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Abstract 
 

Sriracha pineapple is a pineapple of the Smooth Cayenne variety and is 
one of Thailand's favorite tropical fruits. It is not only one of the most 
favorite agricultural products for the pineapple processing and canning 
industries but it is also widely consumed as a fresh fruit. Many exporters 
and consumers prefer to measure juiciness before processing food 
products and consuming, respectively. The traditional method used by 
pineapple sellers or farmers for fruit juiciness classification is to tap the 
pineapple using force impulse techniques with a rubber-tipped stick or a 
person's middle finger tapping. However, these traditional methods of 
classification require a lot of expertise and experience. Thus, the 
inspector's perception of accomplishing the classification process may 
be inclined to errors and uneven results. This paper proposes a 
combination of acoustic sensing and convolutional neural network 
(CNN). The tapping sound of 30 Sriracha pineapple samples using force 
impulse techniques was recorded on smartphone. The tapping sounds 
were processed into a juiciness classification system of three classes: (1) 
Juiciness 1, (2) Juiciness 2, and (3) Juiciness 3. The system involved a 
combination of acoustic sensing and CNN to compare the results 
between Mel Frequency Cepstral Coefficient (MFCC) and Mel-
Spectrogram features extraction, with replication of the same CNN 
model, to evaluate the pineapple's edibility from its juiciness level. 
Experimental results showed that MFCC combined with CNN 
performed the best, with an accuracy of 96.67% and F1-score of 0.97. It 
outperformed the Mel-spectrogram combined with CNN.  
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1. Introduction 
 

Ananas comosus, commonly known as pineapple, is one of the most popular tropical fruits. It 
contains many vitamins and minerals [1]. Pineapples can also be processed into a range of products 
including pineapple juice, canned pineapple, pineapple stir, and they can be eaten fresh or frozen. 
In addition, pineapple can be consumed as a supplementary nutritional fruit for good health [1]. 

Sriracha Pineapple is a Pattavia variety of pineapple grown in Chonburi Province. It is in a 
group of Smooth Cayenne [2]. At its best, it is one of the most popular types of pineapple for the 
processing and canning industry, and it is a most delightful fresh fruit to eat. Many canned pineapple 
industries and consumers prefer to know the juiciness of pineapples before manufacturing products 
and consuming them, respectively. It is generally known that the more juiciness means more 
sweetness. Consequently, the canned pineapple industries and consumers want to be able to 
accurately classify pineapples according to their level of ripeness and juiciness. 

As previously mentioned, both sellers and pineapple agriculturists rely on experts to 
classify the fruit juiciness by tapping on the pineapple. The tapping method is one of the traditional 
methods. One non-destructive pineapple juiciness measurement is based on force impulse 
techniques and involves tapping on the pineapple surface with a rubber-tipped stick or with the 
person’s middle finger. However, it can be difficult even for an expert who has years of experience 
in pineapple quality evaluation to predict the taste quality of pineapple. The flavor of pineapple is 
almost totally dependent on the sweetness, as measured by the juiciness percentage, rather than on 
the visual ripeness of the pineapple. Thus, the traditional method for pineapple quality evaluation 
may produce errors and unevenness as a result of inspector subjectivity. 

Several researchers have studied how to classify the maturity of agricultural products  
such as cacao [3], pineapple [1], pineapple ripeness [4], durian ripeness [5], and described optimal 
pineapple harvesting [6]. Furthermore, researchers have adapted the structure of pre-trained 
convolutional neural networks (CNNs), using transfer learning, to pre-train AlexNet and VGGNet 
networks for apple mealiness detection [7]. 

This paper proposes a combination of acoustic impulse sensing (a non-destructive 
evaluation method) and convolutional neural networks (CNNs), which is applied in the classification 
of Sriracha pineapple juiciness in order to determine the eating quality of pineapples. Sriracha 
pineapple tapping sounds were recorded. The acoustic sound coming from tapping on the pineapple 
surface was processed. The pineapple juiciness depends significantly on the soundwave resonance 
levels. So, in this research, the juiciness was classified into three classes: Juiciness 1, Juiciness 2, 
and Juiciness 3, respectively. Juiciness 1 was defined as the echo imparted as flatness sound when 
the pineapple was exceptionally juicy and sweet with a little sour taste. Juiciness 2 was defined as 
the echo imparted as dullness when the fruit was slightly juicy and sweet with a slight sour taste. 
Juiciness 3 was defined as the echo imparted as tympany sound when the pineapple was slightly 
little juicy and sweet and had a rather sour taste. Our method can be divided into three parts: (1) 
preparation of the sound dataset, (2) extraction of a feature in the sound, and (3) training of a model.  
 
 
2. Materials and Methods  
 
2.1 Proliferation of deep learning in acoustic sensing 
 
A number of related studies have been concerned with pineapple classification. Azman and Ismail 
[6] developed a smart, intelligent system indicating the maturity of pineapples for optimal harvest. 
The maturity levels were divided into three groups, which were "unripe", "partial ripe", and "fully 
ripe", based on the skin color of the pineapple peel. The dataset was sized to 200x200 pixels and 
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was allocated according to the three maturity levels of the pineapple. The project proposes a 
convolution neural network (CNN) for the classification of pineapple images. The experimental 
results showed that the model’s indication of "unripe" and "fully ripe" levels achieved 100% 
classification accuracy, and the "partially ripe" group achieved 82% classification accuracy. 
Dittakan et al. [1] constructed an automated system for grading pineapples by a non-destructive 
process. Their process detected pineapple patterns and used pineapple peel texture analysis to 
separate pineapples into two groups, "Keaw 1" and "Keaw 2". In this research, local binary pattern 
(LBP) was utilized to detect vital information on pineapple texture images. The model gave the best 
results with AUC (Area under the ROC Curve) value of 0.979. Chaikaew et al. [4] applied a neural 
network for a pineapple sorting machine using the skin color of the pineapple. The pineapples were 
divided into three levels: "unripe pineapple", "partial ripe pineapple”, and "fully ripe pineapple." 
The predictiont results  showed accuracies of 79% for “unripe pineapple”, 82% for "partially ripe 
pineapple", and 100% for "fully ripe pineapple". Sornsrivichai et al. [2] proposed methods using X-
ray CT images and CT numbers that showed a significant correlation between the ripeness, 
translucency of flesh, and taste quality. 

Previous studies of pineapple quality classification were mainly focused on ripeness 
classification and grading of pineapples on the basis of pineapple texture. Our research study is 
different from previous research in that it applies acoustic sensing to classify Sriracha pineapple 
edible quality by tapping on pineapple surface and utilizing the resultant echoes. The different 
sounds depend on the juiciness level of each pineapple. 

A number of researchers have applied acoustic sensing and convolution neural networks 
for detection and classification. A new, non-destructive method for detecting mealiness in Red 
delicious apple cultivars was proposed [7]. It illustrated the use of acoustic signals and a deep 
learning technique for mealy and non-mealy detection from the sample apple dataset. It used an 
impact response technique to record the impact sound between a plastic ball and the apple. The audio 
sound was recorded and was transformed into a spectrum. The spectrum images were imported into 
a pre-trained convolutional neural network. The famous pre-trained models were AlexNet and 
VGGNet which were fine-tuned and utilized as classifiers. The results showed that Alexnet and 
VGGNet achieved mealy and non-mealy detection results with 91.11% and 86.94% accuracy, 
respectively. 

Kharamat et al. [5] proposed a durian ripeness classification by knocking sound and used 
Mel Frequency Cepstral Coefficients (MFCCs) for feature extraction. The dataset consisted in 900 
files divided into three classes: (1) 300 "ripe" files, (2) 300 "mid- ripe" files, and (3) 300 "unripe" 
files. Each file was recorded in just one knock in 300 milliseconds, and the data was divided into 
three parts. The total data was separated into 20% for validation dataset, 70% for training dataset, 
and 10% for the test dataset. The researchers used CNN to help classify the sounds of durian into 
three groups: "ripe", "mid-ripe", and "unripe". The experimental results showed that the accuracy 
were 90.78% and 89.74% for validation data and testing data, respectively. 

Caladcad et al. [8] studied coconut separation using sound for sorting and they developed 
a tapping system relying on both software and hardware to record coconut sound. The three most 
widely used machine learning tools were artificial neural network (ANN), support vector machine 
(SVM), and random forest (RF). The study consisted in 129 samples of coconuts. Each instance was 
classified into one of three groups according to their maturity level, "pre-mature", "mature", and  
"over-mature". The experimental results with all three machine learning methods showed at least 
80% of accuracy. The RF models outperformed others, with accuracies of 90.98% and 83.48% for 
training and testing, respectively.  

The sound of a knocked coconut was presented for the purpose of predicting coconut 
maturity using the Naive Bayes method [9]. The process consists in collecting the sound with a 
MAX9814 sensor device and then processing them with analog-to-digital conversion (ADC) and 
calculation of the sound signal frequency spectrum using Fast Fourier Transform. The Naive Bayes 
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method used for classifying coconut maturity level was applied to young, fairly mature and old 
coconuts. The method achieved a success rate of 80% for a total of 20 test samples.  

Bueno et al. [3] presented research techniques for determining the ripeness of cacao. A 
total of 933 cacao samples were classified in the determination of the ripeness of cacao. Each of 
them was thumped five times in different locations. Each file had a duration of 1 second, producing 
4665 cacao sound files, each with a sample rate of 16 kHz and 16-bit audio bit depth. 

The Mel-Frequency Cepstral Coefficients spectrogram (MFCCs) was the input feature 
utilized to train the model using deep learning. Convolutional neural network (CNN) was used to 
classify cacao into two groups: "ripe" and "unripe". The results indicated accuracies of 97.50% for 
the training data and 97.13% for the validation data. Simultaneously, the overall accuracy mean was 
97.46%.  Further, Mel-frequency Cepstrum Coefficients (MFCC) were used to train a multi-layer 
perceptron (MLP) for the classification of watermelon ripeness into ripe and unripe categories. The 
method showed an accuracy of 77.25% [10]. 
 
2.2 System architecture 
 
The primary system process of Sriracha pineapple juiciness classification is shown in Figure 1.  
The process consists in: (step 1) data preparation of 30 pineapple samples recorded from a mobile 
phone, (step 2) input of 1,200 audio waveforms and separations into three classes (Juiciness 1, 
Juiciness 2, and Juiciness 3), (step 3) audio preprocessing, which is the transformation from audio 
waveform (time-domain) to spectrum (frequency domain), (step 4) fine training configuration using 
deep learning methods, (step 5) an evaluation model with accuracy and F1-Score, and (step 6) 
visualization of the classification report with a confusion matrix. 
 

                                      
            Dataset Preparation                               Data Exploration               Audio preprocessing 
 
 

                                                                           
                   Result and Analysis                 Evaluation                 Network Architecture  
 

Figure 1. The primary system process of Sriracha pineapple juiciness classification 
 
2.2.1 Dataset preparation 
 
The pineapple sound dataset was prepared with 30 samples of Sriracha pineapples. The tapping 
sound on the pineapple surface was recorded with a mobile phone in a real environment. The tapping 
on the pineapple and recording of the sound was an example of an impact of force techniques which 
is the same as traditional use of a rubber-tipped stick or a person's middle finger to tap on the 
pineapple. This non-destructive recording method was a mimicking of the actions of sellers and 
farmers who traditionally tapped pineapple samples to classify the quality of pineapple juiciness. 
Pineapples were classified individually into three juiciness levels: "Juiciness 1", "Juiciness 2", and 
"Juiciness 3". Figure 2(a) illustrates a seller using a rubber-tipped stick and Figure 2(b) shows a 
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person using his middle finger, both of which are traditional methods to detect the pineapple 
juiciness. However, the inspector judging the fruit may be inclined to errors and unevenness as his 
or her decision involves some degree of individual or personal feeling. 

A total of 30 pineapple samples were divided into three sets of equal size: Juiciness 1, 
Juiciness 2, and Juiciness 3 (Figure 3(a)). Each set has 10 pineapples of each juiciness class level 
and Figure 3(b) shows the juiciness levels of pineapples. 

 
 

  
 

(a) using a rubber-tipped stick 
 

(b) using a person's middle finger 
 

Figure 2. The pineapple juiciness process quality evaluation  
 
 

 (a) Pineapples samples 
 

(b) Juiciness level 

 
Figure 3. The pre-classified harvested pineapple fruits 

 
In the data preparation and collection, the sound of tapping on pineapple was prepared 

under real environment conditions. So, the sound datasets were collected under time-varying. The 
acoustic signal was processed using a rubber-tipped stick as shown in Figure 4(a), which was an 
impact response technique. This determined the sample rate at 44,100 Hertz (Hz) and bit-depth at 
16-bits per sample (mono audio). Recording was done by smartphone microphone with Motiv audio 
software (Figure 4(b)). Each pineapple had 40 audio waveform files, each of which contained data 
of five taps. Therefore, the tapping sounds were recorded in a total of 1,200 audio waveform files 
and were labelled into three classes: (1) 400 audio waveform files for Juiciness 1, (2) 400 audio 
waveform files for Juiciness 2, and (3) 400 audio waveform files for Juiciness 3. The audio files 
were labelled based on the expertise of the experienced pineapple sellers and farmers. To conduct 
the experiment, the dataset was split randomly into 80% for the training dataset and 20% for the 
validation dataset.  

 
 

Juiciness 1 Juiciness 2 

Juiciness 3 Juiciness 1 Juiciness 2 Juiciness 3 
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                            (a) The rubber-tipped stick                    (b) Motiv audio software 
 

Figure 4. The acoustic signal recording tool 
 

2.2.2 Data exploration 
 
Our dataset consisted of 1,200 audio wave files. The audio wave datasets that had a duration of less 
than 3 seconds numbered 1,098 files (91.5% of the total dataset). The audio wave datasets that had 
a duration of more than 3 seconds numbered 102 files (8.5% of the the total dataset). As shown in 
Figure 5, the audio samples had a range oft durations. In order to present an audio spectrogram with 
fixed input size to the convolutional neural networks (CNN) with a dataset of varying durations, we 
used zero-padding that filled up space with zeros. This method is one of the most widely used 
technique, and it does not affect the filters' capability to recognize patterns. 
 

 

Figure 5. The lengths of the pineapple tapping sounds 
 

 Figure 6 shows the visualization of the sampling frequency spectrum of three pineapple 
juiciness classes using python programming language, and the librosa python package for audio 
analysis. Fast Fourier Transform (FFT) was also applied to transform the audio waveform (time-
domain) into spectrum (frequency domain). FFT is a widely used and suitable technique for digital 
audio frequency transformation [8]. The three spectrums, shown in Figure 6(a)-6(c), present the 
frequency modes of the three classes of pineapple juiciness. The presence of frequency mode varies 
depending on the juiciness class. For example, Figure 6(a) shows the frequency of juiciness 1, which 
is exceptionally more juicy and sweeter than the other two classes. Therefore, the magnitudes of the 
frequency differed (Figure 6(b) and Figure 6(c)), which showed slightly juicy and slightly little 
juicy, respectively.  
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(a)  frequency of Juiciness 1 

 

(b)  frequency of Juiciness 2 

 
(c) frequency of Juiciness 3 

 
Figure 6. The wave sound and magnitude for the frequency of three juiciness acoustic signal samples 
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2.2.3 Audio preprocessing 
 
The use of Mel-Spectrogram and Mel-Frequency Cepstral Coefficients (MFCC) is a popular method 
adopted for the sound recognition and visual representation process [11]. Mel-Spectrogram is 
computed by applying a Fourier transform to analyze the frequency content of a signal and to convert 
it to the mel-scale, while MFCCs are calculated with a discrete cosine transform (DCT) into a mel-
frequency spectrogram. The main difference between the two extraction features is that the mel-
spectrogram adopts a linear space-frequency scale while the MFCC use a quasi-logarithmic space-
frequency scale [11]. Our experiment also involves a comparison of the results of the use of MFCC 
and Mel-Spectrogram as audio features. The librosa python library was used for the time-frequency 
transformation. Technically, we set the parameters: window size and hop length were 2,048 and 
512, respectively. Figure 7 illustrates the procedure of feature extraction. The steps are explained as 
follows. The audio waveform processed into a module computing Short-time Fourier Transform 
(STFT) to construct the frequency domain and to generate Mel-Spectrogram. The Mel-Scale value 
was set to 40 as it was the number of audio waveform files. The sample value was normalized 
between -1 and +1. For the MFCC, we applied the Discrete Cosine Transform (DCT) to generate 
the Mel-frequencies from the logarithm of Mel-Spectrogram features. 

The spectrogram image features for sound classification were represented by converting 
into vectors. So, MFCC and Mel-Spectrogram data were loaded into a Numpy float32 array and the 
shape of MFCC (1200, 40, 205) was 1,200 samples with 40 MFCC coefficients and 205 frames. 
Likewise, the shape of Mel-spectrogram was 1,200 samples with coefficients of 205 frames and 40 
Mel brands. Both MFCC and Mel-Spectrogram had a scale between -1 to +1 as a result of the 
normalization made by the librosa python library. Next, we split data by applying a randomizing 
index between training and test data sets, so they contained 80 and 20 percent of the whole data, 
respectively. Lastly, we made a reshaping to fit the network input dimension. This consisted in a 
row, column, and one channel that were ready to feed it into the Network. 
 
2.2.4 Audio CNN architecture  
 
A convolutional neural network (CNN) is used after the input sound signal has been converted into 
an image [3]. In this research, the feature vector of the spectrogram image is assigned to different 
input nodes. Our neural network architecture comprises three convolutional 2-dimensional layers 
interleaving with two max-pooling operations, one flatten layer, and two fully connected layers. The 
activation function parameter is a rectified linear unit (ReLU). For convolutional 2-dimensional 
layers, two layers are situated before the max pooling layer, which is a common technique in CNN 
to reduce the dimensions of input data.   
 The algorithms in this research are implemented using Keras and TensorFlow to train and 
evaluate the model. The model includes three convolutional 2-dimensional layers. At the end of the 
last convolutional 2-dimensional layers, the output data is fed into a flatten layer and then into a 
fully connected layers. The final layer containing the softmax output provides classification 
probabilities for the input data. The output results of the model indicate the three classes of juiciness 
level of pineapples. The CNN architecture for audio classification is presented in Figure 8.  

Adam's optimization consists in a fine-tuning of the model and is compatible with a 
0.00006 learning rate. Moreover, during model training, the dropout method is a regularization 
technique that randomly cuts the neural networks for reducing overfitting in the convolutional neural 
network (CNN). We determined the dropout values in convolution 2-dimensional layers 2 and 3, 
and in the fully connected layer were 25% and 50%, respectively. Batch normalization methods are 
used in convolution 2-dimensional layers for normalizing the output to increase the stability of the 
model and reduce overfitting of the neural network. The detailed network architecture is proposed 
in Table 1. 
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Figure 7.  Procedure of feature extraction for MFCC and Mel-Spectrogram 
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                                       Figure 8. CNN architecture for audio classification 
 
Table 1. The detailed network architecture of the model 

Layer Network architecture 

Input layer 

  Conv2D #1 
 

  Conv2D #2 
 

  Conv2D #3 

Input shape = 40x205x1 

Filters = 32; Kernel = (3,3); Padding = ‘same’; Activation function = ReLU; 
Batch Normalization. 

Filters = 64; Kernel = (3,3); Padding= ‘same’; Activation function = ReLU; 
Batch Normalization; Max pooling = (2,2); Dropout = 0.25. 

Filters = 128; Kernel = (3,3); Padding= ‘same’; Activation function = ReLU; 
Batch Normalization; Max pooling = (2,2); Dropout = 0.25. 

Flatten layer Flatten. 

Dense layer Dense = 128; Activation function = ReLU; Dropout = 0.50. 

Output layer Dense = 3; Activation function = Softmax. 
 
2.2.5 Fine-tune tranning configuration 
 
To find out the fine-tuning parameters for training the network, a determined number of batch sizes, 
8, 16, and 32, and different epochs, 30, 40, and 50, were utilized to train and validate the CNN. We 
set hyperparameters for the model. Expressly, we set parameters for the spectrum image's 
visualization. The value of windows size was equal to 2,048 and the hop size was equal to 512. The 
image size of the convolutional neural network model was 40 x 205. 
 In this case, the neural training network using CNN combination with MFCC was 
compared with Mel-Spectrogram. We used Adam’s optimization with the initial learning rate of  
6x10-5. All the dataset was split randomly into 80% for the training dataset and 20% for the 
validation dataset. The model training was repeated five times. Therefore, the dataset randomly 
changed every time and the average validation accuracy (VA) as calculated in equation (1), error 
(loss), and the standard deviation (SD), were computed and recorded. 
 Table 2 shows the results of the comparison of the fine-tuning hyperparameters used for 
training the CNN+MFCC and CNN+Mel-Spectrogram. For training the CNN+MFCC, after fine 
training configuration, and repetition of model training five times, we recorded the validation  
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Table 2. Results of fine-tuning hyperparameters for the CNN combined with MFCC and Mel-
Spectrogram (the validation values+SD) 

Epochs 30 40 50 

Batch-
sizes 

VA 
(%)±SD Loss±SD VA 

(%)±SD Loss±SD VA 
(%)±SD Loss±SD 

CNN+MFCC 

8 96.58 ±0.54 0.11 ±0.02 95.50 ±1.23 0.16 ±0.05 96.17 ±1.08 0.15 ±0.04 

16 93.42 ±1.99 0.20 ±0.05 94.58 ±1.41 0.16 ±0.04 94.92 ±1.54 0.15 ±0.03 

32 93.25 ±2.15 0.21 ±0.07 94.75 ±0.48 0.16 ±0.03 95.83 ±1.06 0.14 ±0.01 

CNN+Mel-Spectrogram 

8 94.83 ±0.96 0.15 ±0.04 94.92 ±1.19 0.15 ±0.03 96.33±0.68 0.13±0.02 

16 93.42 ±2.51 0.19 ±0.04 92.42 ±1.26 0.21 ±0.04 93.50 ±3.30 0.20 ±0.07 

32 91.33 ±1.70 0.25 ±0.04 89.42 ±2.74 0.28 ±0.08 91.75 ±2.75 0.23 ±0.06 

VA= Validation accuracy, Loss = the error of the model, SD = standard deviation 
 
accuracy (VA), the error of the model (loss), and a computed average of VA and loss, and standard 
deviation (SD). For CNN+MFCC, the results showed that setting a batch size and epochs values of 
8 and 30, respectively, produced a validation accuracy equal to 96.58%. 
 For the CNN+Mel-Spectrogram, we set parameters with 8 batch sizes and 50 epochs and 
obtained a validation accuracy equal to 96.33%. The CNN+Mel-Spectrogram gave the lowest error 
and standard deviation of models each time. 
 
2.3 Evaluation 
 
The optimal network with optimal hyperparameters was selected and run on the dataset, which had 
been split randomly into 80% for the training dataset and 20% for the testing dataset. Validation 
accuracy and error (loss) were reported. The model performance evaluation uses various criteria 
including accuracy, precision, recall, and F1-Score to compare the results of both models on the test 
dataset via the confusion matrix. The accuracy is the number of correctly classified pineapple 
juiciness samples over the total number of pineapple juiciness samples (expressed as a percentage) 
as shown in equation (1). 
 
                                Accuracy = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑜𝑜𝑛𝑛𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑜𝑜𝑐𝑐𝑛𝑛𝑐𝑐 𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠𝑐𝑐𝑛𝑛𝑐𝑐

𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠𝑐𝑐𝑛𝑛𝑐𝑐
 *100                                 (1) 

 
 The second measure, F1-Score, as shown in equation (2), is the weighted average of 
Precision and Recall. Therefore, the score taken for precision is (TP/(TP+FP)) and recall 
(TP/(TP+FN)) where TP (True Positive), FP (False Positive), and FN (False Negative) refer to terms 
used in the confusion matrix. 
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                                            F1 = 2 x 
𝑃𝑃𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑜𝑜𝑛𝑛 𝑥𝑥 𝑅𝑅𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑃𝑃𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑜𝑜𝑛𝑛+𝑅𝑅𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

                                                            (2) 
 
 Furthermore, a confusion matrix is a specific table layout that illustrates a classification 
model performance on a set of test data. 
 
 
3. Results and Discussion 

 
The procedure was implemented on Google Colab and with Python language. We applied LibROSA 
to extract audio features, and Keras and TensorFlow library to develop a classification model. The 
experiment used 'Sriracha' pineapples. A set of 30 pineapple samples was used to record tapping 
sound data and construct a 1,200 audio waveform files dataset. The dataset consisted in 400 juiciness 
1 pineapple audio waveform files, 400 juiciness 2 pineapple audio waveform files, and 400 juiciness 
3 pineapple audio waveform files. 
 To measure and present the performance of the proposed model, the results can be viewed 
in the graph presented to see the difference in model accuracy between the training dataset and the 
validation dataset. Figures 9 and 10 show the results with the proposed audio CNN combined with 
MFCC and Mel-Spectrogram feature extraction and setting softmax for the output function. The 
result shows that CNN combined with MFCC outperformed the CNN combined with Mel-
Spectrogram. The results show that MFCC performed better for classification juiciness level. Table 
3 illustrates the performance by adopting a model for classification of pineapple juiciness. The VA 
of test datasets for CNN+MFCC and CNN+Mel-Spectrogram reached 96.67% and 94.58%, 
respectively. Consequently, CNN+MFCC outperformed CNN+Mel-Spectrogram for both accuracy 
and loss. 
 
 

  
 

     (a) validation accuracy                                
  
                                   (b) loss 

 
Figure 9. The results of CNN+MFCC 
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    (a) validation accuracy                                    (b) loss 

 
Figure 10. The results of CNN+Mel-Spectrogram  

 
 

Table 3. Performance of the optimal selected fine-tuning for the model CNN 

Model Validation Accuracy (%) Loss (The error of the model) 

 Training  Test Training Test 

CNN+MFCC 99.7917 96.6667 0.0144 0.0844 

CNN+Mel-Spectrogram 99.2708 94.5833 0.0300 0.1347 

 
 We present the F1-Score of each class in Table 4. It provides the comparison results for the 
two feature extraction methods. Table 4 shows the value of F1-Score of the three classes. The 
CNN+MFCC outperformed the CNN+Mel-Spectrogram in Juiciness 1, Juiciness 2 and Juiciness 3 
and obtained 0.98, 094 and 0.97, respectively. A macro average is 0.96, and weighted average is 
0.97 for the evaluation system.  
 
Table 4. The comparison results classification of the two feature extraction methods  

Class CNN+MFCC  CNN+Mel-Spectrogram 

 Precision Recall F1-
Score 

No. of 
Samples Precision Recall F1-

Score 
No. of 

Samples 

Juiciness1 0.99 0.98 0.98 91 0.98 0.97 0.98 65 

Juiciness2 0.94 0.94 0.94 64 0.94 0.90 0.92 81 

Juiciness3 0.97 0.98 0.97 85 0.93 0.97 0.95 94 

Macro avg 0.96 0.96 0.96 240 0.95 0.95 0.95 240 

Weighted 
average 0.97 0.97 0.97 240 0.95 0.95 0.95 240 
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 The confusion matrices of Figure 11(a)-(b) visualize the two networks algorithms 
performance. Firstly, the CNN combined with the MFCC algorithm correctly classified 89 out of 91 
(97.80%,) 60 out of 64 (93.75%), and 83 out of 85 (97.65%) of pineapples samples of juiciness 1, 
juiciness 2, and juiciness 3, respectively. The remaining 2, 4, and 2 pineapple samples were 
classified incorrectly, respectively. Lastly, the CNN combined with Mel-Spectrogram algorithm 
correctly classified 63 out of 65 (96.92%), 73 out of 81 (90.12%), and 91 out of 94 (96.81%) of 
pineapples samples of juiciness 1, juiciness 2, and juiciness 3, respectively. The remaining 2, 8, and 
3 pineapple samples were classified incorrectly, respectively. 
 

  
 

(a) CNN+MFCC 
 
               (b) CNN+Mel-Spectrogram 

 
Figure 11. Confusion matrices of test data 

 
 
4. Conclusions 
 

This research study provides a novel method for non-destructive quality evaluation method for the 
juiciness classification of Sriracha pineapples from audio waveform sounds. The model applies a 
combination of acoustic sensing and deep learning to compare the results between MFCC and Mel-
Spectrogram feature extraction connected to the same convolutional neural network (CNN) model 
for the classification into three classes: Juiciness 1, Juiciness 2, and Juiciness 3. MFCC combined 
with CNN performed best, outperforming the Mel-spectrogram combined with CNN. The accuracy 
of our model was 96.67%. This research result suggests that the proposed method can be applied at 
a fresh pineapple market to help buyers decide which pineapples are of the best edible quality for 
them. The model can be further improved to enhance performance by using other extraction methods 
including the linear predictive cepstral coefficient (LPCC) and Perceptual Linear Prediction (PLP). 
Other deep learning models such as recurrent neural networks (RNNs), which allow for larger data 
samples and other collection methods, could also be applied in the future work.  
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