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Abstract  

 

Using the so-called characteristic method, continuous solutions of the fourth order polynomial-like 

iterative equation  

4 3 2

3 2 1 0( ) ( ) ( ) ( ) 0f x a f x a f x a f x a x+ + + + =  

were determined subject to certain natural conditions on its characteristic roots. The result so 

obtained complements earlier work in the cases of second and third order equations. 
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1.  Introduction 
 

For ,n N  the thn iterate of a function f is defined by  

1( ) ( ( ))n nf x f f x−= , 0 ( )f x x=  . 

A polynomial-like iterative equation is a functional equation of the form  
1

1 0( ) ( ) ... ( )n n

nf x a f x a x F x−

−+ + + =  , 

where ia R  ( 0,1,2,..., 1)i n= − , F is a given function, and :f R R→  is an unknown function. 

The homogeneous case of (1.1) (i.e., when ( ) 0F x = ) 

1

1 0( ) ( ) ... 0n n

nf x a f x a x−

−+ + + =  

is of interest here. There have appeared a number of recent works [1-4] attempting to solve (1.2) 

using a technique mimicking that of Euler for solving linear differential equations with constant 

coefficients, which proceeds by assuming a solution of the form .rxe  Substituting this into the 

differential equation and simplifying, an algebraic equation in r , called its characteristic equation 
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is obtained. Solving the characteristic equation yields linearly independent solutions of the 

differential equation, and the general solution follows by taking a linear combination of these 

independent solutions. In the case of iterative equation (1.2), we consider, instead, a continuous 

solution of the form ( )f x rx= . Substituting into (1.2), we get an algebraic equation (in r ) 
1

1 1 0... 0,n n

nr a r a r a−

−− − − − =   

which, by abuse of language, is also called the characteristic equation of (1.2) and its roots are 

called its characteristic roots. Let 1,..., nr r  be all the characteristic roots. Using symmetric 

functions relations involving roots and coefficients, the iterative equation (1.2) is equivalent to  

1 2

1 2

1

( ) ( ) ( ) ( ) ( ) ... ( 1) ... 0
n n

n n n n

i i j n

i i j

f x r f x r r f x r r r x− −

= 

− + + + − =  . 

 

At the outset, we make several preliminary observations and define conventions to be adopted 

throughout the entire investigation here. 

• The coefficient 0a  is always nonzero. 

(For otherwise, one of the characteristic roots is zero yielding the trivial solution 

function 0f   which must always be ruled out.)  

• Any function solution :f R R→  of (1.2) is injective.  

(If ,x y R are such that  ( ) ( )f x f y= , then ( ) ( )k kf x f y= for all k N  and (1.2) 

implies that 0 0a x a y= . Since 0 0a  , we get x y= .) 

• Any continuous function solution :f R R→  of (1.2) is strictly monotone and 

surjective.  

(Since f is continuous and 1-1, clearly, it is strictly monotone. To show that f is 

onto, we consider only the case f  is strictly increasing as the other case is similar. 

Suppose f is not onto on R . By its continuity, the range must be of the form

( )f R I=  , where I R is an interval, which can take one of the three shapes : 

( ),a− , ( ),b a−  or ( ),b−  , for finite values b a−  . From ( ): :f R f R I→ = , we 

see that  ( )2 :f R f I I→  ,…, ( ):nf R f I I→  . 

From (1.2), we get 

  1

0 1 1( ) ( ) ... ( )n n

na x f x a f x a f x−

−= + + + . 

For the cases ( ),:I a= −  or ( ),:I b a= − , letting x → , we see that the left-hand 

side → , while the right-hand expression (since the range of the function is 

bounded)  is bounded, which is contradiction.  

For the case ( ),:I b= −  , letting x →− , the left-hand side → , the right-hand 

side is bounded, which is again a contradiction.) 

• Since 0 0a   and f  is bijective, the inverse function 1 :f R R− →  exists and the 

original iterative equation (1.3) is equivalent to the dual equation 

( 1) ( 2)

1 1 2

1 1 1
( ) ( ) ( ) ( ) ( ) ... ( 1) 0

...

n n
n n n n

ii i j i j n

f x f x f x x
r r r r r r

− − − − −

= 

− + + + − =                  (1.4) 

where jf −  denotes the thj  iterate of  1f − .  

                                                                                (1.3) 
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In 2004, Yang and Zhang [3] constructed all continuous solutions of the equation (1.2) when 2n   

for the hyperbolic cases subject to the condition that characteristic roots belong to following 

ranges: 

• all characteristic roots are in the interval ( )1, : 1 21 .... nr r r    ; 

• all characteristic roots are in the interval ( )0,1 : 1 20 .... 1nr r r     ; 

• all characteristic roots are in the interval ( ), 1− − : 1 2 .... 1nr r r    − ; 

• all characteristic roots are in the interval ( )1,0− :  1 21 .... 0nr r r−      . 

 

In their work, there remain un-resolved cases when the existing characteristic roots of (1.2)  

• are both positive and negative, or  

• have absolute values both greater and less than 1. 

 

 In the second order case (i.e., 2n = ), Matkowski and Weinian [1] established 

continuous solutions by subdividing into the following cases. 

• Noncritical cases: 1 2 0r r  , 1 1r   and 2 1r  with all possibilities 

1 21 r r  , 1 20 1r r   , 1 20 1r r   ,  

1 2 1r r  − , 1 21 0r r −   , 1 21 0r r−    . 

• Noncritical cases: 1 2 0r r  , 1 1r  , 2 1r  , 2 1r r −  with all possibilities 

1 20 1r r −   , 2 10 1r r  −  , 2 11 r r  − , 2 10 1r r   − , 1 20 1r r −   . 

• no real characteristic roots (in this case n  must be even and characteristic roots form 

pairs of conjugate complex numbers), it is shown that (1.2) has no continuous 

solution. 

• all characteristic roots are equal, i.e., 1 ... nr r r= = = . 

(i)  If  0 1,r   then f  is strictly increasing, the function 

1
1 0 1 1

1

1
[ ]( ) : ( ) ( 1) ( )

n
n n m m n m

m

n
F r f f x r f x

m

−
− − − −

=

 
 
 

−
= + −   

is nondecreasing, (0) 0,f =  and 1 0[ ]( ) 0nF r f− =   for even n . 

(ii) If 1 0,r−    then f  is strictly decreasing, the function 1 0[ ]( )nF r f−  is 

nondecreasing (respectively, nonincreasing) for odd (respectively, even) n , 

(0) 0,f =  and 1 0[ ]( ) 0nF r f− =  for even n . 

(iii) If 1,r =  then f  is strictly increasing. Additionally, ( )f x x  if f  has fixed 

point, otherwise, 1 0[ ]( )nF r f a−   for all ,x R  where a  is a real constant which 

equals 0 for odd n . In particular, for 3n = , continuous solutions of equation (1.2) 

are of the form ( ) ,f x x c= +  where c  is a real constant. 

(iv) If 1,r = −  then ( )f x x= −  for all .x R  

 The subcases (i), (ii) and (iii) provide a method to reduce the order of iteration, 

giving equivalent equations of lower order, although it does not give the construction 

of the general solution in all cases. 
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• Case 1 2r r=  : 1 2 0r r r= =  . 

• Critical cases: there is a characteristic root with absolute value 1 with all 

possibilities 

1 20 1r r  = , 1 21 0 1r r   = , 1 21 0 1r r− =    , 1 21 0r r− =   , 

1 2 1.r r = −  

• Case with no real roots: in this case (1.2) has no continuous solution on .R  

From their work, the un-resolved case is when 1r r= − = 2r−  ( 0r  ). The governing equation of 

this case is  

    2 2( ) .f x r x=  

When 1r = , Kuczma’s Theorem 15.2 [6] shows that (1.5) has a decreasing solution depending on 

an arbitrary function, but ( )f x x=  is its unique increasing solution. 

When 1r  , Kuczma’s Theorems 15.7 [6] and 15.9 [6] indicate that (1.5) has not only increasing 

continuous solutions but also decreasing ones, all of which depend on arbitrarily given functions.  

 In the third order case (i.e., 3n = ), Zhang and Gong [4] in 2014 solved (1.2) for 

continuous solutions in the hyperbolic cases not treated in the work of Yang and Zhang. They 

completed the following cases: 

I. The three characteristic roots have different signs. There are two possibilities. 

 I.1 Two positive characteristic roots 2 30 r r  , and one negative characteristic root  

 1 0r  . Treated cases are  

• 10 1r −  : 1 2 30 1r r r −    , 2 1 30 1r r r  −   , 2 3 10 1r r r   −  , 

1 2 30 1r r r −    , 2 1 30 1r r r  −   , 1 2 30 1r r r −    . 

• 11 r − : 1 2 31 r r r −   , 2 1 31 r r r  −  , 2 3 11 r r r   − , 2 1 30 1r r r   −  , 

2 3 10 1r r r    − , 2 3 10 1r r r    − . 

I.2 One positive characteristic root 3 0r  , and two negative characteristic roots

1 20 r r  . 

•  30 1r  : 1 2 30 1r r r −  −   , 1 3 20 1r r r −   −  , 3 1 20 1r r r  −  −  , 

3 1 20 1r r r   −  − , 3 1 20 1r r r  −   − , 1 3 20 1r r r −    − . 

• 31 r : 1 2 31 r r r −  −  , 1 3 21 r r r −   − , 3 1 21 r r r  −  − , 1 2 30 1r r r −   −  , 

1 3 20 1r r r −    − , 1 2 30 1r r r −  −   . 

 

II. The three characteristic roots have the same signs. The treated possibilities are 

  1 2 30 1r r r    , 3 2 10 1r r r    , 1 2 3 01r r r   − , 3 2 1 01r r r−    . 

 

The still un-resolved cases are: 

- there is a characteristic root with absolute value 1. 

- there is a characteristic root with multiplicity 2.  

 

Zhang and Gong [4] also considered the 4-th order equation when the four characteristic roots 

have different signs lying in the following ranges:  

 

1 2 3 41 r r r r −    , 1 2 4 31 r r r r −    , 1 4 2 31 r r r r −    , 1 2 4 31 r r r r −   −  , 

1 4 2 31 r r r r −  −   ,       4 1 2 31 r r r r −  −   . 

                                                                                     (1.5) 
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2.  Methodology 
  

Following ideas from the work of Zhang and Gong [4], we determine here continuous solutions of 

the homogeneous equation (1.2) of order 4, i.e. the iterative equation  

 
4 4 4

4 3 2

1 2 3 4

1

( ) ( ) ( ) ( ) ( ) ( ) ( ) 0,i i j i j k

i i j i j k

f x r f x r r f x r r r f x r r r r x
=   

− + − + =    

 

when the characteristic roots 1 2 3 4, , ,r r r r  are subject to the restrictions: 

 

 1)  
0,1ir 

 ( 1,2,3,4)i = , and  

 2) the absolute values of the chrarcteristic roots ( 1,2,3,4)ir i = are all distinct.  

The dual equation of (1.6) is 

 
4 4 4

4 3 2 1

1 1 2 3 4

1 1 1 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) 0.

ii i j i j ki j i j k

f x f x f x f x x
r r r r r r r r r r

− − − −

=   

− + − + =    

  

 To simplify our analysis, we leave out certain special cases consisting of 

 

1 2 3 4 1r r r r    − , 1 2 3 41 0r r r r−      , 1 2 3 40 1r r r r     , 1 2 3 41 r r r r     

 

that have already been treated in Yang and Zhang [3]. In addition, the special case where all 

characteristic roots are not real, which has also been shown to have no continuous solution by 

them, is also left out.  

 Specifically, we solve (1.6) when the characteristic equation has  

• one negative and three positive characteristic roots or  

• three negative and one positive characteristic roots or  

• two negative and two positive characteristic roots. 

 

 The solutions so obtained are displayed in Figures 1, 2 and 3, respectively. Though 

there are totally seventy subcases solved in this work, there remain two cases that are yet to be 

resolved for which the methods and techniques used here do not seem to work. These subcases are 

when 

  

 (i)  all characteristic roots are positive, some being in ( )0,1 and the others in ( )1, , 

 (ii) all characteristic roots are negative, some being in ( )1,0− and the others in 

( ), 1− − . 

 

 

 

 

 

 

                                                                                     (1.6) 

                                                                                     (1.7) 
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Figure 1. One negative characteristic root, 1r , and  
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three positive characteristic roots, 2 3 40 r r r    

 

 

 

Figure 2. Three negative characteristic roots, 2 3 40 r r r   , and                                               one 

positive characteristic root, 1r  
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Figure 3. Two negative characteristic roots, 1 40 r r  , and two positive characteristic roots, 

2 30 r r   
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 Detailed proofs of our results are given in the next section. Preliminary results needed 

throughout are displayed in the above two boxes.  

    To simplify the presentation, define 

( ) { : ; ( )},

( ) { : ; ( )},

( ) { : ;

CS x f R R f is a continuous solution of the iterative equation x

CSI x f R R f is a continuous strictly increasing solution of the iterative equation x

CSD x f R R f is a continuous strictly decreasing solution of t

= →

= →

= → ( )}.he iterative equation x

   

    To consider our continuous solutions, we need the continuous solutions from the works 

of Yang and Zhang [3], Matkowski and Weinian [1], and Zhang and Gong [4] as shown below. 

Works of Yang and Zhang [3] 

 

Theorem 1.1 (Theorem 2 [3]) Suppose that 11 ... nr r   . If (1.2)f CS , then 

(i) f  is strictly increasing, 

(ii) (0) 0f = , and 

 (iii) 
1 1

1 2 3 1

1 2 1

1

( ) ( ) ( ) ( ) ( ) ... ( 1) ...
n n

n n n n

i i j n

i i j

f x r f x r r f x r r r x
− −

− − − −

−

= 

− + + + −   is nondecreasing 

and 1 2 3 1

2 3

2 1

( ) ( ) ( ) ( ) ( ) ... ( 1) ...
n n

n n n n

i i j n

i i j

f x r f x r r f x r r r x− − − −

=  

− + + + −    is non-decreasing (resp. non-

increasing) for odd (resp. even) n . 

Conversely, given positive numbers 0 1,..., nx x −  such that  

1 2 3

n 1

1 1 1

, ,

( ) ( ) ... ( 1) ... ... 0
n n

i i j k k n

i k i j

n n

i j k

nx r r r r r r rx x −

− +

 

− − −



− + + + −    (resp. 0 ),  

if n k−  is even (resp. odd) and given a continuous function * 0 1 1:[ , ] [ , ]n nf x x x x− → , where  

 1

1 2 1 0

1

: ,)( ) ( ... ( 1) ...
n n

n

n i n i j n n

i i j

x r x r r x r r x−

− −

= 

= − + + −   satisfying   

(I) 1* ( ) (0 1)j jf x x j n+=   −  and 

(II) Each 1 2 3 1

* * * 1 1 1

1

( ) ( ) ( ) ( ) ( ) ... ( 1) ... ,...
n n

n n n n

i i j k k n

i k i j k

f x r f x r r f x r r r r x− − − −

− +

=   

− + + + −   

1,2,...,k n= , is nondecreasing (resp. nonincreasing) on 0 1[ , ]x x  if n i−  is even (resp. odd), then 

equation (1.2) has a unique continuous solution : ( , ) ( , )o o  →   satisfying 
0 1[ , ] *| .

nx x f
−
=  

Furthermore, given *1f  and *2f  arbitrarily like *f , the function 

1

2

( ),

 

0,

( ) : 0, 0,

( ), 0

x x

f x x

x x








= =
− − 

 

is a continuous solution of equation (1.2) on ,  where 1  and 2  are functions determined 

correspondingly by *1f  and *2f . 

 

Corollary 1.2 (Remark 4 [ 3]) The case that 10 ... 1nr r     can be reduced to the case of 

above Theorem 1 by considering the dual equation (1.4). 
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Theorem 1.3 (Theorem 3 [3]) The case that 1 ... 1.nr r   −  Suppose (1.2).f CS  Then 

(i) f  is strictly decreasing and has a unique fixed point 0; 

(ii) 
1 1

1 2 3 1

1 2 1

1

( ) ( ) ( ) ( ) ( ) ... ( 1) ...
n n

n n n n

i i j n

i i j

f x r f x r r f x r r r x
− −

− − − −

−

= 

− + + + −   is nondecreasing and 

1 2 3 1

2 3

2 1

( ) ( ) ( ) ( ) ( ) ... ( 1) ...
n n

n n n n

i i j n

i i j

f x r f x r r f x r r r x− − − −

=  

− + + + −   is nondecreasing (resp. 

nonincreasing) for odd (resp. even) n . 

Moreover, (1.2) has symmetric continuous solutions in the form 

0
 

( ), ,
( ) :

( ), 0,

x x
f x

x x





− 
= 

− 
 

 

where :[0, ) [0, )  →   is an arbitrarily given function satisfying 

1 1 1

1

1

. ( ) ( ) ( ) ( ) ( ) ... ( 1) ... , (0, )
n n

n n n n

i i j n

i i j

x r x r r x r r x x  − − −

= 

= − + + −     

 

Theorem 1.4 (Theorem 4 [3]) The case that 1 ... 1.nr r   −  Given real 0 1,..., nx x −  arbitrarily, 

which are not all zero such that  1 2 3

n 1

1 1 1

, ,

( ) ( ) ... ( 1) ... ... 0
n n

i i j k k n

i k i j

n n

i j k

nx r r r r r r rx x −

− +

 

− − −



− + + + −    

(resp. 0 ), if n-k is even (resp. odd). Given a continuous function 

2 2

* 2 1 30 0
: [ ; ] [ ; ]

n n

j j j jj j
f x x x x

− −

+ + += =
→ , where 1

1 2 1

1

( ) ( ) ,... ( 1) ..: .
k k

k

k i k i j k k k n

i i j

x r x r r x r r x−

− − −

= 

= − + + −   

for , 1k n n= + such that   

(I) 1* ( )j jxf x +=  0,...,j n=  and 

(II) each 1 2 3 1

* * * 1 1 1

1

( ) ( ) ( ) ( ) ( ) ... ( 1) ... ,...
n n

n n n n

i i j k k n

i k i j k

f x r f x r r f x r r r r x− − − −

− +

=   

− + + + −   

1,2,...,k n= , is nondecreasing (resp. nonincreasing) on 0 2[ , ]x x  if n i−  is even (resp. odd), then 

equation (1.2) has a unique continuous solution f  such that 
2

20

*
[ , ]

| .n

j jj
x x

f f−

+=

=   

 

Corollary 1.5 (Remark 6 [ 3]) The case that 11 ... 0nr r−      can be reduced to the case of 

Theorem 4 by considering the dual equation (1.4). 

 

Works of Matkowski and Weinian [1] 

 

Theorem 1.6 (Theorem 1 [1]) Suppose 1 21 .r r   

(i) If (1.2)f CS  for 2n = , then (0) 0f =  and f , strictly increasing, satisfies 

1 2( ( ) ( ')) / ( ')r f x f x x x r − −   for 'x x R  . 

(ii) Conversely, equation (1.2) for 2n =   has a continuous solution depending on an arbitrary 

function. More precisely, for every 0 10, 0x x   and 0 0 1:[ , ]f x x R→  such that  

1 0 1 2 0 ,r x x r x   
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0 0 1 0 1 1 1 2 02 1( ) , ( ) ,( )f x x f x r rr x r x+= = −  

0 0

1 2 0 1

( ) ( )
; , [ , ],

f x f x
r r x x x x

x x

−
   

−
 

there is a unique continuous function : (0, ) (0, )p  →   satisfying equation (1.2) for 2n =  on 

(0, )  and 0p f=  on 0 1[ , ];x x  for two arbitrary initial functions 01f  and 02f  like 0 ,f  the function  

1

2

( ), 0,

( ) : 0, 0,

( ), 0.

p x x

f x x

p x x




= =
− − 

 

is a continuous function  of equation (1.2) for 2n =  on ,R  where 1p  and 2p  are functions like p  

determined as above by 01f  and 02f . (3.1) gives all continuous solutions of equation (1.2) for 

2n =  in .R  

    

Corollary 1.7 (Page 427 [1]) The case where 1 20 1r r    can be obviously reduced to the case 

of Theorem 6 by considering the dual equation (1.4) for 2n = . 

 

Theorem 1.8 (Theorem 2 [1]) Suppose 1 20 1 .r r    

(i) If (1.2)f CS  for 2n =  then f  is strictly increasing. If, additionally, f  has a fixed point 

then  

, 0
( ) , 1,2.

, 0

i

j

r x x
f x i j

r x x


=  =


 

(ii) Conversely, every (1.2)f CS  for 2n =  without fixed points depends on an arbitrary initial 

function. More precisely, for 0 0,x =  for every 1 0x   ( . 0)resp   and for every function 

0 0 1:[ , ]f x x R→  0 1 0( . :[ , ] )resp f x x R→  such that 

0 0 0 1(0) ,( )f x f x= =  0 1 1 2 1( ) ( ) ,f x r r x= +  

1 0 0 2( ( ) ( ')) / ( ') ,r f x f x x x r − −    , ' 0.x x   

There exists a unique continuous function :f R R→  satisfying equation (1.2) for 2n =  and 

0 )( ()f x f x=  on 0 1[ , ]x x  ( .resp on 1 0[ , ]x x  ). 

 

Theorem 1.9 (Theorem 3 [1]) Suppose 1 2 1.r r  −  

(i) If (1.2)f CS  for 2n =  then f  is strictly decreasing with a unique fixed point 0 and satisfies 

the condition 1 2( ( ) ( ')) / ( ') ,r f x f x x x r − −   for ' .x x R    

(ii) Conversely, equation (1.2) for 2n =  has a continuous solution depending on  an arbitrary 

function, given by ( ) ( )f x p x= −  when 0x   and ( ) ( )f x p x= −  when 0x   where 

:[0, ) [0, )p  →   has been constructed in Theorem 6 as an arbitrary solution of the functional 

equation 
2

1 2 1 2( ) (( ) ( )) ( ) ( )( ) ,p x r r p x r r x= − + − − − −  [0, ).x   

 

Theorem 1.10 (Theorem 4 [1]) Suppose 1 21 0.r r −    Then every (1.2)f CS  for 2n =  is 

strictly decreasing and 0 is its unique fixed point, and 1 2( ( ) ( ')) / ( ') , '.r f x f x x x r x x − −      

                                        (3.1) 
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Corollary 1.11 (Page 427 [1]) The case where 1 21 0r r−     can be obviously reduce to the 

case of Theorem 9 by considering the dual equation (1.4) for 2n = . 

 

Theorem 1.12  (Theorem 5 [1]) Suppose that 1 1 2 20, 1, 0, 1r r r r  −    and 2 1.r r −  If 

(1.2)f CS  for 2n =  then 1( )f x r x=  or 2( )f x r x=  for .x R  

 

Works of Zhang and Gong [4] 

 

Lemma 1.13 (Lemma 2.5 [4]) Suppose that the characteristic equation (1.3)  has n  distinct roots 

1,..., .nr r C   If (1.2)f CS , then 

11 1
1 2 3 1

1

1,

1 1
( 1) ( 2) ( 3)

1

1,

[ ( ) ( ) ( ) ( ) ( ) ... ( 1) ]

( )

1 1
[ ( ) ( ) ( ) ( ) ( ) ... ( 1

1 1
( )

m nn n n
jm n n n n

k k t in
j k j k t j i j

j i

i i j

mn n n
jm n n n

n
j k j k t jk k t

i i j j i

r
f f x r f x r r f x r x

r r

r
f f x f x f x

r r r

r r

−− −
− − − −

=    

= 

− − −
− − − − − − −

=   

= 

= − + + + −

−

= − + + + −

−

   


  


1
1 1

) ]
n

n

i j i

x
r

−
−





 

for all integers 1m   and 1,2,..., .i n=  

 

Lemma 1.14 (Lemma 3.1 [4]) Suppose that 1 2 3.0 1r r r     Then for 0 0x =  and arbitrarily 

given  1 2,x x  such that 

 1 0x   and 11 2 1 32 1) ) ,( (x xr r r r x+  +  

the sequence 2 1 0 1 2(..., , ; , , ,...)x x x x x− −  defined by  

2 1 2 3 1 1 2 1 3 2 3 1 2 3 1

1 2 3

1 2 3 1 2 1 3 2 3 1 2 3

( ) ( ) ,

1 1 1 1 1 1 1
,

n n n n

n n n n

x r r r x r r r r r r x r r r x

x x x x
r r r r r r r r r r r r

+ + −

− − + − + − +

= + + − + + +

   
= + + − + + +   
   

  

is strictly increasing and satisfies 

 lim n
n

x
→+

= + ,      lim .n
n

x
→−

= −  

 

Lemma 1.15 (Lemma 3.2 [4]) Suppose that 1 2 3.0 1r r r     Then for 0 0x =  and arbitrarily 

given  1 2,x x  such that 

 1 0x   and 11 3 1 22 1) ) ,( (x xr r r r x+  +  

the sequence 2 1 0 1 2(..., , ; , , ,...)x x x x x− −  defined by (3.2) and (3.3) is strictly decreasing and satisfies 

 lim n
n

x
→+

= − ,      lim .n
n

x
→−

= +  

 

Theorem 1.16 (Theorem 3.1 [4]) Suppose that 1 2 3.0 1r r r     Then all (1.2)f CS  for 3n =  

are strictly increasing. Additionally: 

(i) If f  has fixed points, then 0 is the unique fixed point and 

                                                                                     (3.2) 

                                                                                     (3.3) 
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( ), 0
( ) , 1,2

( ), 0

i

j

f x x
f x i j

f x x


= =


 

where 1 1( )f x r x=  and 2 ( )f x  is a solution given in Theorem 1 of Nabeya [5]. 

 

(ii) If ( )f x x  for all ,x R  then the set of f  contains both 1( ) ( , )( 2,3)if x max r x r x i =  

constructed by Theorem 2 of [5] and 

1

1

1

( ), [ , ], 0,1,...,
( ) :

( ), [ , ], 1, 2,...,

n n n

n n n

f x x x x n
f x

f x x x x n

+

−

− − − +

 =
= 

 =
 

where the bilateral sequence ( )ix  is given in Lemma 14, and 1 1 2:[ , ] [ , ]n n n n nf x x x x+ + +→  and 

1 2 1:[ , ] [ , ], 1,2,...n n n n nf x x x x n− − + − + − − +→ =  are orientation-preserving homeomorphisms defined 

inductively as 
1 1 1

2 1 2 3 1 2 1 3 2 3 1 1 2 3 1

1 1 1

1 2 1

1 2 3 1 2 1 3 2 3 1 2 3

( ) ( ) ( ) ( ) ( ( )),

1 1 1 1 1 1 1
( ) ( ) ( ( ))

n n n n

n n n n

f x r r r x r r r r r r f x r r r f f x

f x x f x f f x
r r r r r r r r r r r r

− − −

+ + +

− − −

− − + − + − +

= + + − + + +

   
= + + − + + +   
   

 

which are uniquely determined by two given function 0 0 1 1 2:[ , ] [ , ]f x x x x→  and 

1 1 2 2 3:[ , ] [ , ]f x x x x→ . 

(iii) If ( )f x x  for all ,x R , then the set of f  contains both 1( ) ( , )( 2,3)if x max r x r x i =  

constructed by Theorem 2 of Nabeya [5] and 

1

1

1

( ), [ , ], 0,1,...,
( ) :

( ), [ , ], 1, 2,...,

n n n

n n n

f x x x x n
f x

f x x x x n

+

−

− − + −

 =
= 

 =
 

where the bilateral sequence ( )ix  is given in Lemma 15, and 1 2 1:[ , ] [ , ]n n n n nf x x x x+ + +→  and 

2 1 1:[ , ] [ , ]n n n n nf x x x x− − + − + − + −→  are orientation-preserving homeomorphisms defined inductively 

as 
1 1 1

2 1 2 3 1 2 1 3 2 3 1 1 2 3 1

1 1 1

1 2 1

1 2 3 1 2 1 3 2 3 1 2 3

( ) ( ) ( ) ( ) ( ( )),

1 1 1 1 1 1 1
( ) ( ) ( ( ))

n n n n

n n n n

f x r r r x r r r r r r f x r r r f f x

f x x f x f f x
r r r r r r r r r r r r

− − −

+ + +

− − −

− − + − + − +

= + + − + + +

   
= + + − + + +   
   

 

which are uniquely determined by two given function 0 1 0 2 1:[ , ] [ , ]f x x x x→  and 

1 2 1 3 2:[ , ] [ , ]f x x x x→ . 

 

Corollary 1.17 (Corollary 3.1 [4]) Suppose that 3 2 1.0 1r r r     Then every (1.3)f CS  for 

3n =  is strictly increasing and 1f −  is a solution given in Theorem 16. 

 

Theorem 1.18 (Theorem 3.2 [4]) Suppose that 1 2 31 0.r r r  −    Then all (1.3)f CS  for 

3n = are strictly decreasing and 0x =  is the unique fixed point of every .f  Moreover,  

(i) If 0x =  is attractive fixed point of 2 ,f  then 3( ) .f x r x=  

(ii) If 0x =  is repelling fixed point of 2 ,f  then f  is a solution in the class given in Theorem 3 

of Nabeya [5]. 
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Corollary 1.19 (Corollary 3.2 [4]) Suppose that 3 2 11 0.r r r −     Then all (1.3)f CS  for 

3n =  are strictly decreasing with the unique fixed point 0, and the inverse 1f −  is a solution given 

in Theorem 18. 

            From now, Zhang and Gong [4] considered all continuous solutions of equation (1.3) for 

3n =  for one negative root and two positive roots as in Table 1 and two negative roots and one 

positive root as in Table 2. 

 

Table 1. Two positive and one negative characteristic roots 

 

Table 2. One positive and two negative characteristic roots 

 

1 2 3( ) 1a r r r −  −   1 3 2( ) 1c r r r −   −  3 1 2( ) 1e r r r  −  −  

1 2 3( ) 0 1e r r r −  −    1 3 2( ) 0 1c r r r −   −   3 1 2( ) 0 1a r r r  −  −   

1 2 3( ) 0 1b r r r −   −   1 3 2( ) 0 1d r r r −    −  3 1 2( ) 0 1f r r r   −  −  

3 1 2( ) 0 1b r r r  −   −  
1 3 2( ) 0 1d r r r −    −  

1 2 3( ) 0 1f r r r −  −    

 

Theorem 1.20 (Theorem 4.1 [4]) Cases 1 2 3( ) 1i r r r −   , 1 2 3( ) 0 1ii r r r −    , 

2 1 3( ) 1iii r r r  −   and 2 3 1( ) 1v r r r   −  in Table 1. 

1) If (1.3)f CSI  for 3n = , then f  is a function in the class given in Theorem 1 of [5]. 

2) If (1.3)f CSD  for 3n = , then 1( )f x r x= . 

 

Corollary 1.21 (Corollary 4.1 [4]) Cases 2 3 1( ) 0 1i r r r   −  , 
2 3 1( ) 0 1ii r r r    − , 

2 1 3( ) 0 1iii r r r  −    and 1 2 3( ) 0 1v r r r −     in Table 1.  

If (1.3)f CS  for 3n = , then 1f −  is a function in the class given in Theorem 20. 

 

Theorem 1.22 (Theorem 4.2 [4]) Cases 
2 1 3( ) 0 1iv r r r  −    and 

1 2 3( ) 0 1vi r r r −     in 

Table 1. 

1) If (1.3)f CSI  for 3n = , then f  is a function in the class given in Theorem 2 of [5]. 

2) If (1.3)f CSD  for 3n = , then 1( )f x r x= . 

 

Corollary 1.23 (Corollary 4.2 [4]) Cases 2 1 3( ) 0 1iv r r r   −   and 2 3 1( ) 0 1vi r r r    −  in 

Table 1. 

If (1.3)f CS  for 3n = , then 1f −  is a function in the class given in Theorem 22. 

 

Theorem 1.24 (Theorem 4.3 [4]) Cases 
1 2 3( ) 1a r r r −  −  , 

1 3 2( ) 1c r r r −   − , 

3 1 2( ) 1e r r r  −  −  and 
3 1 2( ) 0 1f r r r   −  −  in Table 2. 

1 2 3( ) 1i r r r −    2 1 3( ) 1iii r r r  −   2 3 1( ) 1v r r r   −  

1 2 3( ) 0 1v r r r −     
2 1 3( ) 0 1iii r r r  −    2 3 1( ) 0 1i r r r   −   

1 2 3( ) 0 1ii r r r −     2 1 3( ) 0 1iv r r r   −   2 3 1( ) 0 1vi r r r    −  

2 3 1( ) 0 1ii r r r    −  
2 1 3( ) 0 1iv r r r  −    

1 2 3( ) 0 1vi r r r −     
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1) If (1.3)f CSI  for 3n = , then 
3( )f x r x= . 

2) If (1.3)f CSD  for 3n = , then f  is a function in the class given in Theorem 3 of Nabeya [5]. 

Corollary 1.25 (Corollary 4.3 [4]) Cases 
3 1 2( ) 0 1a r r r  −  −  , 

1 3 2( ) 0 1c r r r −   −  , 

1 2 3( ) 0 1e r r r −  −    and 
1 2 3( ) 0 1f r r r −  −    in Table 2. 

If (1.3)f CS  for 3n = , then 1f −  is a function in the class given in Theorem 24. 

 

Theorem 1.26 (Theorem 4.4 [4]) Cases 
1 2 3( ) 0 1b r r r −   −   and 

1 3 2( ) 0 1d r r r −    −  in 

Table 2. 

1) If (1.3)f CSI  for 3n = , then 
3( )f x r x= .  

2) If (1.3)f CSD  for 3n = , then 
1( )f x r x=  or 

2( )f x r x= . 

 

Corollary 1.27 (Corollary 4.4 [4]) Cases 
3 1 2( ) 0 1b r r r  −   −  and 

1 3 2( ) 0 1d r r r −    −  

in Table 2. 

If (1.3)f CS  for 3n = , then 1f −  is a function in the class given in Theorem 26. 

 

 We single out from Lemma 1.13, two useful formulas for the iterates of an element in 

(1.6)CS . 

 

Lemma 1.28 Suppose that (1.6) has four different characteristic roots 1 2 3 4, , , .r r r r C  If 

(1.6)f CS , then 

44 4 4
3 2

4
1 ,

1,

44 4
3 2 1

4
1 ,

1

4

,

( )

( ) ]

[ ( ) ( ) ( ) ( ) ( ) ]

( )

1 1 1
[ ( ) ( ) ( ) ( ) ( )

1 1
( )

m

jm

k k t i

j k j k t j i j

j i

i i j

m

jm

j k j k t j i jk k t i

i i j j i

r
f f x r f x r r f x r x

r r

r
f f x f x f x x

r r r

r

x
r

x

r

=    

= 

−

− − − −

=    

= 

= − + −

−

= − + −

−

   


   


 

 

for any integer 0.m   

 

 

3.  Results and Discussion 

 

3.1 Results 

 
Our results are derived in accordance with those listed in Cases A, B and C. Apart from adopting 

the approach Zhang and Gong [4], we introduce a novel technique of using a second limiting 

criterion for the cases starting from ( 2),( 3)  (i.e., from Theorem 2.23) onwards. 

 

Theorem 2.1 Cases 1 2 3 4 ,( 1):1 r r r r  −    2 3 4 1( 4):1 r r r r     −  and  

1 2 3 4( 10) 0 1r r r r  −     . 
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i)  If (1.6)f CSI , then f  is a function given in Theorem 1.1. 

ii)  If (1.6)f CSD , then 1( )f x r x= , the form given by Theorem 1.20. 

Proof. We know that if (1.6)f CSI , then 1 (1.7)f CSI−  . If (1.6)f CSD , then 
1 (1.7).f CSD−   

            Case 1 2 3 4( 1) :1 .r r r r  −     

            i)  Let (1.6)f CSI . From Lemma 1.28, we have 

3 2 1

2 3 4 2 3 2 4 3 4 2 3 4

1 2 1 3 1 4

1

1 1 1 1 1 1 1 1
( ( ) ( ) ( ) ( ) ( ) ).l

1

(

1 1 1 1 1
(

)
im

( )( ) )

m

mm
f x f x f x x

r r r r r r r r r r r r

r r r r r r

f x

r

− −



−
−

−→
− + + + + + −

− −

=

−

For a fixed x R , since 1( )f x−  is strictly increasing, the limiting function 
1

( )
lim

m

mm

f x

r

−

−→
 is 

nondecreasing for even m  and nonincreasing for odd m , which implies that it must be a constant, 

i.e., 

 3 2 1

1

2 3 4 2 3 2 4 3 4 2 3 4

1 1 1 1 1 1 1
( ) ( ) ( ) ( ) ( ) , .f x f x f x x c R x R

r r r r r r r r r r r r

− − −− + + + + + − =     

 

Substituting (2.1) into (1.7), we get 1

1 1 1c r c−=  implying that 1 0c = , and so 

   3 2 1

2 3 4 2 3 2 4 3 4 2 3 4

1 1 1 1 1 1 1
( ) ( ) ( ) ( ) ( ) 0f x f x f x x

r r r r r r r r r r r r

− − −− + + + + + − = , 

equivalently,   

 

  3 2

2 3 4 2 3 2 4 3 4 2 3 4( ) ( ) ( ) ( ) ( ) 0.f x r r r f x r r r r r r f x r r r x− + + + + + − =  

 

The equation (2.2) is of 3rd-order with three positive distinct characteristic roots > 1, and its 

solutions are as given in Theorem 1.1. 

            ii)  Let (1.6)f CSD . From Lemma 1.28, we have 

3 2

1 2 3 1 2 1 3 2 3 1 2 3

4 1 4 2 4 34

1
lim ( ( ) ( ) ( ) ( ) ( ) ).

( )( )( )

m

mm

f
f x r r r f x r r r r r r f x r r r x

r r r r r rr→
= − + + + + + −

− − −
 

For a fixed x R , since ( )f x  is strictly decreasing, the limiting function 
4

( )
lim

m

mm

f x

r→
 is 

nondecreasing for even m  and nonincreasing for odd m , which forces it to be a constant, i.e., 

 

  3 2

1 2 3 1 2 1 3 2 3 1 2 3 1( ) ( ) ( ) ( ) ( ) , .f x r r r f x r r r r r r f x r r r x c R x R− + + + + + − =     

 

Substituting (2.3) into (1.6), we get 1 4 1c r c=  implying that 1 0c = , and so 

 3 2

1 2 3 1 2 1 3 2 3 1 2 3( ) ( ) ( ) ( ) ( ) 0f x r r r f x r r r r r r f x r r r x− + + + + + − = . 

Since the three distinct characteristic roots satisfy 1 2 31 r r r −   , Theorem 1.20 gives 1( )f x r x= . 

 

            Case 2 3 4 1( 4) :1 .r r r r     −  

            i) Assume that (1.6)f CSI . By the same proof as that of the case (A1), we obtain   

                                                                            (2.1) 

                                        (2.2) 

                                        (2.3) 
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 3 2

2 3 4 2 3 2 4 3 4 2 3 4( ) ( ) ( ) ( ) ( ) 0.f x r r r f x r r r r r r f x r r r x− + + + + + − =  

Since 2 3 41 r r r   , the solution function is given by Theorem 1.1. 

            ii) Assume that (1.6)f CSD . By the same proof as that of the case (A1), we obtain   

3 2 1

1 3 4 1 3 1 4 3 4 1 3 4

1 1 1 1 1 1 1
( ) ( ) ( ) ( ) ( ) 0f x f x f x x

r r r r r r r r r r r r

− − −− + + + + + − = , 

equivalently, 

  3 2

1 3 4 1 3 1 4 3 4 1 3 4( ) ( ) ( ) ( ) ( ) 0.f x r r r f x r r r r r r f x r r r x− + + + + + − =  

Since 3 4 11 r r r   − , Theorem 1.20 yields 1( )f x r x= . 

 

            Case 1 2 3 4( 10) : 0 1 .r r r r  −      

            The proof for this case is the same as that of the case (A1) and is omitted. 

 

Corollary 2.2  Cases 2 3 4 1( 1):0 1,r r r r     −  1 2 3 4( 4):0 1r r r r  −      and  

2 3 4 1( 10):0 1r r r r      − . 

Proof. For the case ( 1)  since 2 3 4 10 1r r r r    −  , we get 
2 3 4 1

1 1 1 1
1

r r r r
   −  . 

The reciprocals are characteristic roots of (1.7), which is the dual equation of (1.6). Thus, its 

solution 1f −  is a function given in Theorem 2.1 depending on its behavior (increasing or 

decreasing ). 

            The cases 1 2 3 4( 4):0 1r r r r  −      and 2 3 4 1( 10):0 1r r r r      −  are reasoned 

similarly. 

 

            The solution functions in the forthcoming corollaries are derived via the same arguments 

as in Corollary 2.2. 

 

Theorem 2.3 Case 2 3 4 1( 7) : 0 1r r r r      − . 

i) If (1.6)f CSI , then f  is as given in Theorem 1.16.  

ii) If (1.6)f CSD , then 1( )f x r x= , the form given by Theorem 1.20.  

Proof.  i) Assume that (1.6)f CSI . By the same proof as that of the case (A1), we obtain   
3 2

2 3 4 2 3 2 4 3 4 2 3 4( ) ( ) ( ) ( ) ( ) 0.f x r r r f x r r r r r r f x r r r x− + + + + + − =  

Since 2 3 40 1r r r    , the solution function f  is as given in Theorem 1.16. 

            ii) Assume that (1.6)f CSD . By the same proof as that of the case (A1), we obtain   
3 2

1 3 4 1 3 1 4 3 4 1 3 4( ) ( ) ( ) ( ) ( ) 0.f x r r r f x r r r r r r f x r r r x− + + + + + − =  

Since 3 4 11 r r r   − , again Theorem 1.20 yields 1( )f x r x= . 

 

Corollary 2.4 Case 1 2 3 4( 7) : 0 1r r r r  −     . 

If (1.6)f CS , then 1f −  is a function given in Theorem 2.3. 

 

Theorem 2.5 Case 1 2 3 4( 9) : 0 1r r r r  −     . 

i) If (1.6)f CSI , then f  is a function given in Theorem 1.16. 
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ii) If (1.6)f CSD , then 1( )f x r x= , the form given by Theorem 1.22. 

Proof.  i) Assume that (1.6)f CSI . By the same proof as the case (A1) by Lemma 1.28 (form of 

mf − ) and removing 
1

1

r
 we obtain   

3 2

2 3 4 2 3 2 4 3 4 2 3 4( ) ( ) ( ) ( ) ( ) 0.f x r r r f x r r r r r r f x r r r x− + + + + + − =  

Since 2 3 40 1r r r    , then f  is a function in the class given in Theorem 1.16. 

            ii) Assume that (1.6)f CSD . By the same proof as that of the case (A1), we obtain   
3 2

1 2 3 1 2 1 3 2 3 1 2 3( ) ( ) ( ) ( ) ( ) 0.f x r r r f x r r r r r r f x r r r x− + + + + + − =  

Since 1 2 30 1r r r −    , Theorem 1.22 yields 1( )f x r x= . 

 

Corollary 2.6 Case 2 3 4 1( 9) : 0 1r r r r      − . 

If (1.6)f CS , then 1f −  is a function given in Theorem 2.5. 

 

Theorem 2.7 Cases 1 2 3 4 ,( 1):1 r r r r   −  −  − 2 3 4 1( 4):1 r r r r  −  −  −   and  

1 2 3 4( 10):0 1r r r r    −  −  − . 

i)  If (1.6)f CSI , then 1( )f x r x= , the form given by Theorem 1.24.  

ii)  If (1.6)f CSD , then f  is given by Theorem 1.4. 

Proof.  Case 1 2 3 4( 1) :1 r r r r   −  −  − .  

i) By the same proof as in the case (A1), we obtain   
3 2

1 2 3 1 2 1 3 2 3 1 2 3( ) ( ) ( ) ( ) ( ) 0.f x r r r f x r r r r r r f x r r r x− + + + + + − =  

Since 1 2 31 r r r  −  − , Theorem 1.24 gives  1( )f x r x= . 

            ii)  By the same proof as in the case (A1), we obtain   
3 2

2 3 4 2 3 2 4 3 4 2 3 4( ) ( ) ( ) ( ) ( ) 0f x r r r f x r r r r r r f x r r r x− + + + + + − = . 

Since 2 3 41 r r r −  −  − , the solution function f  is given by Theorem 1.4. 

 

            Case 2 3 4 1( 4) :1 r r r r  −  −  −  .  

            i)  By the same proof as in the case (A1), we obtain 
3 2

1 3 4 1 3 1 4 3 4 1 3 4( ) ( ) ( ) ( ) ( ) 0.f x r r r f x r r r r r r f x r r r x− + + + + + − =  

Since 3 4 11 r r r −  −  , Theorem 1.24 gives 1( )f x r x= . 

            ii)  By the same proof as in the case (A1), we obtain 
3 2

2 3 4 2 3 2 4 3 4 2 3 4( ) ( ) ( ) ( ) ( ) 0.f x r r r f x r r r r r r f x r r r x− + + + + + − =  

Since 2 3 41 r r r −  −  − , the solution function is given by Theorem 1.4. 

 

            Case 1 2 3 4( 10) : 0 1r r r r    −  −  − .  

            i)  By the same proof as in the case (A1), we obtain 
3 2

1 2 3 1 2 1 3 2 3 1 2 3( ) ( ) ( ) ( ) ( ) 0.f x r r r f x r r r r r r f x r r r x− + + + + + − =  

Since 1 2 30 1r r r   −  − , Theorem 1.24 then yields 1( )f x r x= . 

            ii) By the same proof as in the case (A1), we obtain 
3 2

2 3 4 2 3 2 4 3 4 2 3 4( ) ( ) ( ) ( ) ( ) 0.f x r r r f x r r r r r r f x r r r x− + + + + + − =  
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Since 2 3 41 r r r −  −  − , the solution f  is given by Theorem 1.4. 

Corollary 2.8 Cases 2 3 4 1( 1):0 1,r r r r  −  −  −   1 2 3 4( 4):0 1r r r r   −  −  −   and  

2 3 4 1( 10):0 1r r r r  −  −  −   . 

If (1.6)f CS , then 1f −  is given by Theorem 2.7. 

 

Theorem 2.9 Case 2 3 4 1( 7) : 0 1r r r r  −   −  −  . 

i) If (1.6)f CSI , then 1( )f x r x= , the form given by Theorem 1.24. 

ii) If (1.6)f CSD , then the solution function f  is as given in Theorem 1.18. 

Proof. i) By the same proof as in the case (A1), we obtain  
3 2

1 3 4 1 3 1 4 3 4 1 3 4( ) ( ) ( ) ( ) ( ) 0.f x r r r f x r r r r r r f x r r r x− + + + + + − =  

Since 3 4 11 r r r −  −  , Theorem 1.24 then gives 1( )f x r x= . 

            ii) By the same proof as in the case (A1), we obtain   
3 2

2 3 4 2 3 2 4 3 4 2 3 4( ) ( ) ( ) ( ) ( ) 0.f x r r r f x r r r r r r f x r r r x− + + + + + − =  

Since 2 3 40 1r r r −   −  − , the solution f  is given by Theorem 1.18. 

 

Corollary 2.10 Case 1 2 3 4( 7):0 1r r r r   −  −   − . 

If (1.6)f CS , then 1f −  is given by Theorem 2.9. 

 

Theorem 2.11 Case 1 2 3 4( 9) : 0 1r r r r   −   −  − .  

i) If (1.6)f CSI , then 1( )f x r x= , the form given in Corollary 1.27. 

ii) If (1.6)f CSD , then f  is given by Theorem 1.18. 

Proof. i) By the same proof as in the case (A1), we obtain  
3 2

1 2 3 1 2 1 3 2 3 1 2 3( ) ( ) ( ) ( ) ( ) 0.f x r r r f x r r r r r r f x r r r x− + + + + + − =  

Since 1 2 30 1r r r  −   − , Theorem 1.27 yields 1( )f x r x= . 

            ii) By the same proof as in the case (A1), we obtain   
3 2

2 3 4 2 3 2 4 3 4 2 3 4( ) ( ) ( ) ( ) ( ) 0.f x r r r f x r r r r r r f x r r r x− + + + + + − =  

Since 2 3 41r r r−   −  − , the solution function f  is given by Theorem 1.18. 

 

Corollary 2.12 Case 2 3 4 1( 9):0 1r r r r  −  −   −  . 

If (1.6)f CS , then 1f −  is given by Theorem 2.11. 

 

Theorem 2.13 Cases 1 4 2 3 ,( 1):1C r r r r −  −   1 2 4 3 ,( 2):1C r r r r −   − 

2 1 3 4 ,( 5) 1C r r r r  −   −  and 2 3 1 4( 6):1C r r r r   −  − . 

i) If (1.6)f CSI , then f  is given by Theorem 1.20.  

ii) If (1.6)f CSD , then f  is given by Theorem 1.24. 

Proof. Case 1 4 2 3( 1) :1C r r r r −  −   .  

            i) By the same proof as in the case (A1), we obtain 
3 2

2 3 4 2 3 2 4 3 4 2 3 4( ) ( ) ( ) ( ) ( ) 0.f x r r r f x r r r r r r f x r r r x− + + + + + − =  

Since 4 2 31 r r r −   , the solution f  is given by Theorem 1.20. 
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            ii) By the same proof as in the case (A1), we obtain 
3 2

1 2 4 1 2 1 4 3 4 1 2 4( ) ( ) ( ) ( ) ( ) 0f x r r r f x r r r r r r f x r r r x− + + + + + − = . 

Since 1 4 21 r r r −  −  , the solution f  is given by Theorem 1.24. 

 

            Case 1 2 4 3( 2) :1C r r r r −   −  .  

            i) By the same proof as in the case (A1), we obtain 
3 2

2 3 4 2 3 2 4 3 4 2 3 4( ) ( ) ( ) ( ) ( ) 0.f x r r r f x r r r r r r f x r r r x− + + + + + − =  

Since 2 4 31 r r r  −  , the solution f  is given by Theorem 1.20. 

            ii) By the same proof as in the case (A1), we obtain 
3 2

1 2 4 1 2 1 4 2 4 1 2 4( ) ( ) ( ) ( ) ( ) 0f x r r r f x r r r r r r f x r r r x− + + + + + − = . 

Since 1 2 41 r r r −   − , the solution f  is given by Theorem 1.24. 

            Case 2 1 3 4( 5) :1C r r r r  −   − . 

            i) By the same proof as in the case (A1), we obtain 
3 2

1 2 3 1 2 1 3 2 3 1 2 3( ) ( ) ( ) ( ) ( ) 0.f x r r r f x r r r r r r f x r r r x− + + + + + − =  

Since 2 1 31 r r r  −  , the solution f  is given by Theorem 1.20. 

            ii) By the same proof as in the case (A1), we obtain 
3 2

1 3 4 1 3 1 4 3 4 1 3 4( ) ( ) ( ) ( ) ( ) 0f x r r r f x r r r r r r f x r r r x− + + + + + − = . 

Since 1 3 41 r r r −   − , the solution f  is given by Theorem 1.24. 

 

            Case 2 3 1 4( 6) :1C r r r r   −  − . 

            i) By the same proof as in the case (A1), we obtain 
3 2

1 2 3 1 2 1 3 2 3 1 2 3( ) ( ) ( ) ( ) ( ) 0.f x r r r f x r r r r r r f x r r r x− + + + + + − =  

Since 2 3 11 r r r   − , the solution f  is given by Theorem 1.20. 

            ii) By the same proof as in the case (A1), we obtain 
3 2

1 3 4 1 3 1 4 3 4 1 3 4( ) ( ) ( ) ( ) ( ) 0f x r r r f x r r r r r r f x r r r x− + + + + + − = . 

Since 3 1 41 r r r  −  − , the solution f  is given by Theorem 1.24. 

 

Corollary 2.14 Cases 2 3 1 4( 1):0 1,C r r r r   −  −  2 1 3 4( 2):0 1,C r r r r  −   − 

1 2 4 3( 5):0 1C r r r r −   −    and 1 4 2 3( 6):0 1C r r r r −  −    . 

If (1.6)f CS , then 1f −  is given by Theorem 2.13. 

 

Theorem 2.15 Cases 2 1 3 4( 8):0 1C r r r r   −   −  and 2 3 1 4( 9):0 1C r r r r    −  − . 

i) If (1.6)f CSI , then f  is given by Corollary 1.23. 

ii) If (1.6)f CSD , then f  is given by Theorem 1.24. 

Proof. Case 2 1 3 4( 8) : 0 1C r r r r   −   − . 

            i) By the same proof as in the case (A1), we obtain 
3 2

1 2 3 1 2 1 3 2 3 1 2 3( ) ( ) ( ) ( ) ( ) 0.f x r r r f x r r r r r r f x r r r x− + + + + + − =  

Since 2 1 30 1r r r   −  , the solution f  is given by Corollary 1.23. 

            ii) By the same proof as in the case (A1), we obtain 
3 2

1 3 4 1 3 1 4 3 4 1 3 4( ) ( ) ( ) ( ) ( ) 0f x r r r f x r r r r r r f x r r r x− + + + + + − = . 
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Since 1 3 41 r r r −   − , the solution f  is given by Theorem 1.24. 

            Case 2 3 1 4( 9) : 0 1C r r r r    −  − .  

            i) By the same proof as in the case (A1), we obtain 
3 2

1 2 3 1 2 1 3 2 3 1 2 3( ) ( ) ( ) ( ) ( ) 0.f x r r r f x r r r r r r f x r r r x− + + + + + − =  

Since 2 3 10 1r r r    − , the solution f  is given by Corollary 1.23. 

            ii) By the same proof as in the case (A1), we obtain 
3 2

1 3 4 1 3 1 4 3 4 1 3 4( ) ( ) ( ) ( ) ( ) 0f x r r r f x r r r r r r f x r r r x− + + + + + − = . 

Since 3 1 41 r r r  −  − , the solution f  is given by Theorem 1.24. 

 

Corollary 2.16 Cases 1 2 4 3( 8):0 1C r r r r −   −    and 1 4 2 3( 9):0 1C r r r r −  −    . 

If (1.6)f CS , then 1f −  is given by Theorem 2.15. 

 

Theorem 2.17 Case 1 4 2 3( 10) : 0 1C r r r r −  −    . 

i) If (1.6)f CSI , then f  is given by Theorem 1.20. 

ii) If (1.6)f CSD , then f  is given by Corollary 1.25.  

Proof. i) By the same proof as in the case (A1), we obtain 
3 2

2 3 4 2 3 2 4 3 4 2 3 4( ) ( ) ( ) ( ) ( ) 0.f x r r r f x r r r r r r f x r r r x− + + + + + − =  

Since 4 2 30 1r r r −    , the solution f  is given by Theorem 1.20.  

            ii) By the same proof as in the case (A1), we obtain 
3 2

1 2 4 1 2 1 4 2 4 1 2 4( ) ( ) ( ) ( ) ( ) 0f x r r r f x r r r r r r f x r r r x− + + + + + − = . 

Since 1 4 20 1r r r −  −   , the solution f  is given by Corollary 1.25. 

 

Corollary 2.18 Case 2 3 1 4.( 10):0 1C r r r r    −  −  

If (1.6)f CS , then 1f −  is given by Theorem 2.17. 

 

Theorem 2.19 Cases 1 4 2 3( 11):0 1C r r r r −   −    and 1 2 4 3( 12):0 1C r r r r −    −  . 

i) If (1.6)f CSI , then f  is given by Theorem 1.20.  

ii) If (1.6)f CSD , then f  is given by Theorem 1.26.  

Proof. Case 1 4 2 3( 11) : 0 1C r r r r −   −   . 

            i) By the same proof as in the case (A1), we obtain 
3 2

2 3 4 2 3 2 4 3 4 2 3 4( ) ( ) ( ) ( ) ( ) 0.f x r r r f x r r r r r r f x r r r x− + + + + + − =  

Since 4 2 31 r r r −   , the solution f  is given by Theorem 1.20.  

            ii) By the same proof as in the case (A1), we obtain 
3 2

1 2 4 1 2 1 4 2 4 1 2 4( ) ( ) ( ) ( ) ( ) 0f x r r r f x r r r r r r f x r r r x− + + + + + − = . 

Since 1 4 20 1r r r −   −  , the solution f  is given by Theorem 1.26. 

 

            Case 1 2 4 3( 12) : 0 1C r r r r −    −  . 

            i) By the same proof as in the case (A1), we obtain 
3 2

2 3 4 2 3 2 4 3 4 2 3 4( ) ( ) ( ) ( ) ( ) 0.f x r r r f x r r r r r r f x r r r x− + + + + + − =  

Since 2 4 31 r r r  −  , the solution f  is given by Theorem 1.20. 
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            ii) By the same proof as in the case (A1), we obtain 
3 2

1 2 4 1 2 1 4 2 4 1 2 4( ) ( ) ( ) ( ) ( ) 0f x r r r f x r r r r r r f x r r r x− + + + + + − = . 

Since 1 2 40 1r r r −    − , the solution f  is given by Theorem 1.26. 

 

Corollary 2.20 Cases 2 3 1 4( 11):0 1C r r r r   −   −  and 2 1 3 4( 12):0 1C r r r r  −    − . 

If (1.6)f CS , then 1f −  is given by Theorem 2.19. 

 

Theorem 2.21 Case 1 2 4 3( 14) : 0 1C r r r r −    −  . 

i) If (1.6)f CSI , then f  is given by Corollary 1.23.  

ii) If (1.6)f CSD , then f  is given by Corollary 1.27.  

Proof. i) By the same proof as in the case (A1), we obtain 
3 2

2 3 4 2 3 2 4 3 4 2 3 4( ) ( ) ( ) ( ) ( ) 0.f x r r r f x r r r r r r f x r r r x− + + + + + − =  

Since 2 4 30 1r r r   −  , the solution f  is given by Corollary 1.23.  

            ii) By the same proof as in the case (A1), we obtain 
3 2

1 2 4 1 2 1 4 2 4 1 2 4( ) ( ) ( ) ( ) ( ) 0f x r r r f x r r r r r r f x r r r x− + + + + + − = . 

Since 1 2 40 1r r r −    − , the solution f  is given by Corollary 1.27. 

 

Corollary 2.22 Case 2 1 3 4( 14):0 1C r r r r  −    − . 

If (1.6)f CS , then 1f −  is given by Theorem 2.21. 

 

Theorem 2.23 Cases 2 1 3 4( 2):1 r r r r   −    and 2 3 1 4( 3):1 r r r r    −  . 

 i) Assume that (1.6)f CSI . In the case (A2), further assume that 
1

lim
m

mm

f

r

−

−→
 exists. 

While in the case (A3) further assume that 
1

lim
m

mm

f

r→
 exists,  then the solution function f  is as 

given in Theorem 1.6. 

 ii) If (1.6)f CSD , then 1( )f x r x= , the form given by Theorem 1.20. 

Proof.  Case 2 1 3 4( 2) :1 .r r r r   −    

 Let 
1

lim
m

mm

f
c

r

−

−→
= .  From Lemma 1.28, we get 

3 2 1

2 3 4 2 3 2 4 3 4 2 3 41

1 2 1 3 1 4

1

3 2 12

1 3 4 1 3 1 4 3 4

2 1 2 3 2 4

1 1 1 1 1 1 1 1
lim ( ( ) ( ) ( ) ( ) ( ) )

1 1 1 1 1 1
( )( )( )

( )
1 1 1 1 1 1

lim ( ( ) ( ) ( ) ( ) (
1 1 1 1 1 1

( )( )( )

m

mm

m

m

f
f x f x f x x

r r r r r r r r r r r rr

r r r r r r

r

r
f x f x f x

r

c

r r r r r r r r

r r r r r r

−
− − −

−→

− − −

→

= − + + + + + −

− − −

+ − + + + + +

− −

=

− 1 3 4

1
) )x

r r r
−

 

showing that 
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1

3 2 12

1 3 4 1 3 1 4 3 4 1 3 4

2 1 2 3 2 4

( )
1 1 1 1 1 1 1

lim ( ( ) ( ) ( ) ( ) ( ) ) 0.
1 1 1 1 1 1

( )( )( )

m

m

r

r
f x f x f x x

r r r r r r r r r r r r

r r r r r r

− − −

→
− + + + + + − =

− − −

 

 

Thus 

   3 2 1

1 3 4 1 3 1 4 3 4 1 3 4

1 1 1 1 1 1 1
( ) ( ) ( ) ( ) ( ) 0,f x f x f x x

r r r r r r r r r r r r

− − −− + + + + + − =  

or equivalently, 

 

  3 2

1 3 4 1 3 1 4 3 4 1 3 4( ) ( ) ( ) ( ) ( ) 0f x r r r f x r r r r r r f x r r r x− + + + + + − = . 

Returning to the limiting equation, we deduce that:  

 3 2 1

1

2 3 4 2 3 2 4 3 4 2 3 4

1 1 1 1 1 1 1
( ) ( ) ( ) ( ) ( )f x f x f x x c

r r r r r r r r r r r r

− − −− + + + + + − =  

for some constant 1c . Substituting (2.5) in (1.7), we get 1

1 1 1c r c−=  yielding 1 0c = . 

Hence, 

   3 2 1

2 3 4 2 3 2 4 3 4 2 3 4

1 1 1 1 1 1 1
( ) ( ) ( ) ( ) ( ) 0,f x f x f x x

r r r r r r r r r r r r

− − −− + + + + + − =  

equivalently, 
3 2

2 3 4 2 3 2 4 3 4 2 3 4( ) ( ) ( ) ( ) ( ) 0.f x r r r f x r r r r r r f x r r r x− + + + + + − =  

Subtracting (2.4) from (2.6), we get   

  2

3 4 3 4( ) ( ) ( ) 0.f x r r f x r r x− + + =  

Since 3 41 r r  , the solution function f  is given in Theorem 1.6. 

i) By the same proof as that of the case (A1), we obtain   
3 2

1 2 3 1 2 1 3 2 3 1 2 3( ) ( ) ( ) ( ) ( ) 0.f x r r r f x r r r r r r f x r r r x− + + + + + − =  

Since 2 1 31 r r r  −  , the solution function is 1( )f x r x= , the form given by Theorem 1.20. 

 

            Case 2 3 1 4( 3) :1 .r r r r    −   

            i)  By the same proof as that of the case (A2), we obtain   
2

2 3 2 3( ) ( ) ( ) 0.f x r r f x r r x− + + =  

Since 2 31 r r  , the solution function f  is as given in Theorem 1.6. 

            ii) By the same proof as that of the case (A1), we obtain   
3 2

1 2 3 1 2 1 3 2 3 1 2 3( ) ( ) ( ) ( ) ( ) 0.f x r r r f x r r r r r r f x r r r x− + + + + + − =  

Since 2 3 11 r r r   − , the solution function is 1( )f x r x= , the form given by Theorem 1.20. 

 

Corollary 2.24.  Cases 2 3 1 4( 2):0 1r r r r    −    and 2 1 3 4( 3):0 1r r r r   −    . 

Under the hypotheses of Theorem 2.23, if (1.6)f CS , then 1f −  is given in Theorem 2.23. 

 

 

 

 

                                        (2.4) 

                                        (2.5) 

                                        (2.6) 
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Theorem 2.25. Cases 2 1 3 4( 5):0 1r r r r    −    and 2 3 1 4( 6):0 1r r r r     −  . 

i) Assume that (1.6)f CSI . In the case (A5), further assume that 
1

lim
m

mm

f

r

−

−→
 exists, while in the 

case (A6) further assume that 
1

lim
m

mm

f

r→
 exists.  Then the solution function f  is as given in 

Theorems 1.6 and 1.8., respectively. 

ii) If (1.6)f CSD , then 1( )f x r x= , the form given by Corollary 1.23. 

Proof.  Case 2 1 3 4( 5) : 0 1 .r r r r    −    

            i)  By the same proof as that of the case (A2), we get 
2

3 4 3 4( ) ( ) ( ) 0.f x r r f x r r x− + + =  

Since 3 41 r r  , the solution function f  is as given in Theorem 1.6. 

 

            ii) By the same proof as that of the case (A1), we obtain   
3 2

1 2 3 1 2 1 3 2 3 1 2 3( ) ( ) ( ) ( ) ( ) 0.f x r r r f x r r r r r r f x r r r x− + + + + + − =  

Since 2 1 30 1r r r   −  , by Corollary 1.23  1( )f x r x= . 

 

            Case 2 3 1 4( 6) : 0 1r r r r     −  . 

            i) By the same proof as that of the case (A2), we obtain   
2

2 3 2 3( ) ( ) ( ) 0.f x r r f x r r x− + + =  

Since 2 30 1r r   , thesolution function f  is as given in Theorem 1.8. 

            ii)  By the same proof as that of the case (A1), we obtain   
3 2

1 2 3 1 2 1 3 2 3 1 2 3( ) ( ) ( ) ( ) ( ) 0.f x r r r f x r r r r r r f x r r r x− + + + + + − =  

Since 2 3 10 1r r r    − , by Corollary 1.23 1( )f x r x= . 

 

Corollary 2.26.  Cases 2 3 1 4( 5):0 1r r r r    −    and 2 1 3 4( 6):0 1r r r r   −    . 

Under the hypotheses of Theorem 2.25, if (1.6)f CS , then 1f −  is as given in Theorem 2.25. 

 

Theorem 2.27. Case 2 1 3 4( 8) : 0 1r r r r   −    . 

i) If (1.6)f CSI  and it 
1

lim
m

mm

f

r

−

−→
 exists, then f  is as given in Theorem 1.6. 

ii) If (1.6)f CSD , then 1( )f x r x= , the form given by Theorem 1.22.  

Proof.  i) By the same proof as that of the case (A2), we obtain  
2

3 4 3 4( ) ( ) ( ) 0.f x r r f x r r x− + + =  

Since 3 41 r r  , the solution function f  is given by Theorem 1.6. 

            ii)  By the same proof as that of the case (A1), we obtain   
3 2

1 2 3 1 2 1 3 2 3 1 2 3( ) ( ) ( ) ( ) ( ) 0.f x r r r f x r r r r r r f x r r r x− + + + + + − =  

Since 2 1 30 1r r r  −   , Theorem 1.22 gives 1( )f x r x= . 

 

Corollary 2.28.  Case 2 3 1 4( 8):0 1r r r r     −  . 

Under the hypotheses of Theorem 2.27, if (1.6)f CS , then 1f −  is as given by Theorem 2.27. 
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Theorem 2.29 Cases 2 1 3 4( 2):1 r r r r  −   −  −  and 2 3 1 4( 3):1 r r r r  −  −   − . 

i) If (1.6)f CSI , then 1( )f x r x= , the form given by Theorem 1.24. 

ii) Assume that (1.6)f CSD . In the case  ( 2) , assume further that    
1

lim
m

mm

f

r

−

−→
 exists, while in 

the case ( 3) , assume further that 
1

lim
m

mm

f

r→
exist. Then f  is given by Theorem 1.9. 

Proof. Case 2 1 3 4( 2) :1 r r r r  −   −  − . 

            i) By the same proof as in the case (A1),  we obtain   
3 2

1 2 3 1 2 1 3 2 3 1 2 3( ) ( ) ( ) ( ) ( ) 0.f x r r r f x r r r r r r f x r r r x− + + + + + − =  

Since 2 1 31 r r r −   − , Theorem 1.24 gives 1( )f x r x= . 

            ii) By the same proof as in the case (A2), we obtain 
2

3 4 3 4( ) ( ) ( ) 0.f x r r f x r r x− + + =  

Since 3 41 r r −  − , the solution f  is given by Theorem 1.9. 

 

           Case 2 3 1 4( 3) :1 r r r r  −  −   − . 

            i) By the same proof as in the case (A1), we obtain   
3 2

1 2 3 1 2 1 3 2 3 1 2 3( ) ( ) ( ) ( ) ( ) 0.f x r r r f x r r r r r r f x r r r x− + + + + + − =  

Since 2 3 11 r r r −  −  , Theorem 1.24 gives 1( )f x r x= . 

            ii) By the same proof as in the case (A2), we obtain 
2

2 3 2 3( ) ( ) ( ) 0f x r r f x r r x− + + = . 

Since 2 31 r r −  − , the solution f  is given by Theorem 1.9. 

 

Corollary 2.30 Case 2 3 1 4( 2):0 1r r r r  −  −   −   and 2 1 3 4( 3):0 1r r r r  −   −  −  . 

Under the hypotheses of Theorem 2.29, if (1.6)f CS , then 1f −  is given by Theorem 2.29. 

 

Theorem 2.31. Cases 2 1 3 4( 5):0 1r r r r  −    −  −  and 2 3 1 4( 6):0 1r r r r  −   −   − . 

i) If (1.6)f CSI , then 1( )f x r x= , the form given by Theorem 1.26. 

ii) Assume that (1.6)f CSD . In the case ( 5) , assume further that    
1

lim
m

mm

f

r

−

−→
exists, while in 

the case ( 6) , assume further that 
1

lim
m

mm

f

r→
exists. Then the solution function f  is given by 

Theorems 1.9 and 1.10, respectively. 

Proof. Case 2 1 3 4( 5) : 0 1r r r r  −    −  − . 

i) By The same proof as in the case (A2), we obtain  
3 2

1 2 3 1 2 1 3 2 3 1 2 3( ) ( ) ( ) ( ) ( ) 0f x r r r f x r r r r r r f x r r r x− + + + + + − = . 

Since 2 1 30 1r r r −    − , Theorem 1.26 yield 1( )f x r x= . 

            ii) By The same proof as in the case (A2), we obtain  
2

3 4 3 4( ) ( ) ( ) 0f x r r f x r r x− + + = . 

Since 3 41 r r −  − , the solution f  is given by Theorem 1.9. 
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            Case 2 3 1 4( 6) : 0 1r r r r  −   −   − . 

            i) By The same proof as in the case (A2), we obtain  
3 2

1 2 3 1 2 1 3 2 3 1 2 3( ) ( ) ( ) ( ) ( ) 0f x r r r f x r r r r r r f x r r r x− + + + + + − = . 

Since 2 3 10 1r r r −   −  , Theorem 1.26 yield 1( )f x r x= . 

            ii) By The same proof as in the case (A2), we obtain  
2

2 3 2 3( ) ( ) ( ) 0f x r r f x r r x− + + = . 

Since 2 30 1r r −   − , the solution f  is given by Theorem 1.10. 

 

Corollary 2.32. Cases 2 3 1 4( 5):0 1r r r r  −  −    − and 2 1 3 4( 6):0 1r r r r  −   −   − . 

Under the hypotheses of Theorem 2.31, if (1.6)f CS , then 1f −  is given by Theorem 2.31. 

 

Theorem 2.33. Case 2 1 3 4( 8) : 0 1r r r r  −    −  − . 

i) If (1.6)f CSI , then 1( )f x r x= , the form given by Corollary 1.27. 

ii) If (1.6)f CSD  and if 
1

lim
m

mm

f

r

−

−→
exist, then f  is given by Theorem 1.9. 

Proof. i) By The same proof as in the case (A2), we obtain  
3 2

1 2 3 1 2 1 3 2 3 1 2 3( ) ( ) ( ) ( ) ( ) 0.f x r r r f x r r r r r r f x r r r x− + + + + + − =  

Since 2 1 30 1r r r −    − , Corollary 1.27 gives 1( )f x r x= . 

            ii) By The same proof as in the case (A2), we obtain  
2

3 4 3 4( ) ( ) ( ) 0.f x r r f x r r x− + + =  

Since 3 41 r r −  − , the solution f  is given by Theorem 1.9. 

 

Corollary 2.34. Case 2 3 1 4( 8):0 1r r r r  −  −    − . 

Under the hypotheses of Theorem 2.33, if (1.6)f CS , then 1f −  is given by Theorem 2.33. 

 

Theorem 2.35. Case 1 2 3 4( 3) :1C r r r r −    − . 

i) If (1.6)f CSI , then f  is given by Theorem 1.20. 

ii) If (1.6)f CSD  and if 
3

lim
m

mm

f

r→
 exists, then 1( )f x r x= , the form given by Theorem 1.12. 

Proof. i) By The same proof as in the case (A2), we obtain  
3 2

1 2 3 1 2 1 3 2 3 1 2 3( ) ( ) ( ) ( ) ( ) 0f x r r r f x r r r r r r f x r r r x− + + + + + − = . 

Since 1 2 31 r r r −   , the solution f  is given by Theorem 1.20. 

            ii) By The same proof as in the case (A2), we obtain  
2

1 2 1 2 0)( ) ( ( )f x r r f x r r x− + + = . 

Since 1 21 r r −  , Theorem 1.12 gives 1( )f x r x= . 

 

Corollary 2.36. Case 1 2 3 4( 3):0 1C r r r r −    −  . 

Under the hypotheses of Theorem 2.35, if (1.6)f CS , then 1f −  is given by Theorem 2.35. 
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Theorem 2.37. Case 2 1 4 3( 4) :1C r r r r  −  −  . 

i) If (1.6)f CSI  and if 
4

lim
m

mm

f

r→
 exists, then 2( )f x r x= , the form given by Theorem 1.12. 

 

ii) If (1.6)f CSD , then f  is given by Theorem 1.24. 

 

Proof. i)  By The same proof as in the case (A2), we obtain  
3

1 2 1 2( ) ( ) ( ) 0f x r r f x r r x− + + = . 

Since 2 11 r r  − , Theorem 1.12 gives 1( )f x r x= . 

            ii) By The same proof as in the case (A2), we obtain  
3 2

1 2 4 1 2 1 4 2 4 1 2 4( ) ( ) ( ) ( ) ( ) 0f x r r r f x r r r r r r f x r r r x− + + + + + − = . 

Since 2 1 41 r r r  −  − , the solution f  is given by Theorem 1.24. 

 

Corollary 2.38. Case 2 1 4 3( 4):0 1C r r r r  −  −   . 

Under the hypotheses of Theorem 2.37, if (1.6)f CS , then 1f −  is given by Theorem 2.37. 

 

Theorem 2.39. Case 2 1 4 3( 7) : 0 1C r r r r   −  −  . 

i) If (1.6)f CSI  and if 
4

lim
m

mm

f

r→
 exists, then 2( )f x r x= , the form given in Theorem 1.12. 

ii) If (1.6)f CSD , then f  is given by Theorem 1.24. 

 

Proof. i) By The same proof as in the case (A2), we obtain  
2

1 2 1 2( ) ( ) ( ) 0f x r r f x r r x− + + = . 

Since 2 10 1r r   − , Theorem 1.12 yields 2( )f x r x= . 

            ii) By The same proof as in the case (A2), we obtain  
3 2

1 2 4 1 2 1 4 2 4 1 2 4( ) ( ) ( ) ( ) ( ) 0f x r r r f x r r r r r r f x r r r x− + + + + + − = . 

Since 2 1 40 1r r r   −  − , the solution f  is given by Theorem 1.24. 

 

Corollary 2.40. Case 2 1 4 3( 7):0 1C r r r r  −  −   .  

Under the hypotheses of Theorem 2.39, if (1.6)f CS , then 1f −  is given by Theorem 2.39. 

 

Theorem 2.41. Case 1 2 3 4( 13) : 0 1C r r r r −     − . 

i) If (1.6)f CSI , then f  is given by Theorem 1.20. 

ii) If (1.6)f CSD  and if 
3

lim
m

mm

f

r→
 exists, then 1( )f x r x= , the form given by Theorem 1.12. 

Proof. i) By The same proof as in the case (A2), we obtain  
3 2

1 2 3 1 2 1 3 2 3 1 2 3( ) ( ) ( ) ( ) ( ) 0f x r r r f x r r r r r r f x r r r x− + + + + + − = . 

Since 1 2 30 1r r r −    , the solution f  is given by Theorem 1.20. 

            ii) By The same proof as in the case (A2), we obtain  

2

2

1 1 2( ) ( ) ( ) 0f x r r f x r r x− + + = . 
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Since 1 20 1r r −   , Theorem 1.12 gives 1( )f x r x= . 

 

Corollary 2.42. Case 1 2 3 4( 13):0 1C r r r r −     − . 

Under the hypotheses of Theorem 2.41, if (1.6)f CS , then 1f −  is given by Theorem 2.41. 

 

Theorem 2.43. Case 1 2 3 4( 15) : 0 1C r r r r −     − .  

i) If (1.6)f CSI , then f  is given by Theorem 1.22. 

ii) If (1.6)f CSD  and if 
3

lim
m

mm

f

r→
 exists, then , 1( )f x r x= , the for given by Theorem 1.12. 

Proof. i) By The same proof as in the case (A2), we obtain  
3 2

1 2 3 1 2 1 3 2 3 1 2 3( ) ( ) ( ) ( ) ( ) 0f x r r r f x r r r r r r f x r r r x− + + + + + − = . 

Since 1 2 30 1r r r −    , the solution f  is given by Theorem 1.22. 

            ii) By the same proof as in the case (A2), we obtain  
3 2

1 2 4 1 2 1 4 2 4 1 2 4( ) ( ) ( ) ( ) ( ) 0f x r r r f x r r r r r r f x r r r x− + + + + + − = . 

Since 1 20 1r r −   , Theorem 1.12 gives 1( )f x r x= . 

 

Theorem 2.44. Case 2 1 4 3( 16) : 0 1C r r r r  −   −  . 

i) If (1.6)f CSI  and if 
4

lim
m

mm

f

r→
 exists, then , 2( )f x r x= , the form given by Theorem 1.12. 

ii) If (1.6)f CSD , then f  is given by Corollary 1.27. 

Proof. i) By The same proof as in the case (A2), we obtain  

2

2

1 1 2( ) ( ) ( ) 0f x r r f x r r x− + + = . 

Since 2 10 1r r  −  , Theorem 1.12 yields 2( )f x r x= . 

            ii) By The same proof as in the case (A2), we obtain  
3 2

1 2 4 1 2 1 4 2 4 1 2 4( ) ( ) ( ) ( ) ( ) 0f x r r r f x r r r r r r f x r r r x− + + + + + − = . 

Since 2 1 40 1r r r  −   − , the solution f  is given by Corollary 1.27. 

 

3.2 General discussion  

 

 Based mainly on the ideas from the work of Zhang and Gong [4], all solution functions 

(1.6)f CSI have been determined subject to the restrictions that  

• the characteristic roots 1 2 3 4, , ,r r r r  satisfy  0,1ir   ( 1,2,3,4)i = ,   

• the absolute values of the charcteristic roots ( 1,2,3,4)ir i = are all distinct and 

• the four characteristic roots have different signs. 

 

 In particular, the following cases have been completely solved. 

A. One negative characteristic root 1 0r  , and three positive characteristic roots 2 3 40 r r r   .  

B. Three negative characteristic roots 2 3 40 r r r   , and one positive characteristic root 1 0r  . 

C. Two negative characteristic roots 1 40 r r  , and two positive characteristic roots 3 2 0r r  .  
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 In certain cases an extra condition, namely, lim
m

m

i
m

f

r→
 for some 1,2,3,4i = , is needed to 

obtain the solutions. 

 

 

4.  Conclusions 

 

There are totally seventy subcases solved in this work, but there remain two cases that are yet to 

be resolved for which the methods and techniques used here do not seem to work. These subcases 

are when:  

(i)  all characteristic roots are positive, some being in ( )0,1  and the others in ( )1, , and 

(ii) all characteristic roots are negative, some being in ( )1,0− and the others in ( ), 1− − . 
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