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Abstract

Identification of unique individuals is being extensively used in
security and surveillance. Gait recognition has caught the attention
of computer vision researchers. This interest has been stimulated
by the development of systems to automatically identify
personal re-identification; individuals. This paper presents a gait gesture recognition
algorithm, using Incremental Dynamic Time Warping (IDTW)
with a body measurement technique that identifies personal gait

Keywords

biometrics;

Gait recognition;

IDTW; patterns recorded on video via Microsoft’s Kinect® 3D depth-
) sensing camera. We used the height of a person to further clarify
Kinect sensor the recognition and accurate identification of the individual. The

initial results demonstrated 81.25% accuracy with our gait and
height recognition algorithm. This recognition technique is ideal
for high-level security requirements.

1. Introduction

Demand for the use of biometric systems for human identification at a predetermined distance has
led to a significant increase in the number of applications being developed. Many biometric
resources, including the iris, fingerprints, palm prints and hand geometry, have been systematically
studied and are already employed in systems that are widely used in the security industry. Standard
security systems are no longer restricted to static alarms, physical locks or key-card entry systems,
which are familiar to most people. The Internet has provided the ability to significantly extend the
use of devices for security purposes, in the home and on the street, using electronic identification
and remote identification from CCTV systems and other data-gathering devices.

In the home, there are remote door entry systems, device controls, remotely controlled
CCTYV cameras, and baby monitors. Devices such as panic alarms and motion sensors that can detect
if someone has not moved for some time and therefore may require medical assistance, are examples
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of services available on the Internet. In the public domain, safety and security have been enhanced
by advanced warnings of traffic, flood, fire, weather and impending disasters.

Automated personal identification systems, such as personal facial recognition and
automated motor vehicle registration number checking, are examples of public security protection
systems made available by the Internet. Personal identification for security purposes is an interesting
and imperative matter for research in the Internet Netscape. Active and passive personal
identification systems are now readily available. An active system analyzes personal, physical and
biological data through fingerprint and iris recognition while a passive system analyzes data with
facial or voice recognition where the results are based on clear data without noise, visual or aural
interference that reduces the detection efficiency.

Gesture recognition is an important part of human-computer communication. Interactive
body movement and gesture tracking are the basis of many applications including game playing,
human-computer interaction, telepresence, health care and security [1-3]. Gait recognition has
received a lot of attention from academics and engineers in the field of computer vision because of
its high potential for recognition and verification of human identity. Unlike other biometric
recognition systems, gait recognition is non-invasive and can identify individuals over relatively
long distances without their participation or even knowledge. Human gait is difficult to alter, hide
or imitate, which ensures a high accuracy recognition rate. Specifically, since terrorist activities are
now more prevalent in today's world, gait recognition is becoming an important tool in security
agencies’ arsenal. Person re-identification based on the human gait is considered an effective
approach for identification as its use can overcome issues such as shape, color, and scale. Due to the
human gait being unique for each individual, gait analysis is a practicable option. However, various
constraints can impair the efficacy of a gait identification system.

There were several seminal papers available on gait analysis, including Lee and Grimson
[4], who emphasized an orthogonal view of a video silhouette of gait motion as a method that allows
the aggregation of features over time under difference recognition patterns. Ekinci and Aykut [5]
suggested a nonlinear machine method, the kernel of Principal Component Analysis (PCA), to
obtain gait features from silhouettes for very single recognition. Toebes et al. [6] analyzed a method
attentive to health conditions that identified the risk of falling or lapsing into unconsciousness for
patients or elders, with the parameters (Local Dynamic Stability: LDS) of gait able to detect a
predictor of fall risk. Thang et al. [7] presented two methods for biometric gait detection based on
acceleration sensors. To examine the data, they used both time and frequency domains. For
evaluating the similarity score in the time domain, Dynamic Time Warping (DTW) was applied,
and SVM was used for classification in the frequency domain. The outcomes of their proposed
methods were 79.1% for DTW and 92.7% for SVM.

In general, the gait recognition results in these approaches were acquired after the
movement or gesture has been detected and completed. This means that if these results are to be
available for analysis, they need to be captured, recorded and stored for post facto analysis. When
analyzing long gestures or gait patterns, lengthy analysis is necessary.

The performance of a gait recognition model in verification and identification mode can be
measured using the metrics described for a real-time gait gesture analyzing system that was designed
and created as part of this research. These metrics were applied to examine the subject’s motions by
capturing and recording them using a human motion tracking device called the Kinect® 3D depth-
sensing camera. From the recording of the person as they passed the sensor, twenty-five points on
the upper and lower part of the body at specified particular areas of the person’s skeleton allowed
this data to be stored in the database [8, 9]. Each data sequence was compared with the Incremental
Dynamic Time Warping (IDTW) algorithm and the results improved by combining the body
measurements to attain a high accuracy result to successfully develop an accurate personal re-
identification technique.
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2. Materials and Methods

This section describes the processes for recording the sample gait patterns to create the skeletal
models, and compute the feature vectors, as shown in the block diagram (Figure 1).
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Figure 1. Block diagram

From Figure 1, the first stage in the block diagram is the recording of user gestures from
the Kinects sensor. The system extracts the joint skeleton data of each person who is walking past
the sensor and records that data in a database for matching with other recorded data. In the second
stage, the data obtained from the sensor is processed to find the similarity by comparing it with the
previously recorded data and assessing the estimation into 2 methods. This involves first measuring
the similarity of walking posture with the IDTW algorithm and then comparing with body
proportion measurements. The results from the comparison are expressed as a similarity score, in
which similar sets of data have a point value close to zero. In the third stage, the score obtained from
stage 2 is calculated for the new Fusion score using the combined technique of IDTW score and
body height score in different proportions to identify results accurately.

2.1 Human gait gesture

Gait is characterized as a facilitated cyclic mix of activities that affects the movement of an
individual's body. The movement of the human body presents unique patterns that can identify
individuals by the way they walk, as illustrated in Figure 2. There is a sequence of alternative
footprints specified in an individual’s movement wherein the movement of both feet creates a unique
cyclic for each person [10, 11] whether walking, jogging, running, jumping, climbing stairs,
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Figure 2. The gait cycle

stretching, relaxing, or bending over. The human gait cycle is split into two separate regions
representing the period of time when the foot is in contact with the ground as show in Figure 2.

The gait state can be analyzed as a biometric measurement without contact with the person
being scrutinized. This makes it a very versatile method for many purposes. Several researchers
have concluded that gait indicates a person’s gender and identity [12, 13]. An individual’s gait can
be detected and measured at low resolution. Therefore, gait can be used in situations where facial or
iris data is not available in a high enough resolution for recognition [14].

2.2 Kinect® sensor

The Kinect® sensor is a human motion tracking device for the Xbox 360® console from Microsoft®.
It was first intended for use in gaming systems, but many other implementation possibilities have
emerged, such as human motion and feature recognition, 3D model reconstruction, robot navigation,
medical applications and dance training [15-17].

The Kinect® version 2 has both a 1920x1080 RGB color lens and a 512x424 depth lens
with both running at 30 frames per second, with a field of view of 70° horizontal and 60° vertical.
In our research, we used the Kinect® sensor API to extract many aspects of the body poses from the
depth images, representing a skeletal image with identifiable joints, with twenty-five of them being
hierarchically represented, as shown in Figure 3. This camera has the great advantage of being
inexpensive and easy to use while providing high accuracy of motion detection in 3D [18, 19].

The human skeleton includes 25 joints with the joint hierarchy flowing from the center of
the body to the extremities. Each connection (bone) links the parent joint with a child joint. The
Kinect® software attempts to detect the human body image from an overall image that has been
taken, and if it can find the body image component, the 3D positions of the 25 joints are estimated.
Each joint is represented by a three-dimensional vector (X, Y, and Z) in the coordinate space of the
Kinect®. The positions of the joints are written into a text file, frame-by-frame
(x0,¥0,20), (X1, Y1, 21), ) (X24, V24, Z24).

From the skeleton representation shown in Figure 2, it can be seen that the middle joint of
the hips is applied as the skeletal center joint and the other relative joints are analyzed and calculated
from that skeletal center joint. Data retrieved from the Kinect® cannot be used for direct comparison
due to the different body joint distances of each person; the joints need to be scaled so that the
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Figure 3. Human skeleton representation captured from the Kinect® sensor
process can accommodate users with different limb ratios [20]. Hence, data normalization is

necessary and is done by positioning the spine base as the starting point and measuring each skeleton
by spine base position value [15], as shown in equation 1.

0
= 1=2,..,L (1)
=l
where  w; Body joint value at position [
) Position value at spine base
1 Position value at other joint
L The whole number of joints

2.3 Incremental dynamic time warping (IDTW)

IDTW is an algorithm for comparing sequences of different speeds and time intervals by
compression or expansion in the time domain and is an extension of the original DTW [21-23]. We
used the skeletal feature data of the reference sequence (the stored complete data) as a benchmark
and compared it with the new sequence. The algorithm calculates a comparison of the sequences,
thereby indicating a degree of sameness between the images, and clarifies distance scores. Figure 4
depicts the time alignment between two independent signals [24], and in our framework, the signals
are obtained by the motion-capturing of human walking.

Non-linear alignment provides a more understandable measure of similarity. This allows
similar shapes to be matched even if they are out of phase in the time axis. DTW can efficiently find
alignment between two sequences, which allows for more complex distance measurement
calculations.



Curr. Appl. Sci. Technol. Vol. 23 No. 1 W. Kwankhoom and P. Muneesawang

i i2
| 1 1 | |
time

Figure 4. Time alignment of two motion sequences

The original DTW algorithm was defined to match sequences and find an alignment
warping path between the two time series E={EE>, ..., Ey} and U={U;,U,,..., Uy} where E is the
reference data and U is an unknown. To align these two sequences with the matrix Gy, where the
position (7, j) of the matrix contains the distance between £ and U, optimal warping was found by
minimizing the original DTW distance [21]:

1 T
D(U,E):ﬁZduz) @
t=1

Here, T is the total number of points on the warping path P and P, = (i, ) is the #" point
on the warping path.

Given the two sequences E={E,E>,...,Ey} and U={U,,U,, ...,Uy}, the purpose of dynamic
time warping (DTW) is to align these two sequences temporally in some optimal sense under certain
constraints. The sequence can be a discrete signal, feature sequence, sequence of characters, or any
type of time series. Frequently, the index of a sequence relates to successive points in time that are
spaced at uniform time intervals. The following Figure 5 shows the alignment between the sequence
E of length M=9 and the sequence U of length N=7.

The IDTW algorithm aligns the sequences with the best possible starting reference
segment. This can be obtained by ceasing all sequences in every possible frame, calculating the
IDTW distance for all frames, and selecting a minimum distance. This can be achieved as follows:

1. The DTW distance is calculated for all E’, j=1,...,M , where each E ! is the
reference sequence E truncated at the j " frame. ie, D(U ,E) , ] = 1,...,M

2. The minimum is found using the formula:

D[DTW(U’E)zf in D(U,Ei) 3)

=1,...M

where D(U, E’) is defined in equation 2.

3. Steps I and II are iterated for each new sequence. The components of DTW from
previous states are reused as the new sequence movement to optimize computation time.

The pseudo-code of the IDTW algorithm is presented in algorithm 1. It can be seen that the
next frame in the user sequence is an input to the function. There is only one column added to the
cumulative cost matrix G. At that point, this column is filled by reference to a chosen update rule as
same as the original DTW. Lastly, the normalized minimum value from the newly added column of
the cost matrix G is returned as the current IDTW distance, as shown in Figure 6. It allows the IDTW
to calculate the distance score between two sequences faster and with greater accuracy than the
classic DTW [9, 25-27].



Curr. Appl. Sci. Technol. Vol. 23 No. 1 W. Kwankhoom and P. Muneesawang

Sequence U (/NN (VFRNN (VZ (V7R (V7NN P/ (VZRNN VPR (7

N

Sequence E

E3 7

9 ?
8 ®
:>7 > rg
26
£’ [}
34
wn
3
2
1lé

1 2 3 4 5 6 7
Sequence I

Figure 5. Paths of index pairs for sequence E of length M =7 and sequence U of length N =9

D(U,E)
Column
to
Diprw (U, E)- " be
jmin, DU, EY) added

Alrcady calculated py g

Figure 6. Calculation of final cost: DTW (left matrix) vs. IDTW (right matrix)



Curr. Appl. Sci. Technol. Vol. 23 No. 1 W. Kwankhoom and P. Muneesawang

Algorithm 1: The IDTW algorithm

Inputs:

U — The unknown sequence up to the current time (length N).
E — The reference (full) sequence (length M).

G — M XN cumulative cost matrix up to current time.

V' — Next frame in user sequence.

Output:

Updated IDTW distance.

1: function IDTW(U,E,G,})

20 P (N+])

3: Up<V

4: G(1...M,P) < array(1...M)

5: For i < (max(1,P),min(M,P)) do

6: G(i,P) « min(G(i - 1,P),G(i — 1,P - 1),

G(i — 1,P —2)) + D(Up,Ei)

7 end for
8: return min(G(1...M,P))/P
9: end function

2.4 Body height measurement

Kinect® can provide coordinates for the skeleton position, and immediately obtain a three-
dimensional image for these points [19, 20]. The joint position property is a set of X, Y, and Z in
the 3D space. A number is assigned to each of the joint points relevant to height, so the position of

each can be written as J, (x, Y, Z) where x and y indicate the position of the joint in the color

image, and z indicates the depth position. The distance between x and y is calculated by the
Euclidean distance [5], which is defined as equation 4. The formula for estimating the height of a
body is presented in algorithm 2.

d(x,y) =tz — x1)% + (y2 — y1)? 4)

For this study, we only used the height of the skeleton backbone (torso_height) and right
leg (right leg height) to classify each person, because the leg joint values recorded by the Kinect®
sensor cannot be clearly detected while walking. The average height of all frame sequences was
used to compute body height.

Algorithm 2: Body Height calculation

Inputs: Kinect body tracking joints.
Output: Body height.

1:  height = d(HEAD, NECK) +
d(NECK, SPINESHOULDER) +
d(SPINESHOULDER, SPINEMID) +
d(SPINEMID, SPINEBASE) +
Ad(SPINEBASE, avg(HIPRIGHT, HIPLEFT));

2:  left leg height=d(HIPLEFT, KNEELEFT) +
d(KNEELEFT, ANKLELEFT) +
d(ANKLELEFT, FOOTLEFT);

3:  right_leg height = d(HIPRIGHT, KNEERIGHT)+
d(KNEERIGHT, ANKLERIGHT) +
d(ANKLERIGHT, FOOTRIGHT);

4:  total height = height + right leg height;
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3. Results and Discussion

This dataset of gait gestures was obtained from 80 individuals by having each person walk past the
Kinect® sensor at a distance of two meters (ach person was recorded passing the device twice = 160
sequences). Two meters was the best distance for the angle of camera frame capture [9], as shown
in Figure 7. During this experiment, each data sequence was compared to all other recorded
sequences with the IDTW, and body height scores, allowing the identification of each individual.
The histograms in Figure 8 are graphs that display the distribution of data.
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Figure 7. The experimental setting
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Figure 8. The dataset of 80 body height samples
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In the first experiment, each sequence was calculated using the IDTW algorithm. Table 1
contains the distance scores of each gait sequence that indicates the similarity of the gait gesture
data patterns. Where the distance score is high, this means that the sequences are different, and
where the distance score is close to zero, the sequences are similar, indicating a match and therefore
the correct identification of an individual. The recognition accuracy of the IDTW algorithm is 60
out of 80 people at this stage.

The second experiment was to calculate the body height of each of the 80 people. The
calculation results were obtained by determining the distance between each person’s backbone joints
(torso_height) and right leg (right leg height), as shown in Figure 9, calculated by algorithm 2. By

comparing each result, each person can be individually identified by their height score ( score)
using the following formula:
A =|h —h,| (5)
A—Min
(6)

o Max — Min

where h[ is body height and A is the difference between the body height of each person. If the

H score 18 close to zero then the body heights are almost the same. The accuracy of the comparison

results of the height score was 35 out of 80. This demonstrates that the IDTW score can identify
people more accurately than the height score.

In the third experiment, we improved the recognition results using a combination of IDTW
and height scores in different proportions, which were calculated by the following formula:

Fusion, =(axIDTW,_ )+((1-a)xH ) (7

score score

where o is the proportion between 0.00 to 1.00. The results shown in Table 1 were calculated by
alpha (a) at 0.00, 0.25, 0.50, 0.75 and 1.00 and the accuracies of recognition were 42.50%, 58.75%,
and 81.25%, respectively, as shown in a graphical comparison of the accuracy scores in Figure 10.

Head

‘ Neck

SpineShoulder

SpineMid
HipRight

SpineBase

KneeRight

AngkleRight

FootRight

Figure 9. Calculation of body height
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Table 1. Result of recognition

Method Accuracy
IDTW (o=1) 60 of 80 (75.00%)
Body Height (0=0) 35 0f 80 (43.75%)
IDTW X Body Height (0=0.25) 34 of 80 (42.50%)
IDTW X Body Height (0=0.50) 47 of 80 (58.75%)
IDTW X Body Height (0=0.75) 65 of 80 (81.25%)
100
80 o °
N
s 60 o
g
S 4@ o
20
0
0.00 0.25 0.50 0.75 1.00
Alpha

Figure 10. Accuracy of identification

4. Conclusions

In this study, we developed a method for gait gesture recognition by comparing a user sequence to
the most closely related reference, which identifies individuals by using a Kinect® camera. The
Incremental Dynamic Time Warping (IDTW) algorithm and body height measurements were
applied to calculate the similarity between people. To achieve our results, we calculated individual
walking motions using IDTW and the individual’s body height to classify each person. Our
experiments showed a 43.75% accuracy when using a body height measurement technique only
since measuring the height of the body while walking can cause the height value to be inaccurate by
1 to 3 cm. As a result, the calculated height classification of each person could decrease overall
accuracy. However, the height value can specify the height range of each person when combined
with the IDTW algorithm. Using this algorithm, we achieved an 81.25% accuracy which is ideal for
high-level security requirements. To quantify accuracy and detect time process for future
development, a massive volume of data must be analyzed in real-time. It is acknowledged that we
provided a satisfying recognition solution in a relatively ideal environment but did not consider a
situation where a person carried a bag or any other item that might hinder data acquisition.
Therefore, more relevant algorithms will be investigated in the future.

11
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