the case of iterative equation (1.2), we consider, instead, a continuous
solution of the form f (x) = rx. Substituting into (1.2), we get an algebraic equation (in r)

r"—a, ,r"'—..—ar—a, =0,
which, by abuse of language, is also called the characteristic equation of (1.2) and its roots are
called its characteristic roots. Let r,..,r, be all the characteristic roots. Using symmetric

functions relations involving roots and coefficients, the iterative equation (1.2) is equivalent to

f”(x)—(zn:ri)f”’l(x)+(zn:rirj)f”’Z(X)+...+(—1)”r1r2...rnx =0. (1.3)

i<j

At the outset, we make several preliminary observations and define conventions to be adopted
throughout the entire investigation here.
e The coefficient a, is always nonzero.

(For otherwise, one of the characteristic roots is zero yielding the trivial solution
function f =0 which must always be ruled out.)

e Any function solution f :R — R of (1.2) is injective.
(If X,y eRare such that f(x)= f(y), then f*(x)= f*(y) for all ke N and (1.2)
implies that a;x =a,y . Since a, #0, we get x=y.)

e Any continuous function solution f:R—>R of (1.2) is strictly monotone and

surjective.
(Since f is continuous and 1-1, clearly, it is strictly monotone. To show that f is

onto, we consider only the case f is strictly increasing as the other case is similar.
Suppose f is not onto on R. By its continuity, the range must be of the form

f(R)=I , where | #Ris an interval, which can take one of the three shapes :
(-,a), (-b,a) or (-b,x), for finite values b <a.From f:R— f(R)=1, we
see that f2R>f(l)cl,..., f:Ro>f(1)cl.
From (1.2), we get

|agX| = f”(x)+an_1f”’1(x)+...+a1f(x)|.

For the cases | :=(—o0,a) or |:=(-b,a), lettingx — o, we see that the left-hand
side — oo, while the right-hand expression (since the range of the function is
bounded) is bounded, which is contradiction.
For the case | = (—b,oo), letting x — —0, the left-hand side — o, the right-hand
side is bounded, which is again a contradiction.)

e Since a, #0 and f is bijective, the inverse function f™*:R — R exists and the
original iterative equation (1.3) is equivalent to the dual equation

0= () 00+ (X ) P00+ (-1 —

i i<i i nn..r,

it n

x=0 (1.4)

where 1 denotesthe j" iterate of .
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In 2004, Yang and Zhang [3] constructed all continuous solutions of the equation (1.2) whenn> 2
for the hyperbolic cases subject to the condition that characteristic roots belong to following

ranges:

all characteristic roots are in the interval (1,c0): 1< <r, <...<f;
1

all characteristic roots are in the interval (—oo,—1): r, <1, <...<r, <-1;

all characteristic roots are in the interval (0,1): O<r <r, <...<r, <1;

all characteristic roots are in the interval (-1,0): —1<r, <r, <...<r, <0.

no real characteristic roots (in this case n must be even and characteristic roots form
pairs of conjugate complex numbers), it is shown that (1.2) has no continuous
solution.

all characteristic roots are equal, i.e., , =...=r, =T,

(i) If O<r=1, then f is strictly increasing, the function
I n-1
F'r](f%) = f”‘l(x)+Z(—1)”‘[ . jrmf”‘l‘m(x)
m=1

is nondecreasing, f(0)=0, and F"'[r](f°)=0 foreven n.

(i) If -1#r<0, then f s strictly decreasing, the function F"*[r](f°) is
nondecreasing (respectively, nonincreasing) for odd (respectively, even) n,
f(0)=0, and F"'[r](f°)=0 foreven n.

(iii) If r=1, then f s strictly increasing. Additionally, f(x)=x if f has fixed
point, otherwise, F"'[r](f°)=a for all xe R, where a is a real constant which
equals 0 for odd n. In particular, for n=3, continuous solutions of equation (1.2)
are of the form f (x) = x-+c, where c is a real constant.

(iv) If r=-1, then f(x)=-x forall xeR.

The subcases (i), (ii) and (iii) provide a method to reduce the order of iteration,
giving equivalent equations of lower order, although it does not give the construction
of the general solution in all cases.

In their work, there remain un-resolved cases when the existing characteristic roots of (1.2)
e are both positive and negative, or
e have absolute values both greater and less than 1.

In the second order case (i.e., n=2), Matkowski and Weinian [1] established
continuous solutions by subdividing into the following cases.

Noncritical cases: rr, >0, |r|#1 and |r,| =1with all possibilities

1< <r,, 0<n<l<r, O<p<r, <1,

n<r,<-1,r<-1<r,<0, -1<r, <r, <0.

Noncritical cases: rr, <0, |n|#1, |r,| =1, r, = —r, with all possibilities

O<-r<r,<1,0<r,<-n<l,1<r, <1, O<r,<l<—n, O0<—1, <1<,
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o Case|r|=|r|:n=r,=r=0.
e Critical cases: there is a characteristic root with absolute value 1 with all
possibilities
O<r<r,=1, 1#r<0<r,=1,-1=r<0<r, #1, -1=r,<r, <0,
n<r,=-1
e  Case with no real roots: in this case (1.2) has no continuous solution on R.
From their work, the un-resolved case is whenr, =—r = —r, (r >0). The governing equation of
this case is
f2(x) =r’x (1.5)
When r =1, Kuczma’s Theorem 15.2 [6] shows that (1.5) has a decreasing solution depending on
an arbitrary function, but f (x) = x is its unique increasing solution.

When r #1, Kuczma’s Theorems 15.7 [6] and 15.9 [6] indicate that (1.5) has not only increasing
continuous solutions but also decreasing ones, all of which depend on arbitrarily given functions.
In the third order case (i.e., n=3), Zhang and Gong [4] in 2014 solved (1.2) for
continuous solutions in the hyperbolic cases not treated in the work of Yang and Zhang. They
completed the following cases:
I. The three characteristic roots have different signs. There are two possibilities.
1.1 Two positive characteristic roots 0 <r, < r,, and one negative characteristic root

I, <0. Treated cases are

e 0<-n<l: 0O0<-r<r<n<l, O<n<-r<n<l, O<r<r<-r<l1,
O0<-n<l<r<n, 0<r,<-f<l<rn, 0<-r<r,<l<r.

o l<-n: 1<—n<rn<r, 1I<n<-n<r, 1<n<n<-r, 0<n<l<-r<r,
O<r<l<r<-r,0<n<r<l<-r.

1.2 One positive characteristic root r, >0, and two negative characteristic roots

O>r>r,.

e 0O<nr<l: O<-<-n<r<l, O<-r<np<-r,<l, O0<n<-r<-r,<1,
O<n<l<-r<-n,0<p<-n<l<-r,, 0<-n < <l<-r,.

o l<n:il<—r<—N<n, l<—rn<rn<—0, 1<p<-<-1,,0<-1<l<—1, <1,

O<-r<l<rn<-r, 0<-r<-r,<l<r,.

I1. The three characteristic roots have the same signs. The treated possibilities are
O<rn<l<n<r,O<np<rn<l<n, n<np<-1<r<0, p<-1<r,<r<0.

The still un-resolved cases are:
- there is a characteristic root with absolute value 1.
- there is a characteristic root with multiplicity > 2.

Zhang and Gong [4] also considered the 4-th order equation when the four characteristic roots
have different signs lying in the following ranges:

l<-r<n<n<r,, l<-r<rn<r<r, l<-rn<rn <<, l<—r<r<-1,<r,

l<-rn<-rn<n<n, 1l<-n<-K<n<r.
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2. Methodology

Following ideas from the work of Zhang and Gong [4], we determine here continuous solutions of
the homogeneous equation (1.2) of order 4, i.e. the iterative equation

00 - (R P00+ (0 1200~ 1R) (0 +inrx =0, (1.6

i<j i<j<k
when the characteristic roots r,,1,,r,,r, are subject to the restrictions:

ny 151#01 G 1234 and
2) the absolute values of the chrarcteristic roots |r;| (i =1,2,3,4) are all distinct.

The dual equation of (1.6) is

1

f"%x)—(i%_)f'3(x)+(z4:ir)f'2(x)—(24: ) EH(X) + x=0. 1.7

i<jrij i<j<k litjlk 1'2'3%4
To simplify our analysis, we leave out certain special cases consisting of
n<r<n<r<-1, -l<n<r<rp<n<0,0<p<n<r<n<l, l<n<n<n<r,

that have already been treated in Yang and Zhang [3]. In addition, the special case where all
characteristic roots are not real, which has also been shown to have no continuous solution by

them, is also left out.
Specifically, we solve (1.6) when the characteristic equation has

e one negative and three positive characteristic roots or
e three negative and one positive characteristic roots or
e two negative and two positive characteristic roots.

The solutions so obtained are displayed in Figures 1, 2 and 3, respectively. Though
there are totally seventy subcases solved in this work, there remain two cases that are yet to be
resolved for which the methods and techniques used here do not seem to work. These subcases are
when

(i) all characteristic roots are positive, some being in (0,1) and the others in (1,oo),

(ii) all characteristic roots are negative, some being in (—1,0) and the others in

(—oo,—l).
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-r>1
| 1<r,<rasn, ——| O<ry<l<ra<r, | 0<ry<r<lzr, O<ry<ra<ry<l
1 (A1) 1<-rj<ry<re<r, | H (AS) 0<ry<l<-ri<ry<r, || (A8) 0<ry<ry<le-ri<r, (A10) O<ry<ry<ry<l<er,
| (AZ) 1<rz<_rl<r3<r4 * (AG) 0<r2<1<r3<-rl<r4 | (Ag) 0<r2<r3<1<r4<-r1
{ (A3) 1<ry<ry<eri<r, |- (A7) 0<ry<lers<r,<er,
(Ad) 1<ry<ra<r,<ery
r;<0
|
0<-r<1
|
l<ry<ry<n, | 0<ry<l<rs<ry, ——1 0<ry<ry<lr, 1 0<ry<ry<r,<1
(A10) O<-r,<l<r,<ryer, (A9) O<-ri<ry<l<ra<r, | [ (A7) 0<-r,<ry<ry<lcr, | || (A8) 0<-r <ry<ry<r,<1

| (A8) 0<r,<-r,<1<ry<r,

(AB) O<ry<-r <ry<l<r,

| (A3) 0<r,<-ry<ry<r,<l

(A5) O<r,<ry<-r <1<r,

(A2) 0<ry<ry<r;<r,<l

(A1) 0<ry<ry<r,<-ri<1

Figure 1. One negative characteristic root, r, , and
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three positive characteristic roots, O0<r, <r, <r,

r>1
1<-ry<eraeer, 0<-ry<l<rycer, 0<-r,<-ry<l<r, 0<-ry<ery<er<l
(B1) 1<r <-ry<-ry<-r, (B5) 0<-r,<1<ry<-r3<-1, (B8) 0<-ry<-ry<l<r,<-r, (B10) 0<-ry<-ry<-ry<l<r,
(B2) 1<-ry<r;<ry<-ry (B6) 0<-ry<le-ra<ri<ry (B9) 0<-ry<-ry<le-ry<r,
(B3) 1<-ry<ra<ry<-ry (B7) 0<-ry<l<-ry<-ry<ry
(B4) 1<-ry<-ry<ry<ry
ri>0
0<r<1
1<-1y<-r3<ry 0<-ry<l<-ry<er, 0<-ry<ry<lser, 0<-ry<ery<ry<l
(B10) O<ry<l<-ry<-rs<-ry | | (BY) O<ry<-r,<l<-ry<ry | - (B7) 0<ry<-r,<-r;<l<er, (B4) 0<ry<-rygry<ery<l
(B8) O<-r,<r <1<-ro<er, (B6) 0<-ry<r;<-ry<l<er, (B3) 0<-ry<ry<-ry<ry<l
(B5) 0<-ry<-ry<ri<i<er, (B2) O<-ry<-ryer <-ry<l
(BI) O<-ry<-ra<ry<ri<l
Figure 2. Three negative characteristic roots, 0>r, >r, > r,, and one

positive characteristic root, r,
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— — — -r>r>1

Larysr,
Ocry<lers<er 0<ry<ry<l<er,

‘ (C10) O<rycry<lery<r,

— lerycericr 1<ry<rycry 0<ry<1<-ri<ry

ﬁ{ 1<-ry<rp<ry

I } (C1) 1<-ry&-r,<rp<rg

(C4) 1ary<-ri<rycry

‘[Cﬁ) 1<ry<ryer <ry ﬂ{(C?](}<rz<1<-ri<-r4<r3 (C9) O<rycders<eri<ery

‘ (CS) A<ry<ry<ry<ry

% (C2) 1<-ryrygr,4rs

(C8) O<ry<l<-ry<ryger,

| (C3) 1<ory<rycryeer,

- E
0<-ri<1, -rp>ny
O<ry<lers 0<ry<rs<l

| O<ery<larycry ) - O<ry<ri<l<n
- (€10) O<-ry<er, <1<ry<ry «{(@]O(-r]<-r4<rz<1<r3 ‘ ‘(Cﬁ’}0<rz<-r]<-r4<1<r3 | (C8) 0cryeryryry<d ’(ﬁ)oqf.“.uqad

| (C11) 0<er <o, <rycry ‘ (C8) O<-ryryery<lery H (C16) O<ry<-r,<I<-r,<ry <{ (C5) O<-r <ryger,<rycl

[C12) 0<-r,<lryger, <ry | | (C14) O0<-rycry<l<r, <ry {(m] 0<ry<ry<lery<r, <{[C73) 0<-ri<ryery<er,<l
[C13) O<-ry<dergryeer, | (C15) 0<ry<ry<derer, (C13) 0<-r <ryery<ler,

Figure 3. Two negative characteristic roots, 0> r, > r, , and two positive characteristic roots,
o<r,<r,

L 0<rgargred

— 0<ry<eri<rcd <{ 0<ry<ry<ry<1

{ (CT) O<ryery<oricry<l ‘

‘ (C2) O<ry<ry<ry<rycl { (C11) O<rycry<ory<leer,

L} (CT2) O<rycoryerscler,
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Detailed proofs of our results are given in the next section. Preliminary results needed
throughout are displayed in the above two boxes.
To simplify the presentation, define
CS(x)={f :R—R; f is a continuous solution of the iterative equation (x)},
CSI(x)={f :R—R; f is a continuous strictly increasing solution of the iterative equation (x)},
CSD(x) ={f :R —> R; f is a continuous strictly decreasing solution of the iterative equation (x)}.

To consider our continuous solutions, we need the continuous solutions from the works
of Yang and Zhang [3], Matkowski and Weinian [1], and Zhang and Gong [4] as shown below.

Works of Yang and Zhang [3]

Theorem 1.1 (Theorem 2 [3]) Suppose that 1<, <...<r, . If f €eCS(1.2), then
(i) f isstrictly increasing,
(i) f(0)=0,and

n-1 n-1
(i) £ 0-Qn) 20+ Q) 72 () +..+ (=D hr,...r, X is nondecreasing
i=1

i<j
and ") =R 200+ (D] kr) f7 2 (X)) +...+ (=) 'r,r,..r X is non-decreasing (resp. non-
i=2 i<j#l
increasing) for odd (resp. even) n.
Conversely, given positive numbers x,,...,x,, such that

X = Qo)X+ (D BE)X g+t (D" R E T, =0 (resp. <0),
izk i<j,i, jzk
if n—k is even (resp. odd) and given a continuous function f.:[x,,X,,]1—[x,x,], where
X, = 1)% = O 0r)X, L, + .ot (Z1)"r. X, satisfying
i=1

i<j
()] f.(x;)=x.,,(0< j<n-1) and
(1) Each £ (D p)E"200+ (D) rr) £ 200 4o+ ()" X,
i=1=k i<jzk
k =12,...,n, is nondecreasing (resp. nonincreasing) on [x,, x,] if n—i is even (resp. odd), then
equation (1.2) has a unigue continuous solution ¢:(0,) — (0,) satisfying ¢|, , .= f..
Furthermore, given f., and f., arbitrarily like f., the function

& (%), x>0,
f(x):=10, x=0,
_¢2 (—X), x<0

is a continuous solution of equation (1.2) on U, where ¢, and ¢, are functions determined
correspondingly by f., and f.,.

Corollary 1.2 (Remark 4 [ 3]) The case that 0 <1, <...<r, <1 can be reduced to the case of
above Theorem 1 by considering the dual equation (1.4).
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Theorem 1.3 (Theorem 3 [3]) The case that r, <...<r, <—1. Suppose f € CS(1.2). Then
(i) f is strictly decreasing and has a unique fixed point O;

n-1 n-1
(i) £ 00— F 200+ Qo) £ () +..+ ()" Hhr,...r X is nondecreasing and
i=1

i<j
00— 200+ (D] 1) £7°(X) +...+ (=1)" ' r,K,...r. X is nondecreasing (resp.
i=2 i<j#l
nonincreasing) for odd (resp. even) n.
Moreover, (1.2) has symmetric continuous solutions in the form

f (X) — {_(D(X)! X2 0,
o(—x), x<0,

where ¢:[0,00) —[0,0) is an arbitrarily given function satisfying

700 = (X 00" (= (R0 (0 +t (), X< (0,),

i<j

Theorem 1.4 (Theorem 4 [3]) The case that 1, <...<r, <-1. Givenreal X,,...,X,_, arbitrarily,

which are not all zero such that x,_, —(Zri)xnfz +( z ) Xyg +ot (CD)" by, 20
izk i<j,i,jzk

(resp. <0), if n-k is even (resp. odd). Given a continuous function

n-2 n-2 k k _
£ oD %21 = U DX Xg.a] s where = QR X = (o RR) X o+t (CD M RefX
i=1 i<j
for k =n,n+1such that
() f.(x;)=x;,,, J=0,.,n and

(1)  each f*"’l(x)—(zn: ri)f*”’z(x)+(zn: L) M2 00 4+ + (D) b g DX

i=1=k i<jzk
k=12,...,n, is nondecreasing (resp. nonincreasing) on [x,,x,] if n—i is even (resp. odd), then

equation (1.2) has a unique continuous solution f such that f lU"’Zl = f..

Corollary 1.5 (Remark 6 [ 3]) The case that —-1<r, <...<r, <0 can be reduced to the case of
Theorem 4 by considering the dual equation (1.4).

Works of Matkowski and Weinian [1]

Theorem 1.6 (Theorem 1 [1]) Suppose 1<, <T,.

(i) If f eCS(@.2) for n=2,then f(0)=0 and f , strictly increasing, satisfies
L<(f(x)-f(x)/(x=x)<r, for x=x'eR.

(if) Conversely, equation (1.2) for n=2 has a continuous solution depending on an arbitrary
function. More precisely, for every x, >0,x >0 and f,:[x,,x]— R such that

LX) <X S hXo,
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foO%6) =X, fo(3%) =(n+1)x —nrX,,
X=X

there is a unique continuous function p:(0,00) — (0,) satisfying equation (1.2) for n=2 on

(0,0) and p = f, on [x,,x]; for two arbitrary initial functions f,, and f,, like f,, the function

I < <1, VXX eX, %],

p, (%), x>0,
f(x) =40, x=0, (3.1)
-p,(-x), x<0.

is a continuous function of equation (1.2) for n=2 on R, where p, and p, are functions like p
determined as above by f,, and f,,. (3.1) gives all continuous solutions of equation (1.2) for
n=2in R.

Corollary 1.7 (Page 427 [1]) The case where O <1, <r, <1 can be obviously reduced to the case
of Theorem 6 by considering the dual equation (1.4) for n=2.

Theorem 1.8 (Theorem 2 [1]) Suppose 0 <1, <1<T,.
(i) If feCS@.2) for n=2 then f is strictly increasing. If, additionally, f has a fixed point

then
f X, x20 3i,j=12
() = rXx,x<0 hl=he

(ii) Conversely, every f e CS(1.2) for n=2 without fixed points depends on an arbitrary initial
function. More precisely, for x, =0, for every x >0 (resp.<0) and for every function
fo :[%, %] — R (resp.f, :[x,%,]— R) such that
fo(Xo) = fo(o) =X, fo(xl) = (rl + rz)xlv
L<(f,()—f,(xXN/(x=x)<r,, Vx,x'#0.
There exists a unique continuous function f : R — R satisfying equation (1.2) for n=2 and
f(x)=1f,(x) on [x),x] (resp.on [x, %] ).

Theorem 1.9 (Theorem 3 [1]) Suppose r, <1, <—1.

() If f eCS(1.2) for n=2 then f is strictly decreasing with a unique fixed point 0 and satisfies
the condition r, < (f(x)— f(x))/(x—x")<r,, for x=Xx"'eR.

(if) Conversely, equation (1.2) for n=2 has a continuous solution depending on an arbitrary
function, given by f(x)=—p(x) when x>0 and f(x)=p(-x) when x<O0 where
p:[0,00) —>[0,0) has been constructed in Theorem 6 as an arbitrary solution of the functional

equation
p*(x) = (-1) + (-1,)) P(X) = (-K)(-F,)X, X €[0,0).

Theorem 1.10 (Theorem 4 [1]) Suppose 1, <—-1<rt, <0. Thenevery f eCS(1.2) for n=2is
strictly decreasing and 0 is its unique fixed point, and r, < (f(x)— f(x))/ (X=X <r,, VX = X".
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Corollary 1.11 (Page 427 [1]) The case where —1<r, <r, <0 can be obviously reduce to the
case of Theorem 9 by considering the dual equation (1.4) for n=2.

Theorem 1.12 (Theorem 5 [1]) Suppose that r, <O,r, #-1,r, >0,r, #1 and r, = —r,. If
f eCS(@.2) for n=2then f(x)=rx or f(x)=r,x for xeR.

Works of Zhang and Gong [4]

Lemma 1.13 (Lemma 2.5 [4]) Suppose that the characteristic equation (1.3) has n distinct roots
r,.,<r, eC.If feCS(.2),then
n rm
fr =Z— [f(x)- (Zr)fn 2(x)+(2 L) F 200 +..+ (=) 11_[rx]
j=1 H (r k#j k>t i#]

:i i [f“”‘” (x)- (Z )f‘(n 2(x)+( Z ) f (”‘3)(x)+...+(—1)”‘1ﬁlx]
j= H (7_7) k#j k k>t#] rkrt i#] r.
i=li#] rj

for all integers m>1 and i=12,..,n

Lemma 1.14 (Lemma 3.1 [4]) Suppose that 0 <1, <1<, <r,. Then for x, =0 and arbitrarily
given x;,X, such that

X >0 and (1 +6,)x <X, <(f+6)X,
the sequence (...,X,, X 1; %y, %, X,,...) defined by

Xoio = (L1 + )X — (G0 + 61+ L)X, +6EX, 4, 3.2)
Xy =(£+£+£] X _(L+L+LJ X ni2 +Lx—n+3' (33)
r]. r2 I’3 rlrz rlr3 r2 r3 r].r2 r3
is strictly increasing and satisfies
lim x, = +o0, lim x, =—
n—+o0 N—-o

Lemma 1.15 (Lemma 3.2 [4]) Suppose that 0 <1, <1<, <r,. Then for x, =0 and arbitrarily
given X, X, such that
X, <0 and (5 +6)% <X, < (5 +5,)X,
the sequence (..., X,,X;%y, X ;,X,,...) defined by (3.2) and (3.3) is strictly decreasing and satisfies
lim x, = -0 lim x, = +oo.

1
n—+o0 N—-0

Theorem 1.16 (Theorem 3.1 [4]) Suppose that 0 <1, <1<, <. Thenall f €eCS(1.2) for n=3

are strictly increasing. Additionally:
(i) If f has fixed points, then 0 is the unique fixed point and
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() = f.(x),x=0 190
“1f,00.x<0 "ITE

where f (x)=rx and f,(x) is a solution given in Theorem 1 of Nabeya [5].

(i) If f(x)>x forall xeR, thenthe setof f containsboth f(x)> max(rx,rx)(i=2,3)
constructed by Theorem 2 of [5] and
F(0) { fn,(l)()’ Xe[X,,%,.,,n=0,1,..,
fo(x), xe[x,,x,.,n=L12,..,
where the bilateral sequence (x;) is given in Lemma 14, and f, :[X,, X,,,] = [X..1: %,.,] and
foiDX s Xl =X, X 1], n=12,... are orientation-preserving homeomorphisms defined
inductively as
Fra () = (540, + B)X= (66, + 55+ 66) 5 (X) + 65 £ (F,5.(0),

n+l

f_n(x)=(1+1+1Jx—(i+i+iJ £ )+ —— £, (F2,(x)

r;l. r2 r3 rl r2 rl r3 rZ r3 1'27°3

—n?

which are uniquely determined by two given function f, :[X,,x]1—[x,x,] and

f D] =[x, %]

(iii) If f(x) <x forall xeR,, then the setof f contains both f(x) < max(rXx,rx)(i=2,3)
constructed by Theorem 2 of Nabeya [5] and

F(x) = f",(l)()’ Xe[X,...X],n=01...,
fo(x), xe[x,..x,lin=12,..,

where the bilateral sequence (x;) is given in Lemma 15, and f, :[X,,;,%,]1—[X,,,s X,,.] and

f o i[X e Xl = [X .00 X, ] are orientation-preserving homeomorphisms defined inductively
as

—n+1?

fn+2 (X) = (rl + r‘2 + rS)X - (rlrz + r‘1r3 + rzrs) fn_Jrll(X) + rlrz r3 fn_l( fnjrll(x))l
(0= [5 oL +1] X —[i+ 2y i] F2400+ —— T2, (F2,(0)
q 2 % GQ ﬂ% G% 15%
which are uniquely determined by two given function f, :[x, %, ] —[X,,%] and

£ i[x, %] =X, %]

Corollary 1.17 (Corollary 3.1 [4]) Suppose that 0 <1, <r, <1<r. Thenevery f e CS(1L.3) for
n =3 is strictly increasing and ' is a solution given in Theorem 16.

Theorem 1.18 (Theorem 3.2 [4]) Suppose that r, <r, <—1<r, <0. Thenall f €CS(1.3) for

n = 3are strictly decreasing and x =0 is the unique fixed point of every f. Moreover,

(i) If x=0 is attractive fixed point of f?, then f(x)=rx.

(ii) If x =0 is repelling fixed point of f?2, then f is asolution in the class given in Theorem 3
of Nabeya [5].
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Corollary 1.19 (Corollary 3.2 [4]) Suppose that r, <—1<r, <1, <0. Thenall f € CS(1.3) for
n =3 are strictly decreasing with the unique fixed point 0, and the inverse " is a solution given

in Theorem 18.

From now, Zhang and Gong [4] considered all continuous solutions of equation (1.3) for
n =3 for one negative root and two positive roots as in Table 1 and two negative roots and one
positive root as in Table 2.

Table 1. Two positive and one negative characteristic roots

(i) 1<-r<r, <1 (iii)1<r, <—r, <, W) 1<r,<rp<-n

V)0<-r<r,<r,<1 ([ii)0<r,<—r,<r,<1 | (I)0<r,<r<-r <1

(ii)0<-r <1<, <1, (iv)O<r,<l<-r<r | (vi)0O<r,<l<r<-r

(ﬁ)0<r2<r3<l<—r1 (R/)0<r2<—rl<1<r3 (\ﬁ)0<—rl<r2<l<r3

Table 2. One positive and two negative characteristic roots

@l<-r<-r,<n @©1l<-r<r<—r, (e l<ry<-r <,

@) 0<-r<-r,<r<1

©)0<-—r<np<-n<1

@)0<rp<-r<-r,<1

(b) 0<—r, <l<—1, <1,

(d)0<—r, <l<r, <,

(f)0<rp<l<-r<—r,

(b)Oo<r, <-r, <l<-r,

(d)0<—r <r, <1<,

(f)0<—r <-1, <1<,

Theorem 1.20 (Theorem 4.1 [4]) Cases (i) 1<-r, <r, <1, (i) 0<—r, <1<r1, <1y,
(iii)1<r,<—r,<r, and (V) 1<r, <r, <-r, in Table 1.

1) If f eCSI(1.3) for n=3,then f isa function in the class given in Theorem 1 of [5].
2) If f eCSD(1.3) for n=3, then f(x)=rx.

Corollary 1.21 (Corollary 4.1 [4]) Cases (i) O<r, <r,<-1, <1, (i) 0< r,<r<l<-r,
(iii) 0<r,<—r, <r,<land (V) 0<-r, <r,<r, <1 in Table 1.
If f eCS(L.3) for n=3,then f isa function in the class given in Theorem 20.

Theorem 1.22 (Theorem 4.2 [4]) Cases (iv) O<r, <—r, <1<r, and (vi) 0<—r, <r, <l<r, in
Table 1.
1) If f eCSI(1.3) for n=3,then f isa function in the class given in Theorem 2 of [5].

2) If f eCSD(1.3) for n=3, then f(x)=rXx.

Corollary 1.23 (Corollary 4.2 [4]) Cases (iv) O0<r, <l<-r <r, and (vi)O<r, <1< <—r in
Table 1.

If f eCS(1.3) for =3, then f is a function in the class given in Theorem 22.

Theorem 1.24 (Theorem 4.3 [4]) Cases (a) 1<-r, <-r, <1, (c)1<-r<r<—r,,

(e)l<r<-rp<-r,and (f) O<r,<l<-r, <—r, in Table 2.
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1) If f eCSI(1.3) for N=3, then f(x)=r,x.

2) If f eCSD(1.3) for N=3, then f isa function in the class given in Theorem 3 of Nabeya [5].
Corollary 1.25 (Corollary 4.3 [4]) Cases (&) O<r, <-r, <-T, <1, (€) O<—-r, <r,<-T, <1,
®)0<-r<-r,<rp<land (f)0<-r, <—r, <1<r, inTable 2.

If feCS(.3) for N=3, then { isa function in the class given in Theorem 24.

Theorem 1.26 (Theorem 4.4 [4]) Cases (b) O0<—r, <1<-r, <1, and (d) O<—r, <l<r, <—r, in
Table 2.

1) If f eCSI(1.3) for N=3,then f(x)=rx.

2) If f eCSD(L.3) for N=3, then f(x)=rx or f(x)=ryx.

Corollary 1.27 (Corollary 4.4 [4]) Cases (b) O<r, <—1, <1<-r, and (d) 0<—r, <r, <1<,
in Table 2.
If f<eCS(.3) for N=3, then f isa function in the class given in Theorem 26.

We single out from Lemma 1.13, two useful formulas for the iterates of an element in
CS(1.6) .

Lemma 1.28 Suppose that (1.6) has four different characteristic roots «,r,,r,,r, €C. If
f eCS(1.6), then

1700 =3 —— 11200 -0 00+ 3 )00~
j=1 H (rJ r|) k=j k>t,#j i%]j

R S LU IES TR ORI WS TR R § 2
j=1 H (? F) k#j k k>t,=j Tkt i=j 1

Il
=

1#

J

for any integer m>0.

3. Results and Discussion

3.1 Results

Our results are derived in accordance with those listed in Cases A, B and C. Apart from adopting
the approach Zhang and Gong [4], we introduce a novel technique of using a second limiting
criterion for the cases starting from (A2),(A3) (i.e., from Theorem 2.23) onwards.

Theorem 2.1 Cases (Al):l<—r, <1, <r,<r,, (Ad)dl<r,<r<r, <-r and
(m))0<—rl<l<r2<r3<r4.
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i) If f eCSI(1.6),then f isa function given in Theorem 1.1.
ii) If f eCSD(1.6), then f(x)=rx, the form given by Theorem 1.20.
Proof. We know that if f eCSI(1.6), then f*eCSI(1.7). If feCSD(.6), then
f1eCSD(L.7).
Case (Al :1<—-n <, <r<r,.
i) Let f eCSI(1.6). From Lemma 1.28, we have

Cf(x) 1 . 11 1., 1 1 1.,
L I T i v s M UM Bl e [ G B e LG

C-D)E-D)E-9) , L PLETN PY PR P17 PLELA
f"(x)

For a fixed xeR, since f*(x) is strictly increasing, the limiting function lim —
m—o r;l

X).

is

nondecreasing for even m and nonincreasing for odd m , which implies that it must be a constant,
i.e.,

20—t Dy o0+ (e Ly i) -—Lx=c eRVXeR (1)
r2 3 r4 2'3 2'4 3'4 2'3"%4

Substituting (2.1) into (1.7), we get ¢, = r,'c, implying that ¢, =0, and so

f’3(x)—(1+£+£)f’z(x)+(i+i+i)f’1(x)—

2 r3 r4 r2 r3 r-2 r4 r3 r4 r-2 r3 r4

x=0,

equivalently,
(2.2)

F2X)—(r, + 1, +1,) F2(X) + (rr, + 1,1, +1,0,) f(X) = 1r,rr,x =0.

The equation (2.2) is of 3rd-order with three positive distinct characteristic roots > 1, and its
solutions are as given in Theorem 1.1.
ii) Let f eCSD(1.6). From Lemma 1.28, we have

. fm 1
im— = f3(X)=(r +r, +1) F2(X)+(r, + r, +1,5) £ (X) = 61,rX).
i = oo im0 R B 00 (6, 08+ 15) ()~
For a fixed xeR, since f(x) is strictly decreasing, the limiting function lim frrEX) is
4
nondecreasing for even m and nonincreasing for odd m, which forces it to be a constant, i.e.,
(2.3)

F2X)—(r +1,+1r)f2(X)+(nr, + 0o +0) f(X)-rrrx=c e R,vxeR.

Substituting (2.3) into (1.6), we get ¢, = r,c, implying that ¢, =0, and so
F2X)—(r +1, +6) 2 (X)+(nr, + 0L +0,0) f(X)—rrLx=0.
Since the three distinct characteristic roots satisfyl < —r, <r, <r,, Theorem 1.20 gives f(X)=rx.

Case (Ad):1<r, < <r, <-I.
i) Assume that f € CSI(1.6) . By the same proof as that of the case (A1), we obtain
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F3(X)—(r, + 1, +1,) F2(X) + (r,r, + 1,1, +1,1,) f(X) = r,r,r,x=0.
Since 1<r, <1, <r,, the solution function is given by Theorem 1.1.
ii) Assume that f € CSD(1.6) . By the same proof as that of the case (A1), we obtain

200-(Ca Lt Dy epg (e e Ly -—tx=o,
rZl. 3 4 1°3 r;lr4 3'4 1°3%4

equivalently,
) —(n+r,+r)f2(X)+(rnr,+nr, + 1) f(X)-rrrx=0.
Since 1<, <r, <—r, Theorem 1.20 yields f(x) =rx.

Case (A10):0< - <l<r,<r,<r,.
The proof for this case is the same as that of the case (A1) and is omitted.

Corollary 2.2 Cases (Xl):0< r,<n<r<-n<l1 (A_4):0<—rl <r,<r<r,<land
(A10):0<r, < <r, <l<-r.
— . 1 1 1 1
Proof. For the case (Al) since O<r,<r,<r, <-r <l,weget —>—>—>-—>1.
r2 r3 rA rl
The reciprocals are characteristic roots of (1.7), which is the dual equation of (1.6). Thus, its
solution f ™ is a function given in Theorem 2.1 depending on its behavior (increasing or

decreasing ).
The cases (A4):0<—r, <r,<r,<r, <1land (A10):0<r, <r, <r, <l<—r are reasoned
similarly.

The solution functions in the forthcoming corollaries are derived via the same arguments
as in Corollary 2.2.

Theorem 2.3 Case (A7):0<r, <1< <1, <-I.

i) If f eCSI(1.6), then f isasgivenin Theorem 1.16.

i) If f €eCSD(1.6), then f(x) =rx, the form given by Theorem 1.20.

Proof. i) Assume that f  CSI(1.6) . By the same proof as that of the case (A1), we obtain
fF2x)—(r, + 1, +1,) fF2(X) + (r,r, + 1,1, + 15,1, f (X) —r,Lr,x=0.

Since 0<r, <l<r, <r,, the solution function f isas given in Theorem 1.16.

ii) Assume that f € CSD(1.6) . By the same proof as that of the case (A1), we obtain

200 =+ 5 +1) F200+(nn +5r, + 1) F () —rx =0.

Since 1<, <r, <—r, again Theorem 1.20 yields f(x)=rx.

Corollary 2.4 Case (A7):0<—r, <r, <r, <l<r,.
If f eCS(L.6),then f* isa function given in Theorem 2.3.

Theorem 2.5 Case (A9):0< - <r,<l<r<r,.
i) If f eCSI(L.6), then f isa function given in Theorem 1.16.
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i) If f eCSD(1.6), then f(x)=rx, the form given by Theorem 1.22.
Proof. i) Assume that f € CSI(1.6) . By the same proof as the case (Al) by Lemma 1.28 (form of

.1 .
f~™) and removing — we obtain
n

fF2X)—(r, + 1, +1,) fF2(X) + (r,r, + 1,1, +1,1,) f (X) -1, x = 0.
Since O0<r, <l<r,<r,, then f isafunction in the class given in Theorem 1.16.
ii) Assume that f € CSD(1.6) . By the same proof as that of the case (A1), we obtain
200 —(r +1, +1,) F2(X) + (51, + 61, +1,5) f (X) —rrx =0.
Since 0< -1, <1, <l<r,, Theorem 1.22 yields f(x) =rx.

Corollary 2.6 Case (A9):0<r, < <l<r, <-r,.
If f eCS(1.6),then f* isa function given in Theorem 2.5.

Theorem 2.7 Cases (Bl):1<r, <-1, <—-I, <-I,, (B4):l<—r, <-1,<-r, <1, and
(BL0):0 <, <1< T, <—F, <—T,.
i) If f eCSI(L.6), then f(x)=rXx, the form given by Theorem 1.24.
ii) If f eCSD(1.6),then f isgiven by Theorem 1.4.
Proof. Case (Bl):1<r, <-I, <—I, <—T,.
i) By the same proof as in the case (Al), we obtain
fB(X)_(rl +h+0)f Z(X) +(Lh + 06 +160) f(X) —nrRpx =0.
Since 1<r, <—r1, <—r;, Theorem 1.24 gives f(x) =rx.
ii) By the same proof as in the case (A1), we obtain
F2)—(r,+r,+1)f2()+(rn+nr,+5r)f (X)-nrrLx=0.
Since 1< —r, <-r, <, the solution function f is given by Theorem 1.4.

Case (B4):1<-I,<—-f, <—I, <.
i) By the same proof as in the case (Al), we obtain
fF2x)—(r+1,+1)f2(X)+ (5, +rr, +1,r,) f(X)-rrrx=0.
Since 1< -1, <—r, <1, Theorem 1.24 gives f(x)=rX.
ii) By the same proof as in the case (A1), we obtain
fF2X)=(r, + 1, +1,) F2(X) + (r,r, + 1,1, +1,1,) f (X) —r,r,r,x = 0.
Since 1< -1, <—1, <—I,, the solution function is given by Theorem 1.4.

Case (B10):0<r <l<—r, <—F, <—T,.
i) By the same proof as in the case (Al), we obtain
fF2X)—(r+1, +1) f2(X)+ (51, + 1, +1,5) f (X) —Lrrx=0.
Since 0<r, <1<-r, <—I,, Theorem 1.24 then yields f (x) = r,x.

ii) By the same proof as in the case (Al), we obtain
F2X)—(r, + 1, +1,) F2(X) + (r,r, + 1,1, +1,1,) f (X) —r,r,r,x = 0.
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Since 1< -1, <—1, <—r,, the solution f is given by Theorem 1.4.

Corollary 2.8 Cases (B1):0 < -, <—I,<—I, <1, <], (B4):0< L <-r,<-r,<-r,<1 and
(B10):0<—r, <—r,<-I, <1<r,.

If f eCS(1.6),then f* isgiven by Theorem 2.7.

Theorem 2.9 Case (B7):0<—r, <l<-I,<-I, <I,.
i) If f eCSI(1.6), then f(x)=rx, the form given by Theorem 1.24.
ii) If f €CSD(1.6), then the solution function f is as given in Theorem 1.18.
Proof. i) By the same proof as in the case (A1), we obtain
fF2)—(r+r,+1)f2(X)+ (5, +rr, +1,r,) f(X)-rrrx=0.
Since 1< -1, <—r, <1, Theorem 1.24 then gives f(x) =rx.
ii) By the same proof as in the case (A1), we obtain
F2X)—(r, + 1, +1,) F2(X) + (r,r, + 1,1, +1,1,) f (X) —r,r,r,x = 0.
Since 0<-r, <1<-r, <—r,, the solution f is given by Theorem 1.18.

Corollary 2.10 Case (B7):0< n<-r,<-r<l<-r,.
If feCS(1.6),then " isgiven by Theorem 2.9.

Theorem 2.11 Case (B9):0< n<-r,<l<-r<-I,.
i) If f eCSI(1.6), then f(x)=rx, the form given in Corollary 1.27.
ii) If f eCSD(L.6), then f is given by Theorem 1.18.
Proof. i) By the same proof as in the case (A1), we obtain
fF2)—(r+1, +16)f2(X)+ (5, +nr, +1,0) f(X)—6rrx=0.
Since 0<r, <—r, <1< —-r,, Theorem 1.27 yields f(x)=rx.
ii) By the same proof as in the case (Al), we obtain
fF2X)=(r, +1,+1,) fF2(X) + (r,r, + 1,1, +1,1,) f (X) —1,rr,x =0.
Since —r, <1< -r, <—t,, the solution function f is given by Theorem 1.18.

Corollary 2.12 Case (B9):0<—r, <—r, <l<-r, <.
If f eCS(1.6),then f* isgiven by Theorem 2.11.

Theorem 2.13 Cases (Cl):1<—r, <—rI, <1, <I, (C2)l<-1 <rI, <-I, <,
(C51<r,<—r <rp<—1, and (CB):l<rK, <r,<-I <-T,.
i)If f eCSI(1.6),then f isgiven by Theorem 1.20.
ii) If f €CSD(1.6),then f isgiven by Theorem 1.24.
Proof. Case (C1):1<—r, <—r, <I, <.

i) By the same proof as in the case (Al), we obtain

fF20) = (r, + 1, +1,) F2(X) + (r,r, + 5,1, +5,,) f(X) - 1,6r,x = 0.

Since 1< -1, <r, <1, the solution f is given by Theorem 1.20.
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ii) By the same proof as in the case (Al), we obtain
20—+, +r)f2(X)+(rr, +rr, +6r) f(X)-rrrx=0.
Since 1< -1, <—r, <¥,, the solution f is given by Theorem 1.24.

Case (C2):l<—r<r,<-I,<I,.
i) By the same proof as in the case (Al), we obtain
F2X)—(r, + 1, +1,) F2(X) + (r,r, + 1,1, +1,0,) f(X) - r,6r,x=0.
Since 1<r, <—r, <1, the solution f is given by Theorem 1.20.
ii) By the same proof as in the case (Al), we obtain
20—+, +0)f2(X)+(rr, +rr, +00) f(X)—rrrx=0.
Since 1< -1, <r, <—,, the solution f is given by Theorem 1.24.
Case (C5):1<r, <-r <, <-T,.
i) By the same proof as in the case (Al), we obtain
fF2)—(r+1, +1) f2(X)+ (5, + 1, +1,0) f (X) —Lrrx=0.
Since 1<r, <-r, <1, the solution f is given by Theorem 1.20.
ii) By the same proof as in the case (Al), we obtain
) —(r+r,+r,)f2(X)+(nr,+nr, +6r) f(X)-nrrx=0.
Since 1< -1, <1, <—r1,, the solution f is given by Theorem 1.24.

Case (C6):1<r, < <-I <—TI,.
i) By the same proof as in the case (Al), we obtain
fF2)—(r+r, +6)f2(X)+(r, + 0 +6,0) f(X)—6rrx=0.
Since 1<r, <r, <—r, the solution f is given by Theorem 1.20.
ii) By the same proof as in the case (Al), we obtain
fF2)—(n+r,+1) 2 () +(nr+rr, +6r) f(X)-rrrx=0.
Since 1<r, <-r, <—r,, the solution f is given by Theorem 1.24.

Corollary 2.14 Cases (C1):0<r, <r, <—t, <—r, <1, (C2):0<r, <1, <1, < T, <1,
(C5):0<—r, <1, <—r, <r,<land (C6):0<—r, <, <r,<r, <1.
If f eCS(1.6),then f* isgiven by Theorem 2.13.

Theorem 2.15 Cases (C8):0<r, <l<-r, <, <-r, and (C9):0<r, <l<r <-1 <—T,.
i)If feCSI(1.6),then f isgiven by Corollary 1.23.
ii) If f eCSD(L.6), then f is given by Theorem 1.24.
Proof. Case (C8):0<r, <l<-r <, <-I,.
i) By the same proof as in the case (Al), we obtain
F2)—(r+r, +r) f2(X)+(rr, + 5, +r,5) f(X)-nrLrx=0.
Since 0<r, <l<-r, <1, the solution f isgiven by Corollary 1.23.

ii) By the same proof as in the case (Al), we obtain
) —(n+r,+1)f2(X)+(nr,+nr, +6r) f(X)-nerx=0.
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Since 1< -1, <1, <—r1,, the solution f is given by Theorem 1.24.
Case (C9):0<r, <l<r<-I <-T,.
i) By the same proof as in the case (Al), we obtain
fF2)—(r+1, +16)f2(X)+ (5, +nr, +10,5) f(X) —6rrx=0.
Since 0<r, <l<r, <—r, the solution f is given by Corollary 1.23.
ii) By the same proof as in the case (A1), we obtain
) —(n+r,+1)f2(X)+(nr,+rr, +6r) f(X)-rrrx=0.
Since 1<r, <-1, <—r,, the solution f is given by Theorem 1.24.

Corollary 2.16 Cases (C8):0 < - <r,<-r,<l<r, and (C9):0< - <-I, <r,<l<r,.
If feCS(1.6),then " isgiven by Theorem 2.15.

Theorem 2.17 Case (C10):0<—r, <—r, <1<r,<1,.
i) If f eCSI(L.6), then f isgiven by Theorem 1.20.
ii) If f €CSD(1.6),then f is given by Corollary 1.25.
Proof. i) By the same proof as in the case (Al), we obtain
F2(X) = (r, + 1, +1,) F2(X) + (r,r, + 1,1, +1,1,) f (X) = r,r,r,x = 0.
Since 0<-r, <1<, <1, the solution f is given by Theorem 1.20.
ii) By the same proof as in the case (Al), we obtain
20— (n+1r,+1,)f2(X)+(rr, +rr, +5,0) f(X)—rrnx=0.
Since 0< -1, <—1, <1<r,, the solution f is given by Corollary 1.25.

Corollary 2.18 Case (ﬁ):o <r, < <l<-r<-r,.
If feCS(1.6),then " isgiven by Theorem 2.17.

Theorem 2.19 Cases (C11):0<-r, <l<—-r, <1, <r, and (C12):0<—r, <l<r,<-T,<Tr;.
i) If f eCSI(L.6),then f isgiven by Theorem 1.20.
ii) If f €CSD(1.6),then f isgiven by Theorem 1.26.
Proof. Case (C11):0<—1, <l<—r, <, <T,.
i) By the same proof as in the case (Al), we obtain
fF2X)=(r, + 1, +1,) F2(X) + (r,r, + 1,1, +1,1,) f (X) —r,r,r,x = 0.
Since 1< -1, <r, <1, the solution f is given by Theorem 1.20.
ii) By the same proof as in the case (Al), we obtain
20—+, +1)f2(X)+(rr, +rr, +6,0) f(X)—rrnx=0.
Since 0< -1, <1<—r, <r,, the solution f is given by Theorem 1.26.

Case (C12):0< -1, <l<r, <-I, <TI,.
i) By the same proof as in the case (Al), we obtain
) —(r, +r,+1,)f2(X)+(r,r, + 1,1, +1,r) f(X) = 1,rrx=0.
Since 1<r, <1, <1, the solution f is given by Theorem 1.20.

515



Current Applied Science and Technology Vol. 21 No. 3 (July-September 2021)

ii) By the same proof as in the case (Al), we obtain
20—+, +1)f2(X)+(rr, +rr, +6,0) f(X)—rrx=0.
Since 0< -1, <1<r, <-r,, the solution f is given by Theorem 1.26.

Corollary 2.20 Cases (C11):0 < r,<r<-f <l<-r, and (C12):0< n<-r<n<l<-r,.
If feCS(1.6),then " isgiven by Theorem 2.19.

Theorem 2.21 Case (C14):0<—r, <1, <l<-1, <T1;.
i) If f eCSI(L.6), then f isgiven by Corollary 1.23.
ii) If f €eCSD(1.6),then f is given by Corollary 1.27.
Proof. i) By the same proof as in the case (Al), we obtain
F2(X) = (r, + 1, +1,) F2(X) + (r,r, + 1,1, +1,1,) f (X) —r,r,r,x = 0.
Since 0<r, <1< -, <1, the solution f is given by Corollary 1.23.
ii) By the same proof as in the case (Al), we obtain
20—+, +1,)f2(X)+(nr, +rr, +6,0) f(X)—rrnx=0.
Since 0< -1, <r, <l<-r,, the solution f is given by Corollary 1.27.

Corollary 2.22 Case (ﬁ):o < <-r<l<r<-r,.
If feCS(1.6),then " isgiven by Theorem 2.21.

Theorem 2.23 Cases (A2):1<r, <-r <r<r, and (A3):l<r, <r<-r<r,.

i) Assume that f e CSI(L.6). In the case (A2), further assume that lim f_ exists.

m—oo ri

m

While in the case (A3) further assume that lim f—m exists, then the solution function f is as
m—oo rl
given in Theorem 1.6.
i) If f eCSD(1.6), then f(Xx)=r,x, the form given by Theorem 1.20.

Proof. Case (A2):1<r, <—I <K <I,.

-m

Let lim ——-=c. From Lemma 1.28, we get
m—oo r].
c=lim-——= 1 (F200-Garte by e e yim-—Ltx
e (E_E)(E_E)(E_E) R L 0 Ly L, &L PLEN
rl r-2 r;l 3 1 I'4
r m
(I’il) 1 1 1 1 1 1 1
+lim 2 (FP)-(E+=+ )2+ (—+—+—)F (%) - X)
moe l_l)(l_l)(l_i) n 5 n FLERI L PR 11 11314

showing that
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2y
lim " 00—+ 1oLy 2o (e e Ly rrpg-t
m%w(l_l i_i i_i) r;l. 3 4 1°3 ri.r4 3'4 1°374
r2 rl r2 r3 r-2 r4
Thus
200-Ga ey (et Ly rig-—x=o,
1 r3 r4 I‘;l.r3 I‘;l.rl‘v r3r4 r1r3r4

or equivalently,

) —( +1,+1,) F20) +(nr, +nr, +6r) f(X)—rrrx=0.
Returning to the limiting equation, we deduce that:
f’3(x)—(£+l+l)f’z(x)+(i+i+i)f’l(x)—
I’2 3 4 2°3 2r4 3'4 2'3%4
for some constant ¢, . Substituting (2.5) in (1.7), we get ¢, = r,*c, yielding ¢, =0.

Hence,

X=c¢

T I L P ST S TN S N Y ST

2 r3 r4 r-2 r3 r2 r4 r3 r4 r-2 r3 r4

! x=0,

equivalently,
F2X)=(r, + 1, +1,) fF2(X) + (r,r, + 1,1, +1,1,) f (X) = 1r,rr,x=0.
Subtracting (2.4) from (2.6), we get
f2(x)—(r,+r,)f(X)+rrx=0.
Since 1<, <r,, the solution function f is given in Theorem 1.6.
i) By the same proof as that of the case (A1), we obtain
F2)—(r+r, +r) f2(X)+(rr, + 5, +r,5) f(X)-nrrx=0.

Since 1<, <—r, <ry, the solution function is f (x) =r,x, the form given by Theorem 1.20.

Case (A3):1<r,<n<-I<r,.
i) By the same proof as that of the case (A2), we obtain
f2(x)—(r, +1,) f(X) +1r,r,x=0.
Since 1<r, <r,, the solution function f is as given in Theorem 1.6.

ii) By the same proof as that of the case (A1), we obtain
fF2()—(r+1, +15)f2(X)+(r, +nr, +10,5) f(X)—6rrx=0.

Since 1<, <r, <—r, the solution function is f (x) =r,x, the form given by Theorem 1.20.

Corollary 2.24. Cases (A2):0<r, <r,<—r, <r, <1and (A3):0<r,<—r <r,<r, <1.

Under the hypotheses of Theorem 2.23, if f € CS(1.6) , then f " is given in Theorem 2.23.
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Theorem 2.25. Cases (A5):0<r, <l<-r, <K <r, and (A6):0<r, <l<r,<-I <r,.

i) Assume that f € CSI(1.6). In the case (A5), further assume that lim f

m— oo r17

exists, while in the

m

m

case (AG6) further assume that lim — exists. Then the solution function f is as given in
m—o rl

Theorems 1.6 and 1.8., respectively.
i) If f eCSD(1.6), then f(x) =rx, the form given by Corollary 1.23.

Proof. Case (A5):0<r, <l<-r<r,<r,.
i) By the same proof as that of the case (A2), we get
f2(x)—(r, +1,)f(x)+rrx=0.
Since 1<, <r,, the solution function f is as given in Theorem 1.6.

ii) By the same proof as that of the case (A1), we obtain
F2)—(r+r, +r) f2(X)+(rr, + 5, +r,5) f(X)-nrrx=0.
Since 0<r, <l<—-r, <r,, by Corollary 1.23 f(x)=rx.

Case (AG):0<r,<l<p<-r <r,.
i) By the same proof as that of the case (A2), we obtain
f2(x)—(r, +1,) f(X) +1r,r,x=0.
Since 0<r, <1<y, thesolution function f is as given in Theorem 1.8.
ii) By the same proof as that of the case (A1), we obtain
fF2)—(r+r, +15)f2(X)+(r, +nr, +10,5) f(X) —Lrrx=0.
Since 0<r, <l<r, <-r, by Corollary 1.23 f(x)=rX.

Corollary 2.26. Cases (A5):0 < r,<n<-r<l<r, and (A6):0< r<-n<n<l<r,.
Under the hypotheses of Theorem 2.25, if f € CS(1.6), then f ™ is as given in Theorem 2.25.

Theorem 2.27. Case (A8):0<r, <—I, <1<F, <T,.

-m

i) If feCSI(1.6) and it nlq'fl :7
1
i) If f €eCSD(1.6), then f(x) =rx, the form given by Theorem 1.22.
Proof. i) By the same proof as that of the case (A2), we obtain
f2(x)—(r, +1r,)f(X)+r,rx=0.
Since 1<, <r,, the solution function f is given by Theorem 1.6.
ii) By the same proof as that of the case (A1), we obtain

fF2X)—(r+1, +1,) f2(X)+ (5, + 1, +1,0) f (X) —Lrrx=0.

Since 0<r, <—r, <l<r,, Theorem 1.22 gives f(X)=rXx.

exists, then f isas given in Theorem 1.6.

m

Corollary 2.28. Case (A8):0<r, <r, <l<-r <¥,.
Under the hypotheses of Theorem 2.27, if f e CS(1.6), then f* is as given by Theorem 2.27.
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Theorem 2.29 Cases (B2):1<—r, <1, <—r, <-r, and (B3):1<—r, <—f, <1, <—I,.
i) If f eCSI(1.6), then f(x)=rx, the form given by Theorem 1.24.

-m

ii) Assume that f € CSD(1.6) . In the case (B2), assume further that  lim ffm

m—oo r:‘[

exists, while in

m

the case (B3), assume further that lim f—m exist. Then f is given by Theorem 1.9.
m—o

Proof. Case (B2):1<—r, <r, <—-I, <—T,.
i) By the same proof as in the case (Al), we obtain
fF2X)—(r+1, +1) f2(X)+ (5, + 1, +1,5) f (X) —Lrrx=0.
Since 1< —r, <1, <—r;, Theorem 1.24 gives f(x)=rX.
ii) By the same proof as in the case (A2), we obtain
f2(x)—(r, +1r,)f(X)+rrx=0.
Since 1< —r, <—r,, the solution f is given by Theorem 1.9.

Case (B3):1<—r, <—f, <1 <—I,.
i) By the same proof as in the case (Al), we obtain
fF2)—(r+1, +16) f2(X)+ (5, +nr, +10,0) f(X) —6rrx=0.
Sincel<—r, <—r, <r,, Theorem 1.24 gives f(x) =rx.
ii) By the same proof as in the case (A2), we obtain
f2) - (r+r)f(X)+rrx=0.
Since 1< -r, <—1,, the solution f is given by Theorem 1.9.

Corollary 2.30 Case (B2):0< -, <—F, <t <—I, <1 and (B3):0<-r, <I, <—r, <—T, <1.
Under the hypotheses of Theorem 2.29, if f € CS(1.6),then f " is given by Theorem 2.29.

Theorem 2.31. Cases (B5):0<—r, <l<r, <-f,<—r, and (B6):0<—r1, <l<-r, < <—I,.
i) If f eCSI(1.6), then f(x)=rx, the form given by Theorem 1.26.

—-m

ii) Assume that f € CSD(1.6) . In the case (B5), assume further that lim f

m—oo |

exists, while in

-m

m

. f . . . L
the case (B6), assume further that lim — exists. Then the solution function f is given by
m—oo r;l

Theorems 1.9 and 1.10, respectively.
Proof. Case (B5):0<—r1, <l<rp <-F <—I,.

i) By The same proof as in the case (A2), we obtain

fF2)—(n+1,+6)fF2(X)+(rr, + 0 +0e) f(X)—rrex=0.

Since 0<—r, <1< <—-r,, Theorem 1.26 yield f(x)=rx.

ii) By The same proof as in the case (A2), we obtain

f20) - (r,+r)f () +rrx=0.

Since 1< -1, <-r,, the solution f is given by Theorem 1.9.
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Case (B6):0<—r, <l<—r,<r <—f,.
i) By The same proof as in the case (A2), we obtain
f200) - (6 +1, +6) F2() + (5, +6r, +5,5) f (X) - 6rLEx=0.
Since 0<—r, <l<—r, <1, Theorem 1.26 yield f(x)=rx.
ii) By The same proof as in the case (A2), we obtain
f2(x)—(r,+r)f(X)+rx=0.
Since 0 < —r, <1< -1, the solution f is given by Theorem 1.10.

Corollary 2.32. Cases (B5):0<—r, <—t, <r, <1<—-r,and (B6):0<—t, <f, <—F, <l<-r,.
Under the hypotheses of Theorem 2.31, if f e CS(1.6), then f* is given by Theorem 2.31.

Theorem 2.33. Case (B_8) 0<—r, <1 <l<—L <1,
i) If f eCSI(1.6), then f(x)=rx, the form given by Corollary 1.27.

-m

i) If f eCSD(1.6) and if nlm; :7
1
Proof. i) By The same proof as in the case (A2), we obtain
fF2)—(r+r,+6)f2(X)+(hr,+ 0 +6,0) f(X)—6rrx=0.
Since 0<—r, <1, <l<-r,, Corollary 1.27 gives f(x)=rX.
ii) By The same proof as in the case (A2), we obtain
f2(x)—(r,+1r,)f(X)+rrx=0.

Sincel< -1, <—r,, the solution f is given by Theorem 1.9.

exist, then f is given by Theorem 1.9.

m

Corollary 2.34. Case (B8):0< -1, <—r, <l<r <—,.
Under the hypotheses of Theorem 2.33, if f € CS(1.6), then f ™ is given by Theorem 2.33.

Theorem 2.35. Case (C3):1<-I <r, <K <-TI,.
i) If f eCSI(L.6),then f isgiven by Theorem 1.20.

m

i) If f €CSD(1.6) and if lim f—m exists, then f(x) =r,x, the form given by Theorem 1.12.
m—ow r3

Proof. i) By The same proof as in the case (A2), we obtain
f2)—(n+r,+6) 2 () +(nr, + 0 +05) f(X)—nrLex=0.
Since 1< -1, <r, <r,, the solution f is given by Theorem 1.20.
ii) By The same proof as in the case (A2), we obtain
f20)—(r+r,)f(X)+rrLx=0.
Since 1< -1, <t,, Theorem 1.12 gives f(x) =rx.

Corollary 2.36. Case (C3):0<—I, <r, <r, <—r, <1.
Under the hypotheses of Theorem 2.35, if f € CS(1.6), then f* is given by Theorem 2.35.
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Theorem 2.37. Case (C4):1<r, <—f,<-1I, <.

i)If f eCSI(L.6) and if lim f—m exists, then f(x) =r,x, the form given by Theorem 1.12.
m—o r4

ii) If f €CSD(1.6),then f isgiven by Theorem 1.24.

Proof. i) By The same proof as in the case (A2), we obtain
f2x)—(r+r,)f(X)+rLx=0.
Since 1<r, <—r, Theorem 1.12 gives f(Xx) =rx.
ii) By The same proof as in the case (A2), we obtain
20—+, +0)f2(X)+(rr, +rr, +,0) f(X)—rrx=0.
Since 1<r, <—1, <—t,, the solution f is given by Theorem 1.24.

Corollary 2.38. Case (C4):0 < r,<-n<-r<r<l.
Under the hypotheses of Theorem 2.37, if f e CS(1.6), then f " is given by Theorem 2.37.

Theorem 2.39. Case (C7):0<r, <l<-f<-T, <TI,.

i) If feCSI(1.6) and if lim f—m exists, then f(x)=r,x, the form given in Theorem 1.12.
m-—oo r4

i) If f eCSD(1.6), then f is given by Theorem 1.24.

Proof. i) By The same proof as in the case (A2), we obtain
f2)-(r+r)f(x)+rr,x=0.
Since 0<r, <l<—r, Theorem 1.12 yields f(x)=r,x.
ii) By The same proof as in the case (A2), we obtain
20—+, +0)f2(X)+(nr, +rr, +6,0) f(X)—rrrnx=0.
Since 0<r, <1<—1, <—r,, the solution f isgiven by Theorem 1.24.

Corollary 2.40. Case (C7):0 <, < —F, <—r, <1<T,.
Under the hypotheses of Theorem 2.39, if f e CS(1.6), then f* is given by Theorem 2.39.

Theorem 2.41. Case (C13):0<—r, <l<r, <r, <—,.
i)If f eCSI(1.6),then f isgiven by Theorem 1.20.

m

ii) If f eCSD(1.6) and if lim :—m exists, then f(x) =r,x, the form given by Theorem 1.12.
3

Proof. i) By The same proof as in the case (A2), we obtain
200 —(n+1, +5) F20) + (hr, + e, +15,5) f (X) —nrLRx=0.
Since 0 < -1, <1<, <1y, the solution f is given by Theorem 1.20.
ii) By The same proof as in the case (A2), we obtain
f2(x)-(r+r,)f(X)+rr,x=0.
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Since 0< -1, <1<r,, Theorem 1.12 gives f(X) =rx.

Corollary 2.42. Case (C13):0<—t, <1, <f, <l<-t,.
Under the hypotheses of Theorem 2.41, if f e CS(1.6), then f* is given by Theorem 2.41.

Theorem 2.43. Case (C15):0<-r, <1, <l<r,<—r,.
i)If f eCSI(1.6),then f isgiven by Theorem 1.22.

m

ii) If f eCSD(1.6) and if lim :—m exists, then , f(x) =r,x, the for given by Theorem 1.12.
3

Proof. i) By The same proof as in the case (A2), we obtain
200 —(n+1, +5) F20) + (hr, + e, +5,5) f (X) —nrLRx=0.
Since 0< -1, <1, <1<, the solution f isgiven by Theorem 1.22.
ii) By the same proof as in the case (A2), we obtain
20—+, +1,)f2(X)+(rr, +rr, +1,0) f(X)—rrnx=0.
Since 0<—r, <1, <1, Theorem 1.12 gives f(x)=rx.

Theorem 2.44. Case (C16):0<r, <—r, <l<-I,<Tr,.

i) If feCSI(1.6) andif lim f—m exists, then, f(x)=r,x, the form given by Theorem 1.12.
m—oo r4

ii) If f €eCSD(1.6),then f is given by Corollary 1.27.
Proof. i) By The same proof as in the case (A2), we obtain
f2(x)-(r+r,)f(X)+rr,x=0.
Since 0<r, <—r, <1, Theorem 1.12 yields f(x)=r,x.
ii) By The same proof as in the case (A2), we obtain
20—+, +r)f2(X)+(rr, +rr, +5,0) f(X)—rrx=0.
Since 0<r, <—r, <1< -r,, the solution f is given by Corollary 1.27.

3.2 General discussion

Based mainly on the ideas from the work of Zhang and Gong [4], all solution functions

f € CSI(1.6) have been determined subject to the restrictions that
e the characteristic roots r,,1,,r,,r, satisfy |r|=0,1 (i=1,234),

o the absolute values of the charcteristic roots |r|| (i=1,2,3,4) are all distinct and

o the four characteristic roots have different signs.

In particular, the following cases have been completely solved.

A. One negative characteristic root r, <0, and three positive characteristic roots 0 <r, <r, <r,.
B. Three negative characteristic roots 0> r, >r, >, , and one positive characteristic root r, > 0.
C. Two negative characteristic roots 0 >r, > r, , and two positive characteristic roots r, >r, >0.
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m

. o . f . .
In certain cases an extra condition, namely, lim — for some i=1,2,3,4, is needed to
m—o |y
|

obtain the solutions.

4. Conclusions

There are totally seventy subcases solved in this work, but there remain two cases that are yet to
be resolved for which the methods and techniques used here do not seem to work. These subcases
are when:

(i) all characteristic roots are positive, some being in (0,1) and the others in (1,0), and

(ii) all characteristic roots are negative, some being in (—1, 0) and the others in (—o0,—1).
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