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Abstract

In this research, the performance of four test statistics, the independent #-test, Welch’s #-test, the Mann-
Whitney test and the permutation test, were compared under combined violations of normality and
homogeneity of variance. In a simulation study, we generated data from symmetric and asymmetric
distributions. The results showed that all methods displayed reliable results in terms of protecting type
I error rates at the nominal level, except for the Mann-Whitney test which provides an inflation of type
I error rates. Considering the power of the tests for symmetric distributions with the homogeneity of
variances, the independent #-test is the best test when the sample data are drawn from normal and
uniform distributions, while the Mann-Whitney test is the most powerful for the logistic and Laplace
distributions. With symmetric distributions in heterogeneity of variance cases, the permutation test is
the most powerful test. For gamma distribution, the permutation test is the best test. In addition, this
test is also the best option for the low degree of skewness for Log-normal distribution.
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1. Introduction

Two sample t-test is one of the most frequently used approach in statistics. This method is a test of
equality of two means. There are three conditions: a) normality assumption b) homogeneity of
variances and c¢) independence of samples, that need to be examined before using this test. The
independent #-test is derived under an equal variance situation. If two samples have an unequal
variance, Welch’s t-test is generally preferred.

Both independent #-test and Welch’s #-test are robust tests when the first two assumptions
were violated. However, there is no guarantee that #-test is the most powerful [1] and in this case,
the other methods that non-parametric alternative approach should be performed. Mann-Whitney
test is one of the most commonly used non-parametric statistical test for two samples. This test can
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be used when the distributions are unknown; in other words, there is no normality assumption.
Therefore, non-parametric tests are also called distribution free.

One of the non-parametric statistics that can be used to compute the sampling distribution
for all test statistics is the permutation test. The permutation test does not need any assumptions. It
gives a simple way to find the sampling distribution for all test statistics. If the null hypothesis is
true, any observations from one group can be permuted to the other. The permutation test can be
applied to many parametric statistics. In order to examine this test, the sampling distribution of the
difference in means of two groups is considered in this work.

In some fields of research, especially in medical work and psychological data, the
assumptions of normality and homogeneity of variance are often violated [1, 2]. Thus, the main
purpose of this work is to compare the performance of four test statistics: the independent #-test,
Welch’s #-test, the Mann-Whitney test and the permutation test in order to figure out the best testing
procedure. The non-normal data used in this study are symmetric and asymmetric distributions with
varying degrees of standard deviation ratios.

2. Materials and Methods

This research studies four methods; the independent #-test, Welch’s #-test, Mann-Whitney test and
the permutation test, all of which can be used to compare location parameters in two populations.

Consider two groups A and B. Let X, X,,..., X, be the observations of A, and ¥,,Y,,...,Y be the
observations of B. The details of each test are as follows.

2.1 Independent #-test

The independent two sample f-test is always used to compare two means when the population
variances are equal. This test can be calculated as follows [2];

ny+ny—2 (1)

(n, =S} +(n, —1)S;

2 _
5, = n,+n,—2
X Y

where X and Y are the sample means, §; and Sﬁ are the sample variances, and p, and pn, are the

sample sizes.
2.2 Welch’s t-test

The Welch’s #test is used to compare two means in the case of unequal variances [2]. This test is
computed using the formula below:

X-Y

W =

> 2 ~ b (2)
s2 s

where X and Y are the sample means, 52 and §; are the sample variances, and n, and n, are

the sample sizes.
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The degree of freedom (y) is given by [2]

2 2?2 4 4 -1
St

Ny TNy

2.3 Mann-Whitney test

The Mann-Whitney test (MW) is a nonparametric test that is used when the two samples are not
drawn from the normal distribution [3]. This test involves calculating

MW = min(U,,U,) “4)

Uy=nyn,+ny(n, +1)/2-R,
Uy=nyn, +n,(n,+1)/2-R,

where n, and p, are the sample sizes of the first and the second groups respectively, and R and
R, are the sum of the ranks in samples X and Y.

When the observations are large enough, the statistic MW is approximately normal
distributed with mean n,n, /2 and variance nyn, (n, +n, +1)/12 . The test statistic becomes

1 5
z=(MW—anyj \/nxny(nx+ny+l) ‘ ®)
2 12

2.4 Permutation test

Suppose that X, X,,..., X, and V,,Y,,...,Y, are n, +n, = N random samples from the first and

the second groups, respectively. Considering N samples for this study, the 7  are randomly
assigned to the first group, whereas the remaining N —n, will be assigned to the other group. There

are [N ] possible randomizations. Then computed the difference in means, p =X -Y for each of

ny

these randomizations [4]. The p-value can be calculated as

oo

> 1(|D|=[D7))
—value=P(|D|>|D"|) =2 —————
p (Ip]=|D7) < ©)
Ry
where p difference in means for i th randomization and Dis the difference in means of the

observations. But if the samples are large, for example, if there are 10 observations in each sample,
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20
then over 184,000 randomizations are possible; (IOJ =184,756 . It is not easy to obtain all

permutations in a short run-time computer program, so the p-value can be estimated with the Monte
Carlo sampling from the permutation distribution [4]. The approximate p-value is

)

1+i1(|D,.|z\D*
i=1

B+1

p= (7

where B is permutation replications.
2.5 Simulation Study

This section provides simulation case studies for the type I error rates and the test powers of four
statistics; the independent #-test (T), Welch’s #-test (WT), the Mann-Whitney test (MW) and the
permutation test (PER). The data were generated under six sampling distributions; normal, uniform,
logistic, Laplace, gamma and lognormal distributions with balance sample sizes; n = 10, 15, 20, 25,
30, 50 and 100.

In order to examine the power of the test, two sets of the difference in parameters (A ) were
considered. The first set was {0, 1, 2}; location parameters for symmetric data, and the second set
was {0, 0.25, 0.50, 0.75}; shape and scale parameters for skewed data. The effect of unequal
variances for symmetric distributions were considered by defining the standard deviation ratios.
These values were 1.0, 1.5, 2.0 and 2.5. The coefficients of skewness for gamma and lognormal
distributions were 1 and 2. The summary of all distribution simulation cases are shown in Tables 1
and 2.

In this study, the Monte Carlo technique was performed using R version 3.4.1 [5]. The
simulation and permutation trials were 10,000 and 2,000 respectively. The results for type I error
rates and test powers are shown in Tables 3 -13.

Table 1. Summary of symmetric distribution simulation cases

Sampling distribution Normal, Uniform, Logistic, Laplace
Difference in location parameters (means) A=0,1,2

Standard deviation ratios 1.0,1.5,2.0,2.5

Method T, WT, MW, PER

Equal sample sizes 10, 15, 20, 25, 30, 50, 100
Significance level 0.05

724



Current Applied Science and Technology Vol. 21 No. 4 (October-December 2021)

Table 2. Summary of skew distribution simulation cases

Sampling distribution Gamma, Lognormal
Coefficient of skewness 1,2
Difference in parameters A=0,0.25,0.50, 0.75
Gamma (o, ) * Group 1; Gamma («, f3)
p=1 Group 2; Gamma (e, 5+ A)
Lognormal (41,5 ** Group 1; Lognormal (1,57 )
u=1 Group 2; Lognormal(ﬂ + A,gz)
Method WT, MW, PER
= Equal sample sizes 10, 15, 20, 25, 30, 50, 100
=  Significance level 0.05

* Gamma (o, ) ; @ and [ are shape and scale parameters respectively.

*ok Lognormal( #,0—2) ; sand o’ are location and shape parameters respectively.

*#*Both shape parameters; ¢ and o, are defined as the coefficients of skewness.

3. Results and Discussion

For each studied situation, two criteria were used to examine the efficiency tests. The first criterion
was the type I error rates (0}) , which should be close to the significance level of 0.05. The criterion

of robustness was established on the Cochran’s limit, that is 0.04 <@ < 0.06 for this work [6]. If
the type I error rates are in this interval, it can be assumed that the rates are sufficiently close to the
nominal level.

The second criterion was the power of the test. The methods that have the highest power
are considered as the best among all the methods.

3.1 Type I error rates

In Tables 3, 4 and 7, it can be seen that type I error rates fell well within the range of Cochran’s
criteria. This implies that the rates for all test statistics are maintained near the nominal level
regardless of the distribution shapes and sample sizes. In other words, they provide appropriate
control of the type I error probability.

As seen in Tables 5 and 6, the type I error rates of the Mann-Whitney test increased when
the variance ratio became larger. In other words, the Mann-Whitney test provides the inflation of
type I error [7]. This type of results reveals the problem of this test. If the samples are selected
randomly from two populations with the same means but with different variances, the type I error
rates are far from the significance level in many cases. It shows the problem of lack of robustness
of this test. In other words, the Mann-Whitney test is sensitive to population differences [8, 9].
Therefore, the Mann-Whitney test is not investigated in terms of the power values in these situations.
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3.2 Power of the test
3.2.1 Symmetric Distribution in homogeneity of variance cases

Table 8 illustrates the power values of all tests for normal and uniform distributions. It can be clearly
seen that all cases of the independent #-test have the highest power values. Moreover, the powers of
all test are the same when the mean difference is 2 (A = 2 ) and the sample sizes are greater than 15.

The details of the comparative study for logistic and Laplace distributions are shown in
Table 9. The power of Mann-Whitney test is the highest when the mean difference is 1. However,
all tests are powerful when the mean difference is 2 (A =2 ) and the sample sizes are greater than
20.

With the heterogeneity of variance in Tables 10 and 11, almost all cases of the permutation
test have the highest power values. However, both tests are powerful when the sample sizes become
large.

Table 3. Type I error rates for normal and logistic distributions in homogeneity of variance cases

Normal Logistic
n T MW PER T MW PER
10 0.0491 0.0465 0.0514 0.0484 0.0430 0.0489
15 0.0527 0.0470 0.0518 0.0486 0.0469 0.0494
20 0.0485 0.0485 0.0483 0.0476 0.0462 0.0479
25 0.0519 0.0483 0.0508 0.0498 0.0482 0.0501
30 0.0495 0.0494 0.0494 0.0511 0.0491 0.0504
50 0.0466 0.0483 0.0467 0.0517 0.0484 0.0503
100 0.0535 0.0545 0.0534 0.0507 0.0479 0.0511

Table 4. Type I error rates for uniform and Laplace distributions in homogeneity of variance cases

Uniform Laplace
n T MW PER T MW PER
10 0.0536 0.0430 0.0524 0.0461 0.0414 0.0499
15 0.0494 0.0424 0.0487 0.0525 0.0508 0.0540
20 0.0503 0.0486 0.0493 0.0499 0.0491 0.0504
25 0.0496 0.0495 0.0497 0.0510 0.0513 0.0528
30 0.0526 0.0524 0.0521 0.0528 0.0532 0.0553
50 0.0485 0.0488 0.0489 0.0476 0.0513 0.0480
100 0.0484 0.0486 0.0480 0.0492 0.0511 0.0488
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Table 5. Type I error rates for normal and logistic distributions in heterogeneity of variance cases

o, Normal Logistic
o, n WT MW PER WT MW PER
1.5 10 0.0497 0.0445 0.0520 0.0450 0.0454 0.0497
15 0.0506 0.0516 0.0528 0.0494 0.0477 0.0518
20 0.0496 0.0511 0.0516 0.0441 0.0513 0.0458
25 0.0507 0.0535 0.0511 0.0515 0.0531 0.0521
30 0.0512 0.0540 0.0521 0.0503 0.0530 0.0533
50 0.0449 0.0449 0.0453 0.0507 0.0524 0.0513
100 0.0534 0.0557 0.0532 0.0498 0.0533 0.0511
2.0 10 0.0457 0.0475 0.0501 0.0452 0.0466 0.0526
15 0.0442 0.0484 0.0479 0.0439 0.0460 0.0503
20 0.0464 0.0571 0.0490 0.0496 0.0598 0.0531
25 0.0516 0.0585 0.0540 0.0500 0.0574 0.0538
30 0.0493 0.0590 0.0508 0.0467 0.0582 0.0500
50 0.0524 0.0585 0.0529 0.0473 0.0578 0.0490
100 0.0471 0.0577 0.0473 0.0525 0.0601 0.0517
2.5 10 0.0483 0.0568 0.0562 0.0555 0.0561 0.0576
15 0.0515 0.0581 0.0560 0.0482 0.0567 0.0569
20 0.0482 0.0611 0.0527 0.0486 0.0498 0.0510
25 0.0510 0.0638 0.0543 0.0501 0.0664 0.0545
30 0.0480 0.0620 0.0504 0.0486 0.0598 0.0517
50 0.0510 0.0633 0.0534 0.0486 0.0616 0.0503
100 0.0493 0.0627 0.0497 0.0513 0.0638 0.0518
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Table 6. Type I error rates for uniform and Laplace distributions in heterogeneity of variance cases

o, Uniform Laplace
o, n WT MW PER WT MW PER
1.5 10 0.0514 0.0491 0.0517 0.0414 0.0418 0.0486

15 0.0502 0.0516 0.0511 0.0480 0.0477 0.0526

20 0.0504 0.0562 0.0506 0.0478 0.0514 0.0526

25  0.0561 0.0614 0.0560 0.0471 0.0515 0.0499

30 0.0498 0.0559 0.0502 0.0488 0.0509 0.0501

50  0.0529 0.0595 0.0532 0.0488 0.0528 0.0504

100 0.0494 0.0558 0.0499 0.0457 0.0470 0.0455

2.0 10 0.0540 0.0566 0.0557 0.0401 0.0466 0.0515
15 0.0540 0.0630 0.0580 0.0449 0.0502 0.0517

20 0.0563 0.0633 0.0555 0.0481 0.0542 0.0525

25 0.0453 0.0586 0.0468 0.0488 0.0572 0.0533

30 0.0518 0.0647 0.0526 0.0488 0.0515 0.0514

50  0.0491 0.0644 0.0491 0.0452 0.0546 0.0483

100 0.0458 0.0615 0.0464 0.0487 0.0548 0.0503

2.5 10 0.0554 0.0610 0.0597 0.0469 0.0484 0.0528
15 0.0535 0.0672 0.0578 0.0457 0.0510 0.0560

20 0.0517 0.0682 0.0547 0.0482 0.0580 0.0545

25  0.0496 0.0699 0.0525 0.0490 0.0572 0.0541

30 0.0502 0.0707 0.0533 0.0452 0.0563 0.0509

50 0.0529 0.0700 0.0543 0.0472 0.0615 0.0496

100 0.0500 0.0706 0.0500 0.0513 0.0589 0.0526
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Table 7. Type I error rates for skewed distribution

Gamma Lognormal
Skewness n WT MW PER WT MW PER

1 10 0.0445 0.0427 0.0510 0.0492 0.0461 0.054
15 0.0496 0.0466 0.0533 0.0471 0.0441 0.0493

20 0.0480 0.0471 0.0500 0.0531 0.0527 0.0541

25 0.0468 0.0478 0.0478 0.0522 0.0489 0.0523

30 0.0506 0.0525 0.0518 0.0510 0.0512 0.0519

50 0.0483 0.0483 0.0494 0.0518 0.0509 0.0520

100 0.0536 0.0513 0.0544 0.0501 0.0510 0.0493

2 10 0.0405 0.0459 0.0497 0.0407 0.0434 0.0509
15 0.0426 0.0445 0.0501 0.0439 0.0447 0.0504

20 0.0451 0.0517 0.0505 0.0461 0.0497 0.0520

25 0.0478 0.0509 0.0507 0.0452 0.0481 0.0483

30 0.0465 0.0462 0.0502 0.0464 0.0489 0.0494

50 0.0465 0.0501 0.0486 0.0513 0.0502 0.0524

100 0.0490 0.0516 0.0497 0.0478 0.0503 0.0487

Table 8. Power values for normal and uniform distributions in homogeneity of variance cases

A=1
n Normal Uniform
T MW PER T MW PER

10 0.5645%* 0.5126 0.5633 0.5381* 0.4632 0.5365
15 0.7553* 0.7171 0.7543 0.7502* 0.6675 0.7487
20 0.8646* 0.8440 0.8639 0.8721%* 0.8080 0.8711
25 0.9334* 0.9211 0.9327 0.9397* 0.8869 0.9379
30 0.9686* 0.9602 0.9684 0.9714* 0.9402 0.9701
50 0.9979* 0.9973 0.9979* 0.9991* 0.9947 0.9989

1.0000* 1.0000%* 1.0000* 1.0000* 1.0000* 1.0000%*
100

A=2
n Normal Uniform
T MW PER T MW PER

10 0.9884* 0.9805 0.9881 0.9933* 0.9712 0.9930
15 0.9992%* 0.9991 0.9992* 1.0000* 0.9975 1.0000*
20 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000*
25 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000*
30 1.0000* 1.0000* 1.0000%* 1.0000* 1.0000%* 1.0000*
50 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000*
100 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000*

* Tests with the highest power value
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Table 9. Power values for logistic and Laplace distributions in homogeneity of variance cases

A=1
n Logistic Laplace
T MW PER T MW PER
10 0.5722 0.5545% 0.5743 0.5892 0.6216* 0.5942
15 0.7542 0.7572* 0.7537 0.7588 0.8213* 0.7609
20 0.8672 0.8837* 0.8670 0.8661 0.9283* 0.8661
25 0.9319 0.9453* 0.9320 0.9272 0.9714* 0.9286
30 0.9699 0.9774* 0.9702 0.9605 0.9900* 0.9610
50 0.9977 0.9992%* 0.9977 0.9979 0.9997* 0.9977
100 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000*
A=2
n Logistic Laplace
T MW PER T MW PER
10 0.9834* 0.9817 0.9834* 0.9751 0.9785* 0.9752
15 0.9988 0.9995%* 0.9988 0.9982 0.9987* 0.9983
20 1.0000* 0.9999 1.0000* 0.9996 1.0000* 0.9996
25 1.0000* 1.0000%* 1.0000* 1.0000* 1.0000* 1.0000*
30 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000*
50 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000*
100 1.0000* 1.0000%* 1.0000* 1.0000* 1.0000* 1.0000*

* Tests with the highest power value

Table 10. Power values for symmetric distribution in heterogeneity of variance cases with A =1

o, Normal Logistic Uniform Laplace
O, n WT PER WT PER WT PER WT PER
1.5 10 0.3831 0.3949* 03889 0.4036*  0.3503 0.3541*  0.4177 0.4385*
15 0.5426 0.5475* 0.5440 0.5518*  0.5171 0.5187*  0.5696 0.5815%*
20 0.6727 0.6754* 0.6733 0.6777*  0.6644 0.6655*  0.6872 0.6961%*
25 0.7729 0.7742*  0.7717  0.7742*  0.7680 0.7684*  0.7757 0.7833*
30 0.8414 0.8430* 0.8496 0.8511* 0.8477 0.8490*  0.8395 0.8417*
50  0.9720 0.9722* 09687 0.9692* 09762 0.9765* 09712 0.9713*
100 0.9996* 0.9996* 0.9998* 0.9997  0.9999* 0.9999* 0.9999* 0.9999*
2.0 10 0.2615 0.2783* 02721 0.2933*  0.2336 0.2447*  0.2968 0.3269*
15 03700 0.3857* 03939 0.4068* 03616 0.3716*  0.4234 0.4400%*
20 0.4824 0.4940* 0.5044 0.5156*  0.4812 0.4902*  0.5248 0.5378*
25  0.5887 0.5963* 05921 0.5995*  0.5724 0.5792*  0.6042 0.6144*
30 0.6657 0.6704* 0.6771 0.6840*  0.6531 0.6556*  0.6803 0.6898*
50 0.8711 0.8727* 0.8807 0.8827* 0.8824 0.8848*  0.8761 0.8800*
100 0.9934* 0.9934* 0.9937 0.9940*  0.9940 0.9943*  0.9913 0.9918*
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Table 10. (cont.)

o, Normal Logistic Uniform Laplace
o n WT PER WT PER WT PER WT PER
2.5 10 0.1900 0.2118* 0.1128 0.1399*  0.1747 0.1918*  0.2257 0.2536*
15  0.2790 0.2966* 0.1515 0.1729*  0.2581 0.2705*  0.3059 0.3277*
20 0.3636 0.3784* 0.1853 0.2006*  0.3490 0.3596*  0.3883 0.4067*
25 0.4403 0.4507* 02232 0.2378*  0.4201 0.4303* 0.4711 0.4884*
30 0.5095 0.5197* 0.2597 0.2711*  0.4977 0.5039*  0.5245 0.5365%*
50  0.7389 0.7405* 0.7395 0.7445*  0.7364 0.7411*  0.7425 0.7476*
100 0.9583 0.9588* 0.9587 0.9588*  0.9576 0.9587*  0.9544 0.9549*

* Tests with the highest power value

Table 11. Power values for symmetric distribution in heterogeneity of variance cases with A =2

o, Normal Logistic Uniform Laplace
0, n WT PER WT PER WT PER WT PER
1.5 10 09056 0.9119* 0.9040 0.9115* 0.9186 0.9207* 0.8876 0.8954*
15 09843 0.9852* 0.9760 0.9770* 0.9896 0.9895*  0.9753 0.9770*
20 09977 0.9980* 0.9966 0.9969* 0.9991 0.9992*  0.9932 0.9934*
25 0.9999*% 0.9999* 0.9994*  0.9992 0.9999* 0.9999*  0.9989 0.9990*
30 1.0000* 1.0000* 0.9999* 0.9999* 1.0000* 1.0000*  0.9997 0.9998*
50 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000*
100 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000%*
2.0 10 0.7377 0.7577* 0.7528 0.7736* 0.7366 0.7530*  0.7615 0.7855*
15 09120 0.9180* 0.9032 0.9118* 0.9201 0.9240*  0.8949 0.9020*
20 09734 0.9748* 0.9670 0.9697* 09763 0.9774*  0.9573 0.9615%
25 09906 0.9911* 0.9878 0.9889* 0.9947* 0.9947*  0.9844 0.9862*
30 09978 0.9979* 0.9964 0.9967* 0.9987* 0.9987*  0.9963 0.9967*
50 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 0.9999* 0.9999*
100 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000*
2.5 10  0.5711 0.6054* 0.3026 0.3477* 0.5534 0.5802* 0.6183 0.6566*
15 0.7789 0.7966* 0.4462 0.4780* 0.7695 0.7816*  0.7911 0.8090*
20 0.8929 0.9001* 0.5546 0.5787* 0.8921 0.8973*  0.8849 0.8939*
25 09454 0.9483* 0.6573 0.6739* 0.9522 0.9540*  0.9378 0.9432%
30 09781 0.9790* 0.7409 0.7527* 0.9790 0.9797*  0.9699 0.9716*
50  0.9990 0.9991* 0.9989* 0.9988 0.9997* 0.9997* 0.9989* 0.9989*
100 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000*

* Tests with the highest power value
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3.2.2 Skew distribution

Considering the skew distribution with coefficient of skewness varying; 1 and 2, the permutation
test behaves better than the other two when both samples come from gamma distributions (Table

12).

Table 13 shows the power values of all tests for lognormal data. The permutation test gives
the highest power when the coefficients of skewness are 1. However, the test power of all test
statistics reaches to 1 when the sample sizes are greater than 10 with the high difference in location
parameters. For high degree of skewness, the permutation test gives the best results when the sample
sizes are 10. But, the Mann-Whitney test becomes the best test when the sample sizes are at least

15.

Table 12. Power values for Gamma distribution

Skewness =1

Skewness =2

A n WT MW PER WT MW PER
0.25 10 0.1352 0.1279 0.1484* 0.0563 0.0636 0.0731*
15 0.2012 0.1833 0.2108* 0.0764 0.0753 0.0882*
20 0.2650 0.2463 0.2721* 0.0931 0.0863 0.1012*
25 0.3345 0.3103 0.3348* 0.1095 0.1020 0.1173*
30 0.3905 0.3627 0.3954* 0.1198 0.1131 0.1281*
50 0.5999 0.5591 0.6013* 0.1859 0.1601 0.1907*
100 0.8853* 0.8448 0.8853* 0.3426 0.2768 0.3434*
0.5 10 0.3679 0.3365 0.3922* 0.0964 0.1020 0.1288*
15 0.5494 0.5056 0.5634* 0.1483 0.1418 0.1750*
20 0.6874 0.6449 0.6954* 0.2040 0.1867 0.2239*
25 0.7927 0.7471 0.7957* 0.2582 0.2249 0.2724*
30 0.8630 0.8287 0.8644* 0.3147 0.2698 0.3268*
50 0.9778 0.9645 0.9780%* 0.4972 0.4125 0.5042*
100 1.0000* 0.9999 1.0000* 0.8085 0.6867 0.8103*
0.75 10 0.6099 0.5798 0.6459%* 0.1479 0.1537 0.1970%*
15 0.8103 0.7698 0.8205* 0.2525 0.2340 0.2879*
20 0.9242 0.9012 0.9277* 0.3554 0.3109 0.3841%*
25 0.9686 0.9520 0.9692* 0.4469 0.3861 0.4694*
30 0.9884 0.9803 0.9887* 0.5368 0.4522 0.5530%*
50 1.0000* 0.9998 1.0000* 0.7659 0.6560 0.7719*
100 1.0000* 1.0000* 1.0000* 0.9733 0.9179 0.9737*

* Tests with the highest power value
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Table 13. Power values for Log-normal distribution

Skewness =1 Skewness =2

A n WT MW PER WT MW PER
0.25 10 0.3694 0.3575 0.3872* 0.1275 0.1365 0.1541*
15 0.5300 0.5168 0.5392* 0.1933 0.2048 0.2123*
20 0.6664 0.6606 0.6725* 0.2574 0.2821%* 0.2720
25 0.7682 0.7601 0.7696* 0.3012 0.3262* 0.3109
30 0.8361 0.8377* 0.8369 0.3611 0.3948%* 0.3684
50 0.9710%* 0.9696 0.9709 0.5577 0.5911* 0.5620
100  0.9997* 0.9996 0.9997* 0.8431 0.8801 0.8440
0.5 10 0.9012 0.8915 0.9104* 0.4110 0.4406 0.4642*
15 0.9825 0.9800 0.9834* 0.6009 0.6309* 0.6307

20 0.9973 0.9968 0.9977* 0.7279 0.7714* 0.7451

25  0.9996* 0.9996* 0.9996* 0.8244 0.8612* 0.8337
30 1.0000* 1.0000* 1.0000* 0.8917 0.9198* 0.8918
50 1.0000* 1.0000* 1.0000%* 0.9874 0.9932* 0.9880
100 1.0000* 1.0000* 1.0000* 0.9998 1.0000* 0.9998

075 10  0.9980 0.9979 0.9984* 0.7345 0.7825 0.7922*
15 1.0000% 1.0000* 1.0000* 0.9076 0.9248* 0.9246

20 1.0000% 1.0000* 1.0000* 0.9698 0.9805* 0.9743

25 1.0000* 1.0000* 1.0000* 0.9908 0.9963* 0.9918

30 1.0000% 1.0000* 1.0000* 0.9979 0.9993* 0.9983

50 1.0000% 1.0000* 1.0000* 1.0000* 1.0000* 1.0000*

100 1.0000% 1.0000* 1.0000* 1.0000* 1.0000* 1.0000*

* Tests with the highest power value

4. Conclusions

Based on the numerical studies from the previous section, increasing sample size is found in this
study to improve the test power for all testing procedures, but the standard deviation ratios seem to
have the different kinds of impact. In other words, the power values drop when the standard
deviation ratios increase. Moreover, the power values of low skewness are greater than those of high
skewness.

The results for the homogeneity of variance demonstrate that the independent #-test is a
better test than the other two when the sample data are drawn from the normal and uniform
distributions, while the Mann-Whitney test is the most powerful for the logistic and Laplace
distributions. However, all tests perform well when the mean differences and the sample sizes
become large.

With the symmetric distribution in heterogeneity of variance cases, the permutation test is
more powerful than the Welch #-test. Moreover, both tests reach the same power values when the
sample sizes become large. However, the Mann-Whitney test is not appropriate because the concept
of this test is to test that two samples drawn from the same distribution; same means and same
variances.
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Instead of considering the difference in means, we consider the difference in parameters

for skew distribution; the scale and shape parameters. So, the Mann-Whitney test can be examined
in this case. For the gamma distribution, the permutation test is the best test. In addition, this test is
also the best option in the case of low degree of skewness for log-normal distribution.

In conclusion, the concepts of all test are different. The Welch’s #-test and the permutation

test should be used to compare the central tendency of two populations, whereas the Mann-Whitney
test should always be used to investigate two populations that are identical distribution. Of course,
researchers should adopt the procedure that corresponds best with the objectives of their research
design.
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