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Abstract

Computer viruses can cause significant damage to computer systems,
and that damage can lead to loss of data and financial losses for
computer users. To deal with computer viruses and to avoid them in the
future, system can be updated and better antivirus software installed.
equilibrium points; Someone experts can remove viruses without antivirus software and fix
infected computers that have serious and great damage. In this paper,
we consider three types of control to deal with infected systems and
pontryagin maximum preventing further spread of viruses: the installation of antivirus
principle software on infected computers, the installation of antivirus software on
susceptible computers, and the cleaning and repairing of infected
computers without the use of antivirus software. We proposed a model
that had three equilibrium points: two virus-free and one endemic.
Pontryagin’s maximum principle was used to solve the problem of
optimal control in our model. Some numerical simulations showed that
an acceleration in the declining number of infected computers can be
achieved by giving control factors on susceptible and infected
computers. Furthermore, an increase in relative weights will result in
fewer control factors and vice versa.
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1. Introduction

Computer technology has developed very rapidly in this era of globalization. The development of
software in the modern world is getting more sophisticated from time to time. Along with the rapid
development of computers and the use of computer technology as a human aid, the problems faced
by computer users are also increasing. Some of these problems are caused by computer viruses. The
high dependence on computer performance makes computer viruses a serious threat [1]. Computer
viruses, as a type of electronic infection, can cause damage to the computer system they attack.
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Computer viruses can remove, hide, and even change data on a computer system, and they can cause
huge financial losses. Antivirus is needed as a solution to prevent the computer virus transmission.
Control of computer virus epidemics is a way to mitigate financial impact.

The term “computer virus” is actually taken from the biology term. A computer virus is
like a microorganism that can reproduce by transmitting itself to other organisms. There is a
similarity between the mechanism of the computer virus transmission to other computer programs
and the spread of biological viruses into living cells [2]. Like biological viruses, computer viruses
have the ability to transmit, duplicate, and spread by inserting themselves into other computer
programs.

An understanding of the dynamics of computer virus transmission can be observed through
mathematical models (see [3-6]). Hu et al. [3] studied a model for virus propagation between
computers in latent period and removable devices, while Gan et al. [4] proposed a computer virus
propagation model with a complex-network approach. Chen et al. [5] studied a delayed SLBS
computer virus model. They showed that the optimal control of this model was effective for reducing
the number of breakout computers. Yang and Yang [6] studied the effects of removable storage
media in their epidemic model. The model has only a unique endemic equilibrium; it has no virus-
free equilibrium.

Mathematical models can also be used to predict the number of computers that have been
infected by viruses. This is done in order to determine strategies for reducing computer virus
transmission. In this research, a mathematical model will be constructed to see the computer virus
transmission in a computer network by involving control factors on the computer. The model
discussed here is the development of a model studied by Piqueira and Araujo [7], Zhang et al. [8],
and Qin ez al. [1]. Our development involved adding a third control on a computer compartment that
had not been exposed to a virus. Furthermore, it will be seen that in terms of costs, the addition of
the third control is an efficient way of preventing computer virus transmission in a network.

2. Materials and Methods

2.1 Compartmental model for the computer virus transmission in a network system
with three control factors

In this section, we consider a mathematical model of computer viruses proposed Zhang et al. [8].
We modify the model by involving a third control factor. The model divides the total population
into four classes: non-infected computers subjected to possible infection (S), computers which have
an active virus (I), computers from which the virus has been removed (R), and antidotal computers
equipped with antivirus (4). We assume that the total population, T, with T = S(t) + I(t) + R(t) +
A(t), is constant in time. The compartmental model is given in Figure 1 and description of the
parameters of the model is given in Table 1.

A susceptible computer may be infected or remain susceptible. Infected computers can
transmit the virus through media or web browser. Susceptible computers (S) are infected through
contact with infected computers with a rate 8. Susceptible and infected computers can be installed
with antivirus software and they become antidotal computers with proportion control factor u; and
uy respectively. Infected computers (), which may remain infected with antivirus, can be
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Figure 1. Compartmental model for computer viruses with three control factors. The S,I, R, A
represent the numbers of susceptible, infected, removed, and antidotal computer population.

Table 1. Parameters in the model

Symbol of Description Unit
parameters
N Influx rate of new computers to the Computer per time
network
u Mortality rate of computer system, Per time
not due to the virus
B Proportion factor of susceptible into Per computer per time
infected because of contact
o Proportion factor of removed into Per time
susceptible
uq(t) Proportion control factor of infected Per computer per time
into antidotal
u,(t) Proportion control factor of infected Per time
into removed
us(t) Proportion  control  factor of Per computer per time

susceptible into antidotal

recovered by cleaning and repairing the infected computers without the use of antivirus software
with a proportion control factor u,. Removed computers (R) can be restored by formatting them
and they become susceptible computers with a proportion factor ¢. All computers removed from
the network system (not due to the virus) with a mortality rate p.

The influx rate of new computers to the network is considered to be N = 0 because the
virus spreads faster than the network expansion. The same reason justifies the choice of u = 0,
considering that the machine obsolescence time is larger than the time of the virus action. Based on
these assumptions, the dynamics of the four computers population with three control factors are
expressed mathematically by the following system of four ordinary differential equations (ODEs),
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with the dynamics of the solutions of (1) in the restricted region,
Q={S,LRAERLYO0<S+I+R+A=T}

and all parameters are real and positive.

A mathematical model has a virus-free equilibrium if it has an equilibrium point at which
the population remains in the absence of the virus. The model (1) has two virus-free equilibrium
points, given by E(Sg, I, Rg, Ap) = (0,0,0,T) and E, (S5, I1, R, A7) = (T,0,0,0).

System (1) has a unique endemic equilibrium point such that I(t) > 0 for any t > 0. The
endemic equilibrium point is given by:

T—p (T—p)q
E, (S5, I, R5,A3) = p,——,——,0
2(2222) (Pq+1 g+ 1

where p = —uzﬁ(t) and q = w2t

To indicate whether the population will remain in the absence of the viruses, or the viruses
will persist for all time, we must know the stability of the equilibrium points. Using the theory of
stability in epidemiological models, the virus-free equilibrium point E;, is locally asymptotically
stable, while the virus-free equilibrium point E; and the endemic equilibrium point E, are unstable.

2.2 Optimal control model of computer viruses with three control factors

Now we introduce three control functions u;(t),i = 1,2,3 and three real positive constants C;, i =
1,2,3. The first control u, represents a proportion factor of the installation of antivirus on infected
computers, the second control u, represents a proportion factor of repairing infected computers
(they become removed computers), and the third control u; represents a proportion factor of the
installation of antivirus on susceptible computers. The parameters C; > 0,i = 1,2,3 are appropriate
weights of the controls u;, i = 1,2,3 respectively.

We denote the state and control variable of the control system (1) by x = (S,I, R, A) € R*
and u = (u;,u,, u3) € R3, respectively. For given constant u,,,, = A and fixed final time T >0,
the set of admissible control functions is given by

U={u=(up,upus):0 <u(t) <AVt €[0,Tf],i =123} ()
The optimal control problem of model for computer viruses with three control factors is formulated

as:
[OC] Minimize the functional
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JGeu) = [T + Crud (8) + Caud () + Caud (0)]de 3)
subject to the state system (1) and initial conditions
$(0)>0,1(0) =0,R(0) =0,4(0) =0 4

and control constraints
0<w(t) <AVEtE[0,T] (k=123) 5)

The objective is a quadratic in control variable C;u?(t),i = 1,2,3 to describe the costs
where C;, C,, and C5 are the relative weights attached to the cost of the installation of antivirus
software on infected computers, repairing infected computers, and installation of antivirus on
susceptible computers respectively.

The goal of the optimal control problem is to find the optimal value u* of the control
function u = (u4, u,, u3) along time that minimizes the cost functional J(x, u) in (3) subject to the
dynamic constraints (1), initial conditions (4), and control constraints (5) as well as the number of
infected computers at the end of control period.

The Lagrangian of the problem is given by

LI, us (£, uz (1), us (1)) = (1) + Cruf (8) + Cau3(®) + Cauf (1) (6)

According to Pontryagin’s maximum principle [9], if u* is optimal for equations (1)-(5)
with fixed final time Ty , then there exist adjoint vector A [O, Tf] SR, 1=
(As(t), A, (t), A (t), A4(t)), such that

oH oH oH oH oH oH oH oH
I's— R =—,A'=— X = A=—— Ay = A

S’z_' ) Y 35 = X3
9 ol FJR EY as a1’k R’ 94

where the Hamiltonian for the objective J and the control system (1) as follows

H(S (@), 1), R(£), A1), A(), u(D))

= L([(t), uy (1), uy(t), ug (t)) + A (di—it)> + A4 (d;_(;)) + Az (dzg)>
1, (40)
= I(t) + Cui(t) + Cui (1) + Cui (t) + As(—uz(O)S()A) — BS®)I(t) + oR (1))

+ L,(BSOIE) —uy DADIE) — uy (DI(E)) + A (u (DI (L) — gR(E))
+ A (us (OSOAR) + u, (HDAWDI(D))

and the minimality condition
HES' O, 10, R0, A"(0), A, w' (1) = _min H(S"(), (1), R"(£), A"(8), A(), u(t))

holds almost everywhere on [0, T].
We obtain the adjoint equations:
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with transversality conditions
As(T) = 0, ,(T) = 0,Ax(T) = 0,4,(T) =0 (8)
hold.
Using the optimality condition, az:ét) = 0,i = 1,2,3 and considering the property of the

control set, the optimal control problem of equations (1)-(5) with fixed final time Tr admits a unique
optimal solution (S*(+),I"(*), R*(*), A*(+)) associated with the optimal control u*(-) on [0,T]
described by

O,ul*(t) = 0
* . 1 * ¥ 1 * ok *
u () = max{mln{f.ﬁl I*(4, —AA),A},O} = TA I'(A — 24),0 < uy " (t) <A
1 1
A,ul*(t) :A
O,uz*(t) = 0
* . 1 * 1 * *
w, (8) = max{mm{il O —AR),A},O} =35 O = 20,0 <" () <A
2 2
A,uz*(t) = A
0,u3*(t) = 0

1 1
us'(6) = max{min {—S*A*(/IS - AA),A}, o} A s — 1), 0 < wy" (£) <A

A, ug*(t) = A

where the adjoint functions satisfy (7) subject to the transversality conditions (8).

3. Results and Discussion

Numerical solutions from model (1) were executed using MATLAB by Runge-Kutta procedure with
the following parameter values and initial conditions

B = 0.6[1],0 = 0.05[6],5(0) = 6,1(0) = 2,R(0) = 1,A(0) = 1

We have plotted susceptible, infected, removed, and antidotal computers with and without control.
Figure 2 represents the different dynamics of the four populations of computers for two aspects of
control, three aspects of control, and without control. The number of susceptible computers
decreases for the three scenarios of control. The number of antidotal computers increases more
rapidly than when there is no control, while the number of infected computers decreases more
rapidly than when there is no control. The number of antidotal and infected computers differs much
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Figure 2. Optimal state variables for the control problem u; and u, (dashed line), u;, u, and u;
(dash-dotted line) versus trajectories without control measures (solid line)
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from these scenarios of control if we apply the scenario of control and no control. As in susceptible
computers, the number of removed computers decreases for the three scenarios of control.

The application of two controls (u, # 0,u, # 0,u; = 0) gives better results for the
number of infected computers than the application of no control while the application of three
controls (u; # 0,u, # 0,u; # 0) would give better results for the number of infected computers
than the application of two controls. The application of three controls gives the best result for the
number of infected computers. Observing the figures, the optimal control strategy for three aspects
of control is more effective for the eradication of computer viruses.

Figure 3 shows the profile of the control functions u,, u,, and u; with control weight C; =
1,i = 1,2,3 while Figure 4 displays numerical solutions for the model with control weight C; =
1,i = 1,2,3. We observed in Figure 3, initially, we have to apply more installation of antivirus
software on infected computers and susceptible computers than repaired infected computers. The
results in Figure 4 show that applying more installation of antivirus software brings down the
number of infected computers, which peaks at about 2.2192.
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Figure 3. Optimal control u* for the computer viruses optimal control problem
(Case C; = 1,6, =1,C3=1)
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Figure 4. The dynamics of each compartment with control weight C; = 1,C, = 1,03 =1
We used six scenarios of relative weight to observe the effects of relative weight on the
application of control factors in the model. The results from the simulation of six scenarios of

relative weight are displayed in Table 2.

Table 2. Optimality of control functions with six scenarios of relative weight

Scenario Cy C, Cs U1 (max) Uy (max) U3 (max) Imax)
1 1 1 1 0.9 0.2441 0.9 2.2192
2 1 1 4 0.9 0.2223 0.5708 2.2900
3 4 1 1 0.4872 0.4258 0.8999 2.4179
4 1 4 4 0.9 0.0555 0.5755 2.3330
5 4 4 1 0.5097 0.1060 0.8999 2.5044
6 4 4 4 0.5459 0.0942 0.7941 2.5461
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In Table 2, increasing the relative weight on a control factor resulted in the reduced
application of rate control on the control factor because it became more expensive to implement the
control.

4. Conclusions

In this paper, we investigated a model for computer virus transmission in a network system with
three control factors. To maintain the number of infected computers at an optimal level, a computer
virus model of deterministic type that incorporated a proportion control factor of susceptible into
antidotal was formulated. We discussed here the optimal control problem for computer virus
transmission, derived the conditions through the Hamiltonian, and using Pontryagin’s maximum
principle to achieve our main goal. As a result, the number of computers which had active viruses
diminish, showed the effectiveness of our solution to the optimal control problem. Numerical
solutions for different possible combinations of controls showed that an acceleration in the declining
number of infected computers was achieved by giving control factors on susceptible and infected
computers. Simulation results indicated that the proposed control factor was effective in reducing
the number of infected computers. Moreover, an increase in relative weights will result in fewer
control factors and a decrease in relative weights will result in more control factors.
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