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Abstract 
 

Computer viruses can cause significant damage to computer systems, 
and that damage can lead to loss of data and financial losses for 
computer users. To deal with computer viruses and to avoid them in the 
future, system can be updated and better antivirus software installed. 
Someone experts can remove viruses without antivirus software and fix 
infected computers that have serious and great damage. In this paper, 
we consider three types of control to deal with infected systems and 
preventing further spread of viruses: the installation of antivirus 
software on infected computers, the installation of antivirus software on 
susceptible computers, and the cleaning  and repairing of infected 
computers without the use of antivirus software. We proposed a model 
that had three equilibrium points: two virus-free and one endemic. 
Pontryagin’s maximum principle was used to solve the problem of 
optimal control in our model. Some numerical simulations showed that 
an acceleration in the declining number of infected computers can be 
achieved by giving control factors on susceptible and infected 
computers. Furthermore, an increase in relative weights will result in 
fewer control factors and vice versa. 

 
 
1. Introduction 
 
Computer technology has developed very rapidly in this era of globalization. The development of 
software in the modern world is getting more sophisticated from time to time. Along with the rapid 
development of computers and the use of computer technology as a human aid, the problems faced 
by computer users are also increasing. Some of these problems are caused by computer viruses. The 
high dependence on computer performance makes computer viruses a serious threat [1]. Computer 
viruses, as a type of electronic infection, can cause damage to the computer system they attack.  
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Computer viruses can remove, hide, and even change data on a computer system, and they can cause 
huge financial losses. Antivirus is needed as a solution to prevent the computer virus transmission. 
Control of computer virus epidemics is a way to mitigate financial impact.   

The term “computer virus” is actually taken from the biology term. A computer virus is 
like a microorganism that can reproduce by transmitting itself to other organisms. There is a 
similarity between the mechanism of the computer virus transmission to other computer programs 
and the spread of biological viruses into living cells [2]. Like biological viruses, computer viruses 
have the ability to transmit, duplicate, and spread by inserting themselves into other computer 
programs.  

An understanding of the dynamics of computer virus transmission can be observed through 
mathematical models (see [3-6]). Hu et al. [3] studied a model for virus propagation between 
computers in latent period and removable devices, while Gan et al. [4] proposed a computer virus 
propagation model with a complex-network approach. Chen et al. [5] studied a delayed SLBS 
computer virus model. They showed that the optimal control of this model was effective for reducing 
the number of breakout computers. Yang and Yang [6] studied the effects of removable storage 
media in their epidemic model. The model has only a unique endemic equilibrium; it has no virus-
free equilibrium.  

Mathematical models can also be used to predict the number of computers that have been 
infected by viruses. This is done in order to determine strategies for reducing computer virus 
transmission. In this research, a mathematical model will be constructed to see the computer virus 
transmission in a computer network by involving control factors on the computer. The model 
discussed here is the development of a model studied by Piqueira and Araujo [7], Zhang et al. [8], 
and Qin et al. [1]. Our development involved adding a third control on a computer compartment that 
had not been exposed to a virus. Furthermore, it will be seen that in terms of costs, the addition of 
the third control is an efficient way of preventing computer virus transmission in a network.  
 
 
2. Materials and Methods 

 
2.1 Compartmental model for the computer virus transmission in a network system  
with three control factors 
 
In this section, we consider a mathematical model of computer viruses proposed Zhang et al. [8]. 
We modify the model by involving a third control factor. The model divides the total population 
into four classes: non-infected computers subjected to possible infection (𝑆𝑆), computers which have 
an active virus (𝐼𝐼), computers from which the virus has been removed (𝑅𝑅), and antidotal computers 
equipped with antivirus (𝐴𝐴). We assume that the total population, 𝑇𝑇, with 𝑇𝑇 = 𝑆𝑆(𝑡𝑡) + 𝐼𝐼(𝑡𝑡) + 𝑅𝑅(𝑡𝑡) +
𝐴𝐴(𝑡𝑡), is constant in time. The compartmental model is given in Figure 1 and description of the 
parameters of the model is given in Table 1.  

A susceptible computer may be infected or remain susceptible. Infected computers can 
transmit the virus through media or web browser. Susceptible computers (𝑆𝑆) are infected through 
contact with infected computers with a rate 𝛽𝛽. Susceptible and infected computers can be installed 
with antivirus software and they become antidotal computers with proportion control factor 𝑢𝑢3 and 
𝑢𝑢1,  respectively. Infected computers (𝐼𝐼),  which may remain infected with antivirus, can be  
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Figure 1. Compartmental model for computer viruses with three control factors. The 𝑆𝑆, 𝐼𝐼,𝑅𝑅,𝐴𝐴 
represent the numbers of susceptible, infected, removed, and antidotal computer population.  

 
Table 1. Parameters in the model 

Symbol of 
parameters 

Description Unit  

𝑁𝑁 Influx rate of new computers to the 
network   

Computer per time  

𝜇𝜇 
 

𝛽𝛽 
 

𝜎𝜎 

Mortality rate of computer system, 
not due to the virus   
Proportion factor of susceptible into 
infected because of contact 
Proportion factor of removed into 
susceptible 

Per time  
 
Per computer per time  
 
Per time  

𝑢𝑢1(𝑡𝑡) Proportion control factor of infected 
into antidotal  

Per computer per time    

𝑢𝑢2(𝑡𝑡) Proportion control factor of infected 
into removed  

Per time  

𝑢𝑢3(𝑡𝑡) Proportion control factor of 
susceptible into antidotal  

Per computer per time  

 
recovered by cleaning and repairing the infected computers without the use of antivirus software  
with a proportion control factor 𝑢𝑢2. Removed computers (𝑅𝑅) can be restored by formatting them 
and they become susceptible computers with a proportion factor 𝜎𝜎. All computers removed from 
the network system (not due to the virus) with a mortality rate 𝜇𝜇.    

The influx rate of new computers to the network is considered to be 𝑁𝑁 = 0 because the 
virus spreads faster than the network expansion. The same reason justifies the choice of 𝜇𝜇 = 0, 
considering that the machine obsolescence time is larger than the time of the virus action. Based on 
these assumptions, the dynamics of the four computers population with three control factors are 
expressed mathematically by the following system of four ordinary differential equations (ODEs),  
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⎩
⎪⎪
⎨

⎪⎪
⎧

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= −𝑢𝑢3(𝑡𝑡)𝑆𝑆(𝑡𝑡)𝐴𝐴(𝑡𝑡) − 𝛽𝛽𝛽𝛽(𝑡𝑡)𝐼𝐼(𝑡𝑡) + 𝜎𝜎𝜎𝜎(𝑡𝑡)
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝛽𝛽𝛽𝛽(𝑡𝑡)𝐼𝐼(𝑡𝑡) − 𝑢𝑢1(𝑡𝑡)𝐴𝐴(𝑡𝑡)𝐼𝐼(𝑡𝑡) − 𝑢𝑢2(𝑡𝑡)𝐼𝐼(𝑡𝑡)
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑢𝑢2(𝑡𝑡)𝐼𝐼(𝑡𝑡) − 𝜎𝜎𝜎𝜎(𝑡𝑡)
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝑢𝑢3(𝑡𝑡)𝑆𝑆(𝑡𝑡)𝐴𝐴(𝑡𝑡) + 𝑢𝑢1(𝑡𝑡)𝐴𝐴(𝑡𝑡)𝐼𝐼(𝑡𝑡)

              (1) 

 
with the dynamics of the solutions of (1) in the restricted region, 
 

Ω = {(𝑆𝑆, 𝐼𝐼,𝑅𝑅,𝐴𝐴) ∈ ℝ+0
4 |0 ≤ 𝑆𝑆 + 𝐼𝐼 + 𝑅𝑅 + 𝐴𝐴 = 𝑇𝑇} 

 
and all parameters are real and positive.   

A mathematical model has a virus-free equilibrium if it has an equilibrium point at which 
the population remains in the absence of the virus. The model (1) has two virus-free equilibrium 
points, given by 𝐸𝐸0(𝑆𝑆0∗, 𝐼𝐼0∗,𝑅𝑅0∗ ,𝐴𝐴0∗) = (0,0,0,𝑇𝑇) and 𝐸𝐸1(𝑆𝑆1∗, 𝐼𝐼1∗,𝑅𝑅1∗,𝐴𝐴1∗) = (𝑇𝑇, 0,0,0).  

System (1) has a unique endemic equilibrium point such that 𝐼𝐼(𝑡𝑡) > 0 for any 𝑡𝑡 > 0. The 
endemic equilibrium point is given by:  
 

𝐸𝐸2(𝑆𝑆2∗, 𝐼𝐼2∗,𝑅𝑅2∗,𝐴𝐴2∗) = �𝑝𝑝,
𝑇𝑇 − 𝑝𝑝
𝑞𝑞 + 1

,
(𝑇𝑇 − 𝑝𝑝)𝑞𝑞
𝑞𝑞 + 1

, 0� 

 
where 𝑝𝑝 = 𝑢𝑢2(𝑡𝑡)

𝛽𝛽
 and 𝑞𝑞 = 𝑢𝑢2(𝑡𝑡)

𝜎𝜎
.  

 
To indicate whether the population will remain in the absence of the viruses, or the viruses 

will persist for all time, we must know the stability of the equilibrium points. Using the theory of 
stability in epidemiological models, the virus-free equilibrium point 𝐸𝐸0 is locally asymptotically 
stable, while the virus-free equilibrium point 𝐸𝐸1 and the endemic equilibrium point 𝐸𝐸2 are unstable.  
 
2.2 Optimal control model of computer viruses with three control factors 
 
Now we introduce three control functions 𝑢𝑢𝑖𝑖(𝑡𝑡), 𝑖𝑖 = 1,2,3 and three real positive constants 𝐶𝐶𝑖𝑖 , 𝑖𝑖 =
1,2,3. The first control 𝑢𝑢1 represents a proportion factor of the installation of antivirus on infected 
computers, the second control 𝑢𝑢2 represents a proportion factor of repairing infected computers 
(they become removed computers), and the third control 𝑢𝑢3 represents a proportion factor of the 
installation of antivirus on susceptible computers. The parameters 𝐶𝐶𝑖𝑖 > 0, 𝑖𝑖 = 1,2,3 are appropriate 
weights of the controls 𝑢𝑢𝑖𝑖 , 𝑖𝑖 = 1,2,3 respectively.  

We denote the state and control variable of the control system (1) by 𝑥𝑥 = (𝑆𝑆, 𝐼𝐼,𝑅𝑅,𝐴𝐴) ∈ ℝ4 
and 𝑢𝑢 = (𝑢𝑢1,𝑢𝑢2,𝑢𝑢3) ∈ ℝ3, respectively. For given constant 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 = Λ and fixed final time 𝑇𝑇𝑓𝑓 > 0 , 
the set of admissible control functions is given by 

 
𝑈𝑈 = �𝑢𝑢 = (𝑢𝑢1,𝑢𝑢2,𝑢𝑢3): 0 ≤ 𝑢𝑢𝑖𝑖(𝑡𝑡) ≤ Λ,∀𝑡𝑡 ∈ �0,𝑇𝑇𝑓𝑓�, 𝑖𝑖 = 1,2,3�                (2) 

 
The optimal control problem of model for computer viruses with three control factors is formulated 
as: 
             [OC] Minimize the functional 
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𝐽𝐽(𝑥𝑥,𝑢𝑢) = ∫ [𝐼𝐼(𝑡𝑡) + 𝐶𝐶1𝑢𝑢12(𝑡𝑡) + 𝐶𝐶2𝑢𝑢22(𝑡𝑡) + 𝐶𝐶3𝑢𝑢32(𝑡𝑡)]𝑑𝑑𝑑𝑑𝑇𝑇𝑓𝑓
0              (3) 

 
subject to the state system (1) and initial conditions  
 
𝑆𝑆(0) > 0, 𝐼𝐼(0) ≥ 0,𝑅𝑅(0) ≥ 0,𝐴𝐴(0) ≥ 0                        (4) 
 
and control constraints  
 
0 ≤ 𝑢𝑢𝑘𝑘(𝑡𝑡) ≤ Λ,∀𝑡𝑡 ∈ �0,𝑇𝑇𝑓𝑓�     (𝑘𝑘 = 1,2,3)               (5) 
 
The objective is a quadratic in control variable 𝐶𝐶𝑖𝑖𝑢𝑢𝑖𝑖2(𝑡𝑡), 𝑖𝑖 = 1,2,3 to describe the costs 

where 𝐶𝐶1,𝐶𝐶2, and 𝐶𝐶3  are the relative weights attached to the cost of the installation of antivirus 
software on infected computers, repairing infected computers, and installation of antivirus on 
susceptible computers respectively.     

The goal of the optimal control problem is to find the optimal value 𝑢𝑢∗  of the control 
function 𝑢𝑢 = (𝑢𝑢1,𝑢𝑢2,𝑢𝑢3) along time that minimizes the cost functional 𝐽𝐽(𝑥𝑥,𝑢𝑢) in (3) subject to the 
dynamic constraints (1), initial conditions (4), and control constraints (5) as well as the number of 
infected computers at the end of control period.   

The Lagrangian of the problem is given by  
 

𝐿𝐿�𝐼𝐼(𝑡𝑡),𝑢𝑢1(𝑡𝑡),𝑢𝑢2(𝑡𝑡),𝑢𝑢3(𝑡𝑡)� = 𝐼𝐼(𝑡𝑡) + 𝐶𝐶1𝑢𝑢12(𝑡𝑡) + 𝐶𝐶2𝑢𝑢22(𝑡𝑡) + 𝐶𝐶3𝑢𝑢32(𝑡𝑡)           (6) 
 

According to Pontryagin’s maximum principle [9], if 𝑢𝑢∗ is optimal for equations (1)-(5) 
with fixed final time 𝑇𝑇𝑓𝑓 , then there exist adjoint vector 𝜆𝜆: �0,𝑇𝑇𝑓𝑓� → ℝ4, 𝜆𝜆 =
(𝜆𝜆𝑆𝑆(𝑡𝑡), 𝜆𝜆𝐼𝐼(𝑡𝑡), 𝜆𝜆𝑅𝑅(𝑡𝑡), 𝜆𝜆𝐴𝐴(𝑡𝑡)), such that  

 

𝑆𝑆′ =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜆𝜆𝑆𝑆

, 𝐼𝐼′ =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜆𝜆𝐼𝐼

,𝑅𝑅′ =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜆𝜆𝑅𝑅

,𝐴𝐴′ =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜆𝜆𝐴𝐴

, 𝜆𝜆𝑆𝑆′ = −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, 𝜆𝜆𝐼𝐼′ = −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, 𝜆𝜆𝑅𝑅′ = −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, 𝜆𝜆𝐴𝐴′ = −
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 

 
where the Hamiltonian for the objective 𝐽𝐽 and the control system (1) as follows 
 

𝐻𝐻(𝑆𝑆(𝑡𝑡), 𝐼𝐼(𝑡𝑡),𝑅𝑅(𝑡𝑡),𝐴𝐴(𝑡𝑡), 𝜆𝜆(𝑡𝑡),𝑢𝑢(𝑡𝑡))

= 𝐿𝐿�𝐼𝐼(𝑡𝑡),𝑢𝑢1(𝑡𝑡),𝑢𝑢2(𝑡𝑡),𝑢𝑢3(𝑡𝑡)� + 𝜆𝜆𝑆𝑆 �
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

� + 𝜆𝜆𝐼𝐼 �
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

�+ 𝜆𝜆𝑅𝑅 �
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

�

+ 𝜆𝜆𝐴𝐴 �
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

� 

=  𝐼𝐼(𝑡𝑡) + 𝐶𝐶1𝑢𝑢12(𝑡𝑡) + 𝐶𝐶2𝑢𝑢22(𝑡𝑡) + 𝐶𝐶3𝑢𝑢32(𝑡𝑡) + 𝜆𝜆𝑆𝑆(−𝑢𝑢3(𝑡𝑡)𝑆𝑆(𝑡𝑡)𝐴𝐴(𝑡𝑡) − 𝛽𝛽𝛽𝛽(𝑡𝑡)𝐼𝐼(𝑡𝑡) + 𝜎𝜎𝜎𝜎(𝑡𝑡))
+ 𝜆𝜆𝐼𝐼(𝛽𝛽𝛽𝛽(𝑡𝑡)𝐼𝐼(𝑡𝑡) − 𝑢𝑢1(𝑡𝑡)𝐴𝐴(𝑡𝑡)𝐼𝐼(𝑡𝑡) − 𝑢𝑢2(𝑡𝑡)𝐼𝐼(𝑡𝑡)) + 𝜆𝜆𝑅𝑅(𝑢𝑢2(𝑡𝑡)𝐼𝐼(𝑡𝑡) − 𝜎𝜎𝜎𝜎(𝑡𝑡))
+ 𝜆𝜆𝐴𝐴�𝑢𝑢3(𝑡𝑡)𝑆𝑆(𝑡𝑡)𝐴𝐴(𝑡𝑡) + 𝑢𝑢1(𝑡𝑡)𝐴𝐴(𝑡𝑡)𝐼𝐼(𝑡𝑡)� 

 
and the minimality condition  
 
𝐻𝐻(𝑆𝑆∗(𝑡𝑡), 𝐼𝐼∗(𝑡𝑡),𝑅𝑅∗(𝑡𝑡),𝐴𝐴∗(𝑡𝑡), 𝜆𝜆(𝑡𝑡),𝑢𝑢∗(𝑡𝑡)) = min

0≤𝑢𝑢≤𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚
𝐻𝐻(𝑆𝑆∗(𝑡𝑡), 𝐼𝐼∗(𝑡𝑡),𝑅𝑅∗(𝑡𝑡),𝐴𝐴∗(𝑡𝑡), 𝜆𝜆(𝑡𝑡),𝑢𝑢(𝑡𝑡)) 

 
holds almost everywhere on [0,𝑇𝑇].   

We obtain the adjoint equations:  
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⎩
⎪⎪
⎨

⎪⎪
⎧

𝑑𝑑𝜆𝜆𝑆𝑆
𝑑𝑑𝑑𝑑

= −𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= (𝑢𝑢3(𝑡𝑡)𝐴𝐴 + 𝛽𝛽𝛽𝛽)𝜆𝜆𝑆𝑆 − 𝛽𝛽𝛽𝛽𝜆𝜆𝐼𝐼 − 𝑢𝑢3(𝑡𝑡)𝐴𝐴𝜆𝜆𝐴𝐴
𝑑𝑑𝜆𝜆𝐼𝐼
𝑑𝑑𝑑𝑑

= −𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −1 + 𝛽𝛽𝛽𝛽𝜆𝜆𝑆𝑆 + �−𝛽𝛽𝛽𝛽 + 𝑢𝑢1(𝑡𝑡)𝐴𝐴 + 𝑢𝑢2(𝑡𝑡)�𝜆𝜆𝐼𝐼 − 𝑢𝑢2(𝑡𝑡)𝜆𝜆𝑅𝑅 − 𝑢𝑢1(𝑡𝑡)𝜆𝜆𝐴𝐴
𝑑𝑑𝜆𝜆𝑅𝑅
𝑑𝑑𝑑𝑑

= −𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜎𝜎(𝜆𝜆𝑅𝑅 − 𝜆𝜆𝑆𝑆)
𝑑𝑑𝜆𝜆𝐴𝐴
𝑑𝑑𝑑𝑑

= −𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑢𝑢3(𝑡𝑡)𝑆𝑆𝜆𝜆𝑆𝑆 + 𝑢𝑢1(𝑡𝑡)𝐼𝐼𝐼𝐼𝐼𝐼 − (𝑢𝑢3(𝑡𝑡)𝑆𝑆 + 𝑢𝑢1(𝑡𝑡)𝐼𝐼)𝜆𝜆𝐴𝐴

          (7) 

 
with transversality conditions  
 

𝜆𝜆𝑆𝑆(𝑇𝑇) = 0, 𝜆𝜆𝐼𝐼(𝑇𝑇) = 0, 𝜆𝜆𝑅𝑅(𝑇𝑇) = 0, 𝜆𝜆𝐴𝐴(𝑇𝑇) = 0             (8) 
 

hold.  
 
Using the optimality condition, 𝜕𝜕𝜕𝜕

𝜕𝜕𝑢𝑢𝑖𝑖(𝑡𝑡)
= 0, 𝑖𝑖 = 1,2,3 and considering the property of the 

control set, the optimal control problem of equations (1)-(5) with fixed final time 𝑇𝑇𝑓𝑓 admits a unique 
optimal solution (𝑆𝑆∗(∙), 𝐼𝐼∗(∙),𝑅𝑅∗(∙),𝐴𝐴∗(∙))  associated with the optimal control 𝑢𝑢∗(∙)  on [0,𝑇𝑇] 
described by  

𝑢𝑢1∗(𝑡𝑡) = max �𝑚𝑚𝑚𝑚𝑚𝑚 �
1

2𝐶𝐶1
𝐴𝐴∗𝐼𝐼∗(𝜆𝜆𝐼𝐼 − 𝜆𝜆𝐴𝐴),Λ� , 0� =

⎩
⎨

⎧
0,𝑢𝑢1∗(𝑡𝑡) = 0

1
2𝐶𝐶1

𝐴𝐴∗𝐼𝐼∗(𝜆𝜆𝐼𝐼 − 𝜆𝜆𝐴𝐴), 0 < 𝑢𝑢1∗(𝑡𝑡) <

Λ,𝑢𝑢1∗(𝑡𝑡) = Λ

Λ 

𝑢𝑢2∗(𝑡𝑡) = max �𝑚𝑚𝑚𝑚𝑚𝑚 �
1

2𝐶𝐶2
𝐼𝐼∗(𝜆𝜆𝐼𝐼 − 𝜆𝜆𝑅𝑅),Λ� , 0� =

⎩
⎨

⎧
0,𝑢𝑢2∗(𝑡𝑡) = 0

1
2𝐶𝐶2

𝐼𝐼∗(𝜆𝜆𝐼𝐼 − 𝜆𝜆𝑅𝑅), 0 < 𝑢𝑢2∗(𝑡𝑡) <

Λ,𝑢𝑢2∗(𝑡𝑡) = Λ

Λ 

𝑢𝑢3∗(𝑡𝑡) = max �𝑚𝑚𝑚𝑚𝑚𝑚 �
1

2𝐶𝐶3
𝑆𝑆∗𝐴𝐴∗(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝐴𝐴),Λ� , 0� =

⎩
⎨

⎧
0,𝑢𝑢3∗(𝑡𝑡) = 0

1
2𝐶𝐶3

𝑆𝑆∗𝐴𝐴∗(𝜆𝜆𝑆𝑆 − 𝜆𝜆𝐴𝐴), 0 < 𝑢𝑢3∗(𝑡𝑡) <

Λ,𝑢𝑢3∗(𝑡𝑡) = Λ

Λ 

 
where the adjoint functions satisfy (7) subject to the transversality conditions (8).  
 
 
3. Results and Discussion 
 
Numerical solutions from model (1) were executed using MATLAB by Runge-Kutta procedure with 
the following parameter values and initial conditions 
 

𝛽𝛽 = 0.6 [1],𝜎𝜎 = 0.05 [6], 𝑆𝑆(0) = 6, 𝐼𝐼(0) = 2,𝑅𝑅(0) = 1,𝐴𝐴(0) = 1 
 
We have plotted susceptible, infected, removed, and antidotal computers with and without control. 
Figure 2 represents the different dynamics of the four populations of computers for two aspects of 
control, three aspects of control, and without control. The number of susceptible computers 
decreases for the three scenarios of control. The number of antidotal computers increases more 
rapidly than when there is no control, while the number of infected computers decreases more  
rapidly than when there is no control. The number of antidotal and infected computers differs much 
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Figure 2. Optimal state variables for the control problem 𝑢𝑢1 and 𝑢𝑢2 (dashed line), 𝑢𝑢1,𝑢𝑢2 and 𝑢𝑢3 
(dash-dotted line) versus trajectories without control measures (solid line) 
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from these scenarios of control if we apply the scenario of control and no control. As in susceptible 
computers, the number of removed computers decreases for the three scenarios of control.  

The application of two controls (𝑢𝑢1 ≠ 0,𝑢𝑢2 ≠ 0,𝑢𝑢3 = 0)  gives better results for the 
number of infected computers than the application of no control while the application of three 
controls (𝑢𝑢1 ≠ 0,𝑢𝑢2 ≠ 0,𝑢𝑢3 ≠ 0) would give better results for the number of infected computers 
than the application of two controls. The application of three controls gives the best result for the 
number of infected computers. Observing the figures, the optimal control strategy for three aspects 
of control is more effective for the eradication of computer viruses.   

Figure 3 shows the profile of the control functions 𝑢𝑢1,𝑢𝑢2, and 𝑢𝑢3 with control weight 𝐶𝐶𝑖𝑖 =
1, 𝑖𝑖 = 1,2,3 while Figure 4 displays numerical solutions for the model with control weight 𝐶𝐶𝑖𝑖 =
1, 𝑖𝑖 = 1,2,3. We observed in Figure 3, initially, we have to apply more installation of antivirus 
software on infected computers and susceptible computers than repaired infected computers. The 
results in Figure 4 show that applying more installation of antivirus software brings down the 
number of infected computers, which peaks at about 2.2192.    
 

 

 

 
 

Figure 3. Optimal control 𝑢𝑢∗ for the computer viruses optimal control problem                  
(Case 𝐶𝐶1 = 1,𝐶𝐶2 = 1,𝐶𝐶3 = 1) 
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Figure 4. The dynamics of each compartment with control weight 𝐶𝐶1 = 1,𝐶𝐶2 = 1,𝐶𝐶3 = 1 
 
We used six scenarios of relative weight to observe the effects of relative weight on the 

application of control factors in the model. The results from the simulation of six scenarios of 
relative weight are displayed in Table 2.  
 
Table 2. Optimality of control functions with six scenarios of relative weight 

Scenario 𝑪𝑪𝟏𝟏 𝑪𝑪𝟐𝟐 𝑪𝑪𝟑𝟑 𝒖𝒖𝟏𝟏(𝒎𝒎𝒎𝒎𝒎𝒎) 𝒖𝒖𝟐𝟐(𝒎𝒎𝒎𝒎𝒎𝒎) 𝒖𝒖𝟑𝟑(𝒎𝒎𝒎𝒎𝒎𝒎) 𝑰𝑰(𝒎𝒎𝒎𝒎𝒎𝒎) 

1 1 1 1 0.9 0.2441 0.9 2.2192 
2 1 1 4 0.9 0.2223 0.5708 2.2900 
3 4 1 1 0.4872 0.4258 0.8999 2.4179 
4 1 4 4 0.9 0.0555 0.5755 2.3330 
5 4 4 1 0.5097 0.1060 0.8999 2.5044 
6 4 4 4 0.5459 0.0942 0.7941 2.5461 
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In Table 2, increasing the relative weight on a control factor resulted in the reduced 
application of rate control on the control factor because it became more expensive to implement the 
control.   
 
 
4. Conclusions 
 
In this paper, we investigated a model for computer virus transmission in a network system with 
three control factors. To maintain the number of infected computers at an optimal level, a computer 
virus model of deterministic type that incorporated a proportion control factor of susceptible into 
antidotal was formulated. We discussed here the optimal control problem for computer virus 
transmission, derived the conditions through the Hamiltonian, and using Pontryagin’s maximum 
principle to achieve our main goal. As a result, the number of computers which had active viruses 
diminish, showed the effectiveness of our solution to the optimal control problem. Numerical 
solutions for different possible combinations of controls showed that an acceleration in the declining 
number of infected computers was achieved by giving control factors on susceptible and infected 
computers. Simulation results indicated that the proposed control factor was effective in reducing 
the number of infected computers. Moreover, an increase in relative weights will result in fewer 
control factors and a decrease in relative weights will result in more control factors. 
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