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Abstract 
 

Multi-label classification (MLC) is a supervised classification 
method that allows for a data instance with more than one class 
label (or target). Solving MLC is still a challenging task. MLC can 
potentially generate complex decision boundaries as the method is 
a non-mutual exclusive classification method. Recently, many 
techniques have been proposed to cope with the complexity of 
MLC problems, such as the Problem transform method (PTM), the 
Adaptation method (AM), and the Ensemble method (EM). These 
techniques can generally produce good results with certain 
datasets. However, they have poor classification performance when 
the number of possible class-labels is larger, even if the dataset is 
well-presented (high density). The aim of this work was to solve 
the MLC problems by performing a feature reconstruction process 
on the original data features. The proposed feature reconstruction 
method generates a set of compact features from the original data 
instances. AutoEncoder is deployed to learn and encode the 
features of the data (as the constructed feature steps) before they 
are classified by learning algorithms (or classifiers). We conducted 
experiments using different multi-label classifiers based on and 
around PTM, AM, and EM, on the set of the standard dataset. The 
results from the experiments demonstrated that the proposed 
feature reconstruction technique provides promising classification 
results, especially with high-density data. 
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1. Introduction 
 
Multi-label classification (MLC) is a supervised classification method that essentially takes input 
instances and classifies them into a set of target values (labels) simultaneously [1, 2]. In general, the 
search space of the MLC problem is large compared with that of multi-class classification (MCC) 
and grows exponentially when the number of possible labels increases [3]. In addition, MLC is a 
non-mutually exclusive classifier. Therefore, MLC can produce complex decision boundaries. In 
addition, the number of data instances used in training processes can affect the performance of the 
classification. Inadequate data instances, compared to the number of class labels, can produce poor 
classification results [4]. MLC problems can be solved by transforming the problems into a set of 
single multi-class classifications. This transformation approach, which has been applied and is 
applicable to various MLC problems, is known as the problem transformation method (PTM) [5, 6]. 
MLC is converted to an n-class problem, where n is the number of the class labels extracted from 
the set of the multi-class labels. In addition to PTM, the Adaptive Method (AM), which involves 
applying the available classification technique (for multi-class problems), has also been 
implemented to solve various MLC problems. 

Over the past decades, aplications of multi-label learning for solving MLC problems has 
gained more attention in the research [7]. Initially, Tsoumakas and Katakis [8] compiled and 
summarized the solutions of MLC into two categories, i.e. (i) adaptation method and (ii) problem 
transformation method. Madjarov et al. [9] and Sangkatip and Phuboon-Ob [10] presented an 
expanded experiment to compare the performance of different types of classification algorithms for 
MLC. Their study derived and experimented with three classification-based algorithm groups: PTM, 
AM, and Ensemble Methods (EM). In the PTM, the Binary Relevance (BR) method and the Label 
Lower Powerset (LP) method were implemented, which transformed the MLC problem into basis 
problem subsets of binary-classification problems. Then, an aggregation strategy was applied to 
obtain the final label set. In the AM, Decision Tree algorithms were applied to carry out the 
classification of multi-label data [11]. The C4.5 algorithm was one of the common algorithms 
deployed and was known as ML-C4.5 [12]. The K-Nearest Neighbors algorithm was also applied 
to MLC problems. The technique considers a set of neighbor data instances to derive the actual label 
set of a given data instance. This technique is known as ML-𝑘𝑘NN [13]. Apart from those examples, 
Neural Network-based methods that have been used effectively to compile the MLC problem have 
also been reported in the literature [14]. In the EM, MLC was broken down into smaller problems. 
Then, each sub-problem was handled separately before they were reassembled to produce the final 
classification results using, for instance, voting schemes [15-17]. 

Several past studies have attempted to improve the efficiency of MLC by reducing the size 
of the data instances. The LIFT Method was introduced. The LIFT used a k-means clustering 
algorithm to group the positive and negative instances of each label in the data [18]. Then, the 
characteristics of the data were extracted through the distance measurement between the data 
instances and the cluster centers of each label. Subsequently, the relationship between the labels was 
established by creating additional attributes of the data [19]. Huang et al. [20] proposed a technique 
to learn the dispersion of label attributes, including common attributes. They applied double-label 
correlation to differentiate labels for each category. Multi-label classifiers are built on low-
dimensional visualizations with the learned attributes. From that perspective, recent research into 
MLC has gained more attention in developing a future engineering method to improve the data 
features, assisting in the classification processes [21, 22]. Feature engineering can be divided into 
several categories, including feature transformation, feature generation, feature selection, and 
feature reconstruction [21]. Deep learning approaches have also been active in recent years. Feature 
extraction and generation are some of the applicable techniques that have been implemented to 
improve the quality of data features. Using Convolutional Neural Networks (CNNs) for feature 
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extraction and generation, CNNs map the input data space to another data representation based on 
training data instances [23]. Dimensionality reduction is one of the techniques used to transform 
data features. There are two categories of dimensionality reduction methods. One is feature selection 
(FS) and the other is feature transformation (FT). Feature selection keeps only useful features and 
dismisses others while feature transformation constructs a new but smaller number of features out 
of the original ones [24]. One current FT method can be applied by implementing, for example, deep 
learning algorithms [25], and unsupervised network algorithms, which learn to encode data to 
extract the relationships of the data. Cheng et al. [26] used a deep learning technique to build and 
extract relationships between attributes and labels in a multi-label classification. Feature 
reconstruction, as a transformation process, can be considered a tool to generate a set of new feature 
sets (based on the original data features). The reconstructed features are anticipated to be compact 
and descriptive, which can be used in the classification process. This work applies the AutoEncoder 
approach to learn insight into the data features and construct more meaningful active features. 
  
 
2. Materials and Methods 
 
2.1 Multi-label classification 
 
The task of MLC can be viewed as an instantiating of the structure output prediction paradigm. The 
goal is to define a set of labels for each data instance. Let 𝑋𝑋 be a space of data instances comprising 
𝑛𝑛 data instances 𝒙𝒙, i.e. ∀𝒙𝒙 ∈ 𝑋𝑋,𝒙𝒙 = {𝑥𝑥1, . . . 𝑥𝑥𝑑𝑑} (where 𝑑𝑑 is the number of instance features) a set of 
𝑑𝑑-dimensional features divided from 𝑥𝑥 , and a set 𝑝𝑝 a possible label space 𝑌𝑌 = {𝒚𝒚𝟏𝟏, . . .𝒚𝒚𝒑𝒑}, i.e. 𝒚𝒚 =
{𝑦𝑦1, . .𝑦𝑦𝑚𝑚}  where 𝑦𝑦 = {0,1}  and 𝑚𝑚  denotes the dimension of the labels 𝒚𝒚  associated with x, as 
demonstrated in Table 1. 
 
Table 1. Representation of data instances 

𝑿𝑿 𝒀𝒀 
𝒙𝒙1 𝑥𝑥11 𝑥𝑥12 ⋯ 𝑥𝑥1𝑑𝑑 𝒚𝒚1 = {𝑦𝑦11, . . . , 𝑦𝑦1𝑚𝑚} 
𝒙𝒙2 𝑥𝑥21 𝑥𝑥22 ⋯ 𝑥𝑥2𝑑𝑑 𝒚𝒚2 = {𝑦𝑦21, . . . , 𝑦𝑦2𝑚𝑚} 
⋮ ⋮ ⋮ ⋱ ⋯ ⋮ 
𝒙𝒙𝑛𝑛 𝑥𝑥𝑛𝑛1 𝑥𝑥𝑛𝑛2 ⋮ 𝑥𝑥𝑛𝑛𝑛𝑛 𝒚𝒚𝑛𝑛 = {𝑦𝑦𝑛𝑛1, . . . , 𝑦𝑦𝑛𝑛𝑛𝑛} 

  
We denote the quantity 𝐿𝐿 as a loss value for learning models. Therefore, MLC was aimed 

at finding ℎ such that: 
 

 min 
𝐿𝐿
ℎ:𝑋𝑋 → 2𝑌𝑌 (1) 

 
 The MLC methods are separated into two categories: problem transformation and 
algorithm adaptation. Problem transformation methods approach the problem of MLC by 
transforming the multi-label dataset into one or multiple datasets. These datasets are then 
approached with simpler, single-target machine learning methods and build into one or multiple 
single-target models. At prediction time, it is required that all built models are invoked to generate 
the prediction for the test example. Algorithm adaptation methods include some adaptation of the 
training and prediction phases of the single target methods in order to handle multiple labels 
simultaneously. For example, trees change the heuristic used when creating the splits, and Support 
Vector Machines (SVMs) employ additional threshold techniques. The adaptations provide a 
mechanism to handle the dependency between the labels directly. Their grouping is based on the 
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underlying paradigm being adapted. The literature recognizes five defined groups of algorithm 
adaptation methods according to the performed adaptation: trees, neural networks, support vector 
machines, instance-based and probabilistic. There are additional methods that utilize various 
approaches from other domains, e.g., genetic programming, but they lack a common ground to unite 
them and are classified as unspecified methods. 
 
2.1.1 Transformation-based classifiers 
 
A transformation-based classifier (TBC) transforms an MLC into a simpler classification problem, 
which can be potentially solved by single-label multi-class classification. The classification 
essentially provides possible values for the transformed class-labels, which are the set of distinct 
unique subsets of the label in the original data instance [27]. A number of techniques were proposed. 
Label Powerset generally generates a new set of single class labels. Given a data instance 𝑥𝑥 with a 
corresponding label 𝒚𝒚 = {1,0,0,1,1} in the original MLC problem, the Label Powerset will generally 
transform the data instance into a new label 𝑦𝑦1,4,5 which can deliberately be used with available 
multi-class classifier techniques. An example of the problem transformation results is demonstrated 
in Table 2 (b). 
 In addition to Label Powerset, the Binary Relevance (BR) method is one of TBC methods 
that are commonly used to solve problems. BR breaks down a MLC problem into distinct single-
label binary classification problems, one for each of the 𝑚𝑚 labels in the set 𝒚𝒚 = {𝑦𝑦1, . . . ,𝑦𝑦𝑚𝑚} [28]. In 
the learning process, the original multi-label training dataset is transformed to 𝑚𝑚 datasets, and each 
of them is associated with a binary class-label obtained from the original 𝑦𝑦. After the multi-label 
data has been transformed, a set of 𝑞𝑞 binary classifiers 𝐻𝐻𝑗𝑗(𝑥𝑥), 𝑗𝑗 = 1. .𝑚𝑚 is constructed using the new 
𝑚𝑚 training dataset. The BR generates a set of 𝑚𝑚 classifiers as follows:  

 𝐻𝐻 = {𝑀𝑀𝑦𝑦𝑗𝑗(𝒙𝒙,𝒚𝒚𝑗𝑗) → 𝑦𝑦′ ∈ {0,1}|𝑦𝑦𝑗𝑗 ∈ 𝑦𝑦, 𝑗𝑗 = 1, . . . ,𝑚𝑚} (2) 
 
where 𝑀𝑀 denotes a set of train models (classifiers) and 𝑦𝑦′ designates predicted label set. 
 
Tabel 2. Example of Label Powerset multi-label transformation. Multi-label data instances (a) are 
transformed to a multi-class classification problem (b). The transformed problem becomes 3-class 
problem, i.e. 𝑦𝑦 = {𝑦𝑦1,𝑦𝑦1,2,𝑦𝑦1,4,5}. 
 

X Y 
𝒙𝒙1  𝒚𝒚1= {1,0,0,1,1}  
𝒙𝒙2  𝒚𝒚2 = {1,0,0,1,1}  
𝒙𝒙3  𝒚𝒚3 = {1,0,0,0,0}  
𝒙𝒙4  𝒚𝒚4 = {1,1,0,0,0}  
𝒙𝒙5  𝒚𝒚5 = {1,0,0,0,0}  

 

X Y 
𝒙𝒙1  𝒚𝒚1 = {𝑦𝑦1,4,5}  
𝒙𝒙2  𝒚𝒚2 = {𝑦𝑦1,4,5} 
𝒙𝒙3  𝒚𝒚3 = {𝑦𝑦1} 
𝒙𝒙4  𝒚𝒚4 = {𝑦𝑦1,2} 
𝒙𝒙5  𝒚𝒚5 = {𝑦𝑦1} 

   
(a) MLC (b) TBC 

 
2.1.2 Adaptation-based classifiers 
 
Multi-label 𝑘𝑘  Nearest Neighbor (ML-𝑘𝑘NN) is introduced by Zhang and Zhou [13]. ML-𝑘𝑘NN 
determines a label set of an instance (𝑥𝑥) of unknown label (𝑦𝑦(𝑥𝑥) ⊆ 𝑦𝑦) by utilizing the Maximum A 
Posteriori (MAP) method to predict the label set of 𝑥𝑥. Given an unknown label set 𝑥𝑥, the ML-𝑘𝑘NN 
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examines 𝑘𝑘 neighbors of 𝑥𝑥 (based-on a distance metric) and counts the number of neighbor (𝑠𝑠) 
belonging to each class 𝑦𝑦𝑖𝑖 . 

 𝑃𝑃(𝑦𝑦𝑖𝑖|𝑠𝑠) =
𝑃𝑃(𝑠𝑠|𝑦𝑦𝑖𝑖)𝑃𝑃(𝑦𝑦𝑖𝑖)

𝑃𝑃(𝑠𝑠)
.   (3) 

 
For each label 𝑦𝑦𝑖𝑖 , ML-𝑘𝑘NN generates a ℎ𝑖𝑖 classifier to predict the final label set: 
 

 ℎ𝑖𝑖 = �1 𝑃𝑃(𝑦𝑦𝑖𝑖 = 1|𝑠𝑠) > 𝑃𝑃(𝑦𝑦𝑖𝑖 = 0|𝑠𝑠)
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.

 (4) 

 
 Support Vector Machine (SVM) has also been applied in Adaptation-based classifiers 
(ABC) to solve MLC [29]. Conventionally, SVM is introduced to cope with binary classification 
problems. However, in multi-label classification, a ranking version SVM was proposed (RANK-
SVM) [30]. 
 
2.1.3 Ensemble-based classifiers 
 
Ensemble-based classifier (EBC) transform an MLC problem into a set of smaller problems 𝑝𝑝 
(ensemble on subset of the problems) [8, 31, 32]. Each of the problems is solved separately as a 
subset classifier. The results of the subset classifiers are aggregated (assembled) to produce a final 
decision of the classification. Random 𝑘𝑘-Labelsets (RAkEL) are one of EBCs [8, 33]. The technique 
builds a random subset of the original labels to learn a single-label classifier (binary) for the 
prediction of each element in the powerset of the subset. To illustrate the basis of the basic idea of 
the RAkEL, consider Table 3, which shows four random subsets (𝑀𝑀𝑗𝑗, 𝑗𝑗 = 1, . . . , 2𝑘𝑘 and 𝑘𝑘 is a size 
of feature subset obtained from 𝑦𝑦) of the MLC problems, for 𝑘𝑘 = 2. For each subset problem, 𝑘𝑘 
binary classifications are performed. Then, the final decision is aggregated by a voting mechanism. 
 
Table 3. Example of problems subsets in RAkEL technique (𝑘𝑘=2) applied to data presented in 
Table.1 The final decision is made by thresholding (using a pre-determined value, e.g. 𝜏𝜏 = 0.5) the 
average number of votes (𝐴𝐴𝑉𝑉𝑖𝑖) of each label dimension (𝑦𝑦𝑖𝑖). The prediction for 𝑦𝑦𝑖𝑖is 1 when 𝐴𝐴𝑉𝑉𝑖𝑖 > 𝜏𝜏 
and 0 otherwise. 

Model 𝒚𝒚𝟏𝟏 𝒚𝒚𝟐𝟐 𝒚𝒚𝟑𝟑 𝒚𝒚𝟒𝟒 𝒚𝒚𝟓𝟓 
𝑀𝑀1 (1,5) 1 - - - 1 
𝑀𝑀2 (2,4) - 0 - 1 - 
𝑀𝑀3 (2,3) - 1 1 - - 
𝑀𝑀4 (4,5) - - - 1 0 
avg-votes 1/1 1/2 1/1 2/2 1/2 
prediction 1 0 1 1 0 

 
2.2 Methods 
 
Solving multi-label classification is essentially a challenging task. Many methods (proposed to solve 
MLC problems) usually involve a design of algorithms that cope with the problem and yet produce 
promising classification results.  This work focuses on the feature engineer-based method, where 
the features of data instances are explored and transformed into a compact form used in a subsequent 
classification process. Therefore, in this section, we provide details of the datasets used in this study 
and the proposed method. 
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2.2.1 Dataset 
 
The Multi-label datasets (MLD) used in this work was collected from the Mulan datasets website 
[34]. There are 8 standard datasets comprising different data domains, as demonstrated in Table 4. 
The number of feature dimensions (d) in the dataset is varied. In addition, each dataset is associated 
with a different number of class labels. For example, the yeast dataset has 2417 data instances (the 
biggest dataset) with 103 feature dimensions and 14 labels. The Cardinality of the dataset denotes 
the variation of each class labels in the dataset. The Density of the dataset explains the variation of 
the class labels with respect to the number of labels in the dataset. 
 
Table 4. Multi-label datasets 

Datasets Domain Instances Features Labels Cardinality Density 
birds   audio   645   260   19   1.014   0.053  
enron   text   1702   1001   53   3.378   0.064  
emotions   music   593   72   6   1.869   0.311  
medical   text   978   1449   45   1.245   0.028  
yeast   biology   2417   103   14   4.237   0.303  
scene   image   2407   294   6   1.074   0.179  
cal500   music   502   68   174   26.044   0.15  
foodtruck   recommend   407   21   12   2.29   0.191  
 
2.2.2 Feature reconstruction using AutoEncoder 
 
The work proposes a technique that transforms a set of features (Feature Transform: FT) of given 
data instances into a compacted feature space (𝑋𝑋′). To achieve this, we introduce a transformation 
function 𝑡𝑡:𝒙𝒙 → 𝒙𝒙′, 𝒙𝒙′ = {𝑥𝑥′1, . . . , 𝑥𝑥′𝑘𝑘} where 𝑘𝑘 is a dimension of the transformed features and 𝑘𝑘 ≪
𝑑𝑑. We adopt an AutoEncoder technique as the transformation function (𝑡𝑡) that encodes the input 
data features. The proposed technique compresses the input data instances with an encoder module 
using an AutoEncoder technique (EN) [35]. In addition, we introduce an extension mechanism that 
incooperates the Target-label into the AutoENcoder network (TEN) during the network training 
process. The extension process can potentially compact the original features and maintain the 
context of the transformed features with respect to the original data labels. Two processes are carried 
out to classify the data instances using the proposed feature reconstruction method, i.e., feature 
reconstruction and multi-label classification, as illustrated in Figure 1. 
 

 
 

Figure 1. The overall process of feature reconstruction for solving MLC 
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1) Feature reconstruction 
 
AutoEncoder technique is applied in this work to encode the input data instances as the main 
procedure for compacting the original features of the data (𝒙𝒙). AutoEncoder is a Neural Network 
(NN) that can be used to learn and derive the representation of data. The network is broken down 
into two main modules, i.e., the encoder and decoder module, as illustrated in Figuer 2(a). 
 

 
 

 

 

 
(a) AutoEncoder for EN 

 
(b) AutoEncoder for TEN 

 
Figure 2. AutoEncoder architecture(EN) and TEN 

 
 The encoder module encodes the input data instance, while the decoder attempts to decode 
the encoded data. During the training process, the decoder actively tries to decode the encoded data 
to be identical to the original data representation (data features). This process can be performed 
through an optimization approach, aiming to minimize a certain criterion. In this work, we denote 𝐿𝐿 
as a loss that measures the difference between the input instance (𝑥𝑥) and the decoded data (𝑥𝑥′). To 
obtain both solid encoder and decoder module, we define a loss function as follows: 
 

 min
𝑊𝑊,𝑊𝑊′,𝑏𝑏,𝑏𝑏′

𝐿𝐿(𝒙𝒙,𝒙𝒙′) = ||𝑥𝑥 − 𝜎𝜎(𝑊𝑊′(𝜎𝜎(𝑊𝑊𝒙𝒙 + 𝑏𝑏)) + 𝑏𝑏′)||2 (5) 
 
 This loss function is minimized with respect to the network parameters (𝑊𝑊,𝑊𝑊′, 𝑏𝑏, 𝑏𝑏′)   
and 𝜎𝜎 denotes activation functions where 𝑊𝑊and 𝑊𝑊′ are the network weights and 𝑏𝑏′ is the network 
bias [33]. After the training process, the encoder module will be used to reconstruct compact features 
for the subsequent classification procedure. 
 The constructed features (using the encoder module from the trained decoder) can not 
potentially be applicable to represent the data features. Therefore in this work, we integrate the class 
labels (y) as a set of the augmented node to the input data instances, and we define this as the TEN 
method. Then, the output layer (associated with the decoder module) is compiled to generate |𝑥𝑥| +
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|𝑦𝑦| output nodes, as illustrated in Figure 2(b). The optimization can subsequently be performed 
using the loss function below: 
 

 min
𝑊𝑊,𝑊𝑊′,𝑏𝑏,𝑏𝑏′

𝐿𝐿(𝒙𝒙,𝒙𝒙′) = ||𝒙𝒙⌢𝒚𝒚 − 𝜎𝜎(𝑊𝑊′(𝜎𝜎(𝑊𝑊𝒙𝒙 + 𝑏𝑏)) + 𝑏𝑏′)||2 (6) 
   
  𝒙𝒙⌢𝒚𝒚 denotes the concatenated vectors between an instance 𝒙𝒙 and its associated label 𝒚𝒚. To 
generate a discriminative feature from the network (𝑊𝑊, 𝑏𝑏) , we reconstruc the features using a 
reconstruction, 𝜏𝜏(. ), from the input original feature (𝑥𝑥) as follows: 
 

 𝜏𝜏(𝒙𝒙) = 𝜎𝜎(𝑊𝑊𝒙𝒙 + 𝑏𝑏). (7) 
 
2) Multi-label classification 
 
The previous section provides the details of the feature reconstruction used in this research work. 
The reconstructed features (𝜏𝜏(𝒙𝒙)) are then fed into the classification process 𝑓𝑓: 𝜏𝜏(𝒙𝒙) → 𝒚𝒚′, where 
𝑓𝑓(. ) is a mapping function or a classifier. This work uses various classification techniques to 
classify the original data 𝒙𝒙 and the reconstructed 𝜏𝜏(𝒙𝒙). The details of the classification settings and 
experiments will be explained in the next section.    
 
2.2.3 Experiment setup and evaluation metrics 
 
The previous section explained the proposed method for constructing a new feature subset. The 
input data instances are fed into the encoder module (EN and TEN) to generate compact features. 
Then, the classification is carried out. This section provides the details of the experiment conducted 
to evaluate the performance of the proposed method. 
 To evaluate the performance of the proposed feature construct method, we used six multi-
label classification methods to classify datasets through instance transformations. These 
classification techniques were used to examine the effectiveness of the proposed method when 
experimenting with various common MLC classification techniques, i.e., PTM, Adaptation method, 
and Ensemble technique. Binary relevance (BR) and Classifier Chains (CC) [36] were used in the 
experiments. These two classification techniques are based around the problem transformation 
method. In addition to the PTM, the Label Powerset (LP) was also implemented in this work as the 
technique is the fundamental method used for MLC problems. The Adaptation method, i.e. 
MLTSVM [37] and ML-𝑘𝑘NN, were also utilized. Finally, the disjoint RAkEL (RAkELd) method 
[38], where the subsets of labels are non-overlapping, and which is an Ensemble-based technique 
for MLC, was used in the experiments. 

For each dataset, the dataset was divided into training and test sets. The training data was 
used to train the AutoEncoder. We separated 60% of the data instances from the dataset to construct 
the training process. The other 40% of the data instances were used to test the performance of the 
classification performance (by all six classifiers). 

In the experiment, we utilized Scikit-multilearn as a primary tool to conduct various 
experiments [39]. We chose ten common evaluation metrics for MLC [40]. These evaluation metrics 
covered both example-based metrics and label-based metrics, namely Precision, Recall, F1, Macro 
Precision, Macro Recall, Macro F1, Micro Precision, Micro Recall, Micro F1, and Hamming Loss. 
For the sake of representation simplicity, these evaluation metrics were denoted as Precision, Recall, 
F1, Macro P, Macro R, Macro F1, Micro P, Micro R, Micro F1, and H Loss. Precision and Recall 
are defined as the average proportion between the number of correctly predicted labels. The 
measurement metrics are defined in equations 8-17. 
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For each classifier, true positives (𝑡𝑡𝑝𝑝𝑗𝑗), true negatives (𝑡𝑡𝑛𝑛𝑗𝑗), false positives (𝑓𝑓𝑝𝑝𝑗𝑗), and false 
negatives (𝑓𝑓𝑛𝑛𝑗𝑗) obtained (based on the metrics) are calculated for each label 𝑦𝑦: 𝑗𝑗 = 1. . .𝑚𝑚,. Macro 
𝐹𝐹1 is essentially the harmonic mean obtained from Precision and Recall based on an average of each 
label 𝑦𝑦𝑗𝑗 , and an average  over all labels. In addition, Micro 𝐹𝐹1 is the harmonic mean of Micro derived 
from Precision and Micro Recall in the above definition. 
 

Precision =
1
𝑛𝑛
�
𝑛𝑛

𝑖𝑖=1

|𝑌𝑌𝑖𝑖 ∩ 𝑌𝑌′𝑖𝑖|
|𝑌𝑌′𝑖𝑖|

 (8) 

 

Recall =
1
𝑛𝑛
�
𝑛𝑛

𝑖𝑖=1

|𝑌𝑌𝑖𝑖 ∩ 𝑌𝑌′𝑖𝑖|
|𝑌𝑌𝑖𝑖|

 (9) 

 

F1 =
1
𝑛𝑛
�
𝑛𝑛

𝑖𝑖=1

|𝑌𝑌𝑖𝑖 ∩ 𝑌𝑌′𝑖𝑖|
|𝑌𝑌𝑖𝑖| + |𝑌𝑌′𝑖𝑖|

 (10) 

 

Hamming Loss =
1

|𝑁𝑁| ⋅ |𝐿𝐿|
�
|𝑁𝑁|

𝑖𝑖=1

�
|𝐿𝐿|

𝑗𝑗=1

𝑥𝑥𝑥𝑥𝑥𝑥(𝑦𝑦𝑖𝑖𝑖𝑖 ,𝑦𝑦′𝑖𝑖𝑖𝑖) 

 

(11) 

Micro Precision (𝑀𝑀𝑀𝑀𝑀𝑀)  =
∑𝑚𝑚
𝑗𝑗=1 𝑡𝑡𝑝𝑝𝑗𝑗

∑𝑚𝑚
𝑗𝑗=1 𝑡𝑡𝑝𝑝𝑗𝑗 + ∑𝑚𝑚

𝑗𝑗=1 𝑓𝑓𝑝𝑝𝑗𝑗
 (12) 

 

Micro Recall (MiR) =
∑𝑚𝑚
𝑗𝑗=1 𝑡𝑡𝑝𝑝𝑗𝑗

∑𝑚𝑚
𝑗𝑗=1 𝑡𝑡𝑝𝑝𝑗𝑗 + ∑𝑚𝑚

𝑗𝑗=1 𝑓𝑓𝑛𝑛𝑗𝑗
 (13) 

 

Micro F1 =
2 × 𝑀𝑀𝑀𝑀𝑀𝑀 × 𝑀𝑀𝑀𝑀𝑀𝑀
𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑀𝑀𝑀𝑀𝑀𝑀

 (14) 

 

Macro Precision =
1
𝑚𝑚
�
𝑚𝑚

𝑗𝑗=1

𝑡𝑡𝑝𝑝𝑗𝑗
𝑡𝑡𝑝𝑝𝑗𝑗 + 𝑓𝑓𝑝𝑝𝑗𝑗

 (15) 

 

Macro Recall =
1
𝑚𝑚
�
𝑚𝑚

𝑗𝑗=1

𝑡𝑡𝑝𝑝𝑗𝑗
𝑡𝑡𝑝𝑝𝑗𝑗 + 𝑓𝑓𝑛𝑛𝑗𝑗

 (16) 

 

Macro F1 =
1
𝑚𝑚
�
𝑚𝑚

𝑗𝑗=1

2 × 𝑅𝑅𝑗𝑗 × 𝑃𝑃𝑗𝑗
𝑅𝑅𝑗𝑗 + 𝑃𝑃𝑗𝑗

 (17) 

 
 

3. Results and Discussion 
 
After training the AutoEncoder, we conducted two separate experiments. The first experiment was 
aimed to examine the efficiency of the feature construction of the two techniques, i.e., EN and TEN. 
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In addition, we experimented on each dataset separately (eight datasets). The experimental results 
are listed in Tables 5-12 which demonstrate the results from the experiments carried out on the eight 
different datasets using EN and TEN for the feature reconstruction. From the experimental results, 
we can observe that the construction method TEN outperforms EN for almost all of the datasets for 
all measurement metrics. The TEN results were better or the same outcomes for all datasets and 
classifiers. Consider the Yeast and Emotions datasets (Tables 5 and  6); TEN produced better results 
than EN for all different classifiers and evaluation matrices. Based on the data description (shown 
in Table 4), the Yeast and Emotions datasets were the only two datasets with a high-density value 
(>0.3). The density practically measures the dispersion of the data. With the MLC dataset, the 
density signifies the distribution of the data labels. High density accounts for low label dispersion, 
well presented. Compared to other datasets, e.g., the Birds and Medical dataset, EN and TEN 
provide marginally the same results for some classifiers. Using TEN for the Yeast dataset, the best 
performance (measured by 𝐹𝐹1 ) was 78.0%, obtained from the BR technique. And, the best 
performance resulting from the Emotions dataset using TEN was 62.0%. 

To explore the sensitivity of the proposed technique, we did an experiment using TEN as 
the feature reconstruction method and compared it to the Native (original) data features. We 
experimented using the same set of six classifiers with Yeast and Emotion datasets, and the results 
are  demonstrated in Tables 13-14 which present the performance of the proposed TEN to construct 
a new feature set and the results of the classification obtained from the Native data features were 
compared. The Yeast and Emotions datasets were the only two datasets used with a high-density 
value (>0.3) (shown in Table 4). Density practically measures the dispersion of the data. With the 
MLC dataset, the density signifies the distribution of the data labels. High density accounts for low 
label dispersion. It can beobserved that the proposed TEN was superior to the Native data features 
when they were classified by the six MLC techniques (p=0.0001). Therefore, TEN tended to work 
well with the high-density dataset (well-presented data) for MLC problems. In addition, the visual 
representation of the performance comparison is illustrated in Figures 3 and 4. 

Figure 3 shows the results of the classification of the proposed technique (TEN) and the 
Native data features when the size of the reconstructed was varied from 𝑚𝑚′ =10 to 𝑚𝑚′ =100. It can 
be observed that TEN gave better results than the Native features, even if the dimensions of the 
reconstructed feature were small (𝑚𝑚′=10). Figure 4 depicts a comparative representation of different 
evaluation metrics. 
 
 
4. Conclusions 
 
In this study, we proposed a technique for improving the performance of multi-label classification 
(MLC) with a feature reconstruction method. In the proposed feature reconstruction, we applied the 
AutoEncoder technique that intentionally encoded the input data instance to generate a compact 
feature representation of them. We implemented two of the construction procedures. AutoEncoder 
alone (EN) was built to encode the feature subsets of the data instances. AutoEncoder with Target 
class (TEN) was constructed to derive a compact set of data instances and maintain the contextual 
insights of the dataset, conveying the class-label representation. To evaluate the performance of the 
proposed method (TEN), we collected 8-standard datasets, which were acquired from different 
domains and different data settings. We conducted the experiments by applying six classifiers, 
which were derived from three different MLC techniques (PTM, AM, and EM). The experiments 
were separated into two folds. The first experiment explored the effectiveness of the TEN and EN 
in the feature reconstruction process. In comparison, the second experiment was constructed to 
measure the proposed technique’s performance (TEN) compared with the original data feature used 
in MLC. 



 

_______________________________ 
 
1↑ indicates the higher value, the better, and ↓ the lower, the better 

Table 5. Comparative results for Yeast dataset 

  Metric  BR CC LP MLTSVM ML-𝒌𝒌NN RAkELd 
   EN TEN EN TEN EN TEN EN TEN EN TEN EN TEN 
Precision↑  0.69±0.03   0.85±0.03   0.66±0.02   0.83±0.02   0.61±0.02   0.79±0.03   0.63±0.02   0.83±0.03   0.59±0.02   0.78±0.03   0.66±0.02   0.82±0.02  
Recall↑  0.52±0.01   0.76±0.00   0.52±0.01   0.76±0.02   0.56±0.02   0.74±0.01   0.59±0.02   0.77±0.01   0.51±0.01   0.75±0.01   0.56±0.02   0.76±0.00  
F1↑  0.56±0.02   0.78±0.01   0.55±0.01   0.77±0.02   0.56±0.02   0.74±0.02   0.59±0.02   0.78±0.02   0.52±0.01   0.74±0.01   0.58±0.02   0.77±0.01  
Macro P↑  0.42±0.03   0.75±0.04   0.39±0.01   0.73±0.04   0.40±0.02   0.66±0.03   0.34±0.02   0.71±0.02   0.37±0.01   0.65±0.04   0.42±0.06   0.72±0.04  
Macro R↑  0.29±0.00   0.54±0.01   0.30±0.01   0.53±0.02   0.35±0.01   0.54±0.01   0.34±0.01   0.54±0.01   0.32±0.00   0.59±0.02   0.33±0.01   0.54±0.01  
Macro F1↑  0.31±0.01   0.59±0.01   0.31±0.00   0.58±0.02   0.35±0.01   0.57±0.01   0.32±0.01   0.58±0.01   0.34±0.01   0.61±0.02   0.33±0.02   0.58±0.01  
Micro P↑  0.70±0.03   0.87±0.03   0.67±0.03   0.85±0.02   0.62±0.02   0.79±0.02   0.63±0.03   0.84±0.03   0.59±0.02   0.78±0.03   0.66±0.02   0.83±0.02  
Micro R↑  0.52±0.01   0.75±0.01   0.52±0.01   0.74±0.02   0.56±0.02   0.73±0.01   0.58±0.02   0.75±0.01   0.51±0.01   0.74±0.01   0.56±0.01   0.75±0.01  
Micro F1↑  0.59±0.02   0.80±0.01   0.58±0.01   0.79±0.01   0.58±0.02   0.76±0.01   0.61±0.02   0.79±0.01   0.55±0.01   0.76±0.01   0.60±0.02   0.79±0.01  
H Loss↓  0.21±0.01   0.11±0.00   0.22±0.00   0.12±0.01   0.24±0.01   0.14±0.00   0.23±0.01   0.12±0.01   0.25±0.01   0.14±0.01   0.22±0.01   0.12±0.00  
 
 
Table 6. Comparative results for Emotions dataset 

  Metric  BR CC LP MLTSVM ML-𝒌𝒌NN RAkELd 
   EN TEN EN TEN EN TEN EN TEN EN TEN EN TEN 
Precision↑  0.36±0.07   0.56±0.01   0.38±0.05   0.60±0.05   0.40±0.05   0.57±0.03   0.36±0.06   0.60±0.04   0.32±0.05   0.63±0.03   0.39±0.03   0.55±0.04  
Recall↑  0.31±0.04   0.52±0.05   0.35±0.06   0.57±0.05   0.42±0.04   0.56±0.06   0.47±0.08   0.68±0.08   0.27±0.08   0.63±0.07   0.38±0.08   0.56±0.04  
F1↑  0.31±0.04   0.51±0.02   0.34±0.04   0.55±0.01   0.39±0.03   0.54±0.03   0.39±0.05   0.62±0.04   0.27±0.06   0.60±0.04   0.36±0.05   0.53±0.03  
Macro P↑  0.40±0.09   0.62±0.02   0.36±0.08   0.62±0.04   0.40±0.04   0.57±0.05   0.15±0.03   0.59±0.04   0.32±0.07   0.63±0.03   0.39±0.06   0.60±0.04  
Macro R↑  0.29±0.04   0.51±0.06   0.33±0.07   0.58±0.07   0.39±0.04   0.58±0.08   0.43±0.08   0.70±0.07   0.25±0.08   0.62±0.08   0.36±0.07   0.57±0.05  
Macro F1↑  0.32±0.05   0.54±0.03   0.33±0.07   0.57±0.03   0.39±0.04   0.55±0.03   0.22±0.04   0.63±0.03   0.27±0.07   0.62±0.05   0.35±0.06   0.57±0.01  
Micro P↑  0.42±0.07   0.64±0.03   0.38±0.05   0.65±0.04   0.40±0.05   0.57±0.03   0.36±0.06   0.60±0.04   0.35±0.05   0.65±0.02   0.39±0.04   0.60±0.03  
Micro R↑  0.31±0.04   0.53±0.05   0.36±0.05   0.58±0.06   0.42±0.03   0.58±0.07   0.47±0.10   0.70±0.08   0.28±0.08   0.64±0.07   0.37±0.07   0.58±0.04  
Micro F1↑  0.36±0.04   0.58±0.02   0.37±0.05   0.61±0.02   0.41±0.03   0.57±0.03   0.40±0.06   0.64±0.04   0.31±0.07   0.64±0.04   0.38±0.05   0.59±0.02  
H Loss↓  0.37±0.03   0.25±0.02   0.41±0.03   0.24±0.02   0.40±0.02   0.28±0.02   0.46±0.04   0.25±0.02   0.40±0.04   0.24±0.04   0.40±0.03   0.26±0.02  
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1↑ indicates the higher value, the better, and ↓ the lower, the better 

 
Table 7. Comparative results for Scene dataset 

  Metric  BR CC LP MLTSVM ML-𝒌𝒌NN RAkELd 
   EN TEN EN TEN EN TEN EN TEN EN TEN EN TEN 
Precision↑  0.29±0.18   0.31±0.20   0.29±0.18   0.31±0.20   0.36±0.21   0.38±0.23   0.41±0.27   0.42±0.28   0.36±0.21   0.37±0.22   0.32±0.19   0.32±0.18  
Recall↑  0.28±0.18   0.30±0.20   0.27±0.18   0.29±0.20   0.33±0.21   0.35±0.22   0.38±0.26   0.39±0.27   0.37±0.22   0.37±0.24   0.30±0.19   0.30±0.18  
F1↑  0.28±0.18   0.30±0.20   0.28±0.18   0.30±0.20   0.34±0.21   0.36±0.23   0.39±0.26   0.40±0.27   0.36±0.21   0.36±0.22   0.30±0.19   0.31±0.18  
Macro P↑  0.29±0.08   0.30±0.09   0.29±0.08   0.30±0.11   0.26±0.09   0.28±0.09   0.28±0.10   0.25±0.11   0.24±0.10   0.25±0.10   0.27±0.10   0.27±0.10  
Macro R↑  0.22±0.08   0.22±0.07   0.21±0.07   0.23±0.07   0.27±0.11   0.28±0.09   0.30±0.12   0.30±0.12   0.28±0.09   0.28±0.09   0.25±0.09   0.25±0.09  
Macro F1↑  0.20±0.07   0.21±0.07   0.20±0.06   0.21±0.08   0.21±0.06   0.23±0.08   0.24±0.09   0.24±0.09   0.22±0.07   0.23±0.08   0.21±0.06   0.21±0.07  
Micro P↑  0.47±0.25   0.49±0.25   0.46±0.25   0.48±0.26   0.36±0.21   0.38±0.23   0.41±0.27   0.42±0.28   0.39±0.21   0.39±0.23   0.43±0.23   0.41±0.25  
Micro R↑  0.28±0.18   0.30±0.20   0.28±0.17   0.29±0.19   0.33±0.19   0.35±0.21   0.38±0.24   0.39±0.26   0.38±0.22   0.38±0.23   0.30±0.18   0.31±0.18  
Micro F1↑  0.35±0.21   0.37±0.22   0.34±0.20   0.36±0.22   0.35±0.20   0.37±0.22   0.39±0.26   0.40±0.27   0.38±0.21   0.38±0.23   0.35±0.20   0.35±0.21  
H Loss↓  0.18±0.05   0.18±0.05   0.19±0.05   0.18±0.06   0.23±0.07   0.22±0.08   0.21±0.09   0.21±0.09   0.22±0.07   0.22±0.08   0.20±0.06   0.21±0.07  
 
 
Table 8. Comparative results for Medical dataset 
  Metric  BR CC LP MLTSVM ML-𝒌𝒌NN RAkELd 
   EN TEN EN TEN EN TEN EN TEN EN TEN EN TEN 
Precision↑  0.24±0.06   0.28±0.04   0.27±0.05   0.28±0.04   0.58±0.08   0.56±0.08   0.38±0.06   0.38±0.07   0.43±0.05   0.45±0.05   0.25±0.03   0.27±0.04  
Recall↑  0.21±0.06   0.23±0.04   0.23±0.05   0.23±0.04   0.52±0.07   0.52±0.07   0.31±0.04   0.31±0.05   0.41±0.04   0.42±0.05   0.22±0.03   0.22±0.04  
F1↑  0.22±0.06   0.24±0.04   0.24±0.05   0.24±0.04   0.54±0.07   0.53±0.07   0.33±0.05   0.33±0.06   0.41±0.04   0.43±0.05   0.23±0.03   0.24±0.04  
Macro P↑  0.08±0.03   0.09±0.02   0.09±0.03   0.09±0.02   0.13±0.02   0.10±0.01   0.03±0.01   0.03±0.01   0.09±0.02   0.08±0.01   0.09±0.02   0.08±0.02  
Macro R↑  0.04±0.01   0.04±0.01   0.04±0.01   0.04±0.01   0.12±0.01   0.11±0.01   0.04±0.00   0.04±0.00   0.10±0.02   0.09±0.01   0.04±0.01   0.04±0.01  
Macro F1↑  0.05±0.01   0.05±0.01   0.05±0.01   0.05±0.01   0.11±0.02   0.10±0.01   0.03±0.00   0.03±0.00   0.09±0.02   0.08±0.01   0.05±0.01   0.05±0.01  
Micro P↑  0.79±0.10   0.83±0.05   0.85±0.07   0.81±0.06   0.59±0.07   0.58±0.08   0.38±0.06   0.38±0.07   0.57±0.09   0.57±0.07   0.81±0.05   0.78±0.08  
Micro R↑  0.21±0.05   0.24±0.04   0.23±0.04   0.24±0.04   0.51±0.06   0.51±0.07   0.31±0.04   0.30±0.05   0.41±0.04   0.42±0.04   0.24±0.02   0.24±0.03  
Micro F1↑  0.33±0.07   0.37±0.05   0.37±0.05   0.36±0.04   0.55±0.06   0.54±0.07   0.34±0.05   0.34±0.06   0.48±0.05   0.48±0.05   0.37±0.03   0.36±0.05  
H Loss↓  0.02±0.00   0.02±0.00   0.02±0.00   0.02±0.00   0.02±0.00   0.02±0.00   0.03±0.00   0.03±0.00   0.03±0.00   0.02±0.00   0.02±0.00   0.02±0.00  
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1↑ indicates the higher value, the better, and ↓ the lower, the better 

Table 9. Comparative results for Cal500 dataset 

  Metric  BR CC LP MLTSVM ML-𝒌𝒌NN RAkELd 
   EN TEN EN TEN EN TEN EN TEN EN TEN EN TEN 
Precision↑  0.56±0.00   0.57±0.01   0.57±0.01   0.58±0.01   0.35±0.01   0.34±0.01   0.35±0.01   0.35±0.01   0.44±0.02   0.46±0.01   0.53±0.01   0.54±0.01  
Recall↑  0.26±0.01   0.27±0.01   0.25±0.02   0.27±0.00   0.35±0.01   0.35±0.01   0.35±0.01   0.35±0.01   0.31±0.01   0.32±0.00   0.27±0.01   0.28±0.01  
F1↑  0.35±0.01   0.36±0.01   0.34±0.02   0.35±0.01   0.35±0.01   0.34±0.01   0.34±0.01   0.34±0.01   0.36±0.01   0.37±0.00   0.34±0.01   0.36±0.01  
Macro P↑  0.14±0.01   0.16±0.02   0.13±0.01   0.16±0.02   0.17±0.01   0.16±0.01   0.16±0.01   0.17±0.01   0.15±0.02   0.17±0.00   0.14±0.01   0.17±0.01  
Macro R↑  0.08±0.00   0.08±0.01   0.08±0.01   0.09±0.01   0.17±0.01   0.16±0.01   0.16±0.01   0.17±0.01   0.12±0.01   0.13±0.00   0.09±0.00   0.10±0.00  
Macro F1↑  0.09±0.00   0.10±0.01   0.08±0.01   0.10±0.01   0.16±0.01   0.16±0.01   0.15±0.01   0.16±0.01   0.13±0.01   0.14±0.00   0.10±0.00   0.11±0.00  
Micro P↑  0.55±0.01   0.56±0.01   0.55±0.01   0.56±0.02   0.35±0.01   0.34±0.01   0.34±0.01   0.34±0.01   0.44±0.02   0.45±0.01   0.52±0.01   0.53±0.01  
Micro R↑  0.26±0.01   0.27±0.01   0.24±0.02   0.27±0.01   0.35±0.01   0.34±0.01   0.35±0.01   0.35±0.01   0.31±0.01   0.32±0.00   0.26±0.01   0.28±0.01  
Micro F1↑  0.35±0.01   0.36±0.01   0.34±0.02   0.36±0.01   0.35±0.01   0.34±0.01   0.34±0.01   0.35±0.01   0.36±0.01   0.38±0.00   0.35±0.01   0.37±0.01  
H Loss↓  0.14±0.00   0.14±0.00   0.14±0.00   0.14±0.00   0.20±0.00   0.20±0.00   0.20±0.00   0.20±0.00   0.16±0.00   0.16±0.00   0.15±0.00   0.15±0.00  
 
 
Table 10. Comparative results for Birds dataset 

  Metric  BR CC LP MLTSVM ML-𝒌𝒌NN RAkELd 
   EN TEN EN TEN EN TEN EN TEN EN TEN EN TEN 
Precision↑  0.09±0.03   0.09±0.03   0.09±0.04   0.09±0.04   0.10±0.04   0.10±0.05   0.05±0.02   0.04±0.01   0.09±0.04   0.08±0.03   0.10±0.05   0.11±0.06  
Recall↑  0.07±0.02   0.06±0.02   0.06±0.03   0.07±0.02   0.11±0.03   0.10±0.03   0.03±0.01   0.02±0.01   0.05±0.01   0.05±0.01   0.08±0.04   0.08±0.04  
F1↑  0.07±0.02   0.06±0.02   0.06±0.03   0.07±0.03   0.10±0.03   0.10±0.04   0.03±0.02   0.03±0.01   0.06±0.02   0.06±0.02   0.08±0.03   0.09±0.04  
Macro P↑  0.15±0.04   0.12±0.04   0.13±0.04   0.14±0.05   0.14±0.03   0.14±0.05   0.10±0.07   0.07±0.04   0.09±0.02   0.08±0.02   0.12±0.04   0.16±0.09  
Macro R↑  0.08±0.03   0.06±0.01   0.07±0.03   0.08±0.03   0.13±0.04   0.12±0.04   0.05±0.03   0.03±0.01   0.06±0.02   0.06±0.02   0.09±0.03   0.09±0.03  
Macro F1↑  0.09±0.02   0.07±0.01   0.08±0.03   0.09±0.03   0.12±0.03   0.12±0.04   0.06±0.04   0.03±0.01   0.07±0.01   0.07±0.01   0.09±0.03   0.10±0.04  
Micro P↑  0.34±0.08   0.34±0.10   0.30±0.08   0.36±0.10   0.23±0.05   0.24±0.05   0.31±0.10   0.26±0.05   0.31±0.09   0.27±0.05   0.30±0.07   0.31±0.13  
Micro R↑  0.13±0.05   0.11±0.05   0.12±0.07   0.13±0.06   0.20±0.06   0.20±0.07   0.07±0.03   0.05±0.01   0.11±0.03   0.11±0.04   0.15±0.07   0.15±0.06  
Micro F1↑  0.19±0.06   0.17±0.05   0.16±0.07   0.19±0.07   0.21±0.05   0.21±0.06   0.11±0.04   0.09±0.02   0.15±0.04   0.15±0.04   0.19±0.07   0.20±0.08  
H Loss↓  0.06±0.01   0.06±0.01   0.06±0.01   0.06±0.01   0.08±0.01   0.08±0.01   0.06±0.01   0.06±0.01   0.06±0.00   0.07±0.01   0.07±0.01   0.07±0.00  
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1↑ indicates the higher value, the better, and ↓ the lower, the better 

Table 11. Comparative results for Enron dataset 

  Metric  BR CC LP MLTSVM ML-𝒌𝒌NN RAkELd 
   EN TEN EN TEN EN TEN EN TEN EN TEN EN TEN 
Precision↑  0.66±0.03   0.68±0.03   0.66±0.03   0.68±0.03   0.54±0.01   0.56±0.01   0.52±0.01   0.52±0.01   0.58±0.02   0.59±0.02   0.66±0.03   0.67±0.03  
Recall↑  0.43±0.01   0.45±0.01   0.44±0.01   0.46±0.01   0.48±0.01   0.50±0.02   0.45±0.01   0.45±0.01   0.46±0.02   0.45±0.02   0.46±0.01   0.45±0.01  
F1↑  0.49±0.01   0.51±0.02   0.50±0.02   0.51±0.01   0.49±0.01   0.51±0.01   0.46±0.01   0.46±0.01   0.48±0.02   0.49±0.02   0.52±0.01   0.51±0.01  
Macro P↑  0.20±0.02   0.21±0.02   0.20±0.02   0.20±0.02   0.21±0.01   0.22±0.01   0.09±0.01   0.08±0.01   0.19±0.01   0.19±0.01   0.21±0.02   0.22±0.02  
Macro R↑  0.10±0.01   0.10±0.01   0.10±0.01   0.10±0.01   0.13±0.01   0.13±0.02   0.08±0.00   0.08±0.00   0.13±0.01   0.12±0.01   0.11±0.01   0.11±0.01  
Macro F1↑  0.12±0.01   0.12±0.01   0.12±0.01   0.12±0.01   0.14±0.01   0.15±0.02   0.07±0.00   0.07±0.00   0.14±0.01   0.14±0.01   0.12±0.01   0.12±0.01  
Micro P↑  0.71±0.01   0.71±0.02   0.70±0.02   0.71±0.02   0.56±0.01   0.56±0.01   0.54±0.01   0.54±0.01   0.59±0.01   0.61±0.01   0.69±0.02   0.71±0.02  
Micro R↑  0.42±0.01   0.43±0.01   0.43±0.01   0.44±0.01   0.44±0.01   0.46±0.02   0.40±0.01   0.40±0.01   0.44±0.02   0.44±0.02   0.45±0.01   0.43±0.02  
Micro F1↑  0.53±0.01   0.54±0.01   0.53±0.02   0.54±0.01   0.49±0.01   0.50±0.01   0.46±0.01   0.46±0.01   0.51±0.01   0.51±0.01   0.54±0.01   0.54±0.02  
H Loss↓  0.05±0.00   0.05±0.00   0.05±0.00   0.05±0.00   0.06±0.00   0.06±0.00   0.06±0.00   0.06±0.00   0.05±0.00   0.05±0.00   0.05±0.00   0.05±0.00  
 
 
Table 12. Comparative results for Foodtruck dataset 

  Metric  BR CC LP MLTSVM ML-𝒌𝒌NN RAkELd 
   EN TEN EN TEN EN TEN EN TEN EN TEN EN TEN 
Precision↑  0.57±0.08   0.59±0.11   0.55±0.10   0.63±0.10   0.54±0.12   0.67±0.12   0.67±0.14   0.67±0.14   0.45±0.09   0.52±0.08   0.59±0.11   0.63±0.12  
Recall↑  0.44±0.09   0.44±0.05   0.39±0.09   0.41±0.06   0.38±0.08   0.43±0.07   0.41±0.09   0.41±0.09   0.43±0.04   0.47±0.05   0.43±0.08   0.46±0.08  
F1↑  0.44±0.07   0.45±0.06   0.40±0.08   0.45±0.07   0.39±0.08   0.48±0.08   0.47±0.10   0.47±0.10   0.39±0.05   0.43±0.06   0.44±0.07   0.48±0.09  
Macro P↑  0.19±0.04   0.20±0.03   0.15±0.03   0.19±0.03   0.16±0.02   0.19±0.03   0.06±0.01   0.06±0.01   0.16±0.01   0.19±0.03   0.16±0.05   0.19±0.06  
Macro R↑  0.13±0.01   0.14±0.01   0.11±0.01   0.12±0.01   0.13±0.02   0.12±0.02   0.08±0.00   0.08±0.00   0.14±0.02   0.18±0.02   0.12±0.01   0.14±0.02  
Macro F1↑  0.14±0.02   0.14±0.01   0.11±0.02   0.12±0.02   0.13±0.02   0.13±0.03   0.07±0.01   0.07±0.01   0.14±0.01   0.17±0.02   0.12±0.02   0.14±0.03  
Micro P↑  0.60±0.10   0.65±0.10   0.59±0.10   0.67±0.12   0.49±0.08   0.65±0.11   0.67±0.14   0.67±0.14   0.48±0.04   0.51±0.04   0.57±0.09   0.66±0.13  
Micro R↑  0.34±0.05   0.36±0.05   0.31±0.04   0.33±0.06   0.31±0.05   0.33±0.06   0.30±0.07   0.30±0.07   0.35±0.04   0.40±0.05   0.34±0.04   0.36±0.07  
Micro F1↑  0.43±0.06   0.46±0.07   0.40±0.05   0.44±0.08   0.38±0.06   0.44±0.08   0.42±0.09   0.42±0.09   0.40±0.04   0.44±0.04   0.43±0.05   0.46±0.09  
H Loss↓  0.17±0.03   0.16±0.02   0.17±0.03   0.16±0.03   0.19±0.03   0.16±0.03   0.16±0.03   0.16±0.03   0.19±0.02   0.19±0.02   0.17±0.02   0.16±0.03  
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1↑ indicates the higher value, the better, and ↓ the lower, the better 

Table 13. Comparative results for Yeast dataset between Native and TEN 

  Metric  BR CC LP MLTSVM ML-𝒌𝒌NN RAkELd 
   Native TEN Native TEN Native TEN Native TEN Native TEN Native TEN 
Precision↑  0.73±0.03   0.85±0.03   0.73±0.03   0.83±0.02   0.66±0.02   0.79±0.03   0.67±0.02   0.83±0.03   0.64±0.02   0.78±0.03   0.70±0.03   0.82±0.02  
Recall↑  0.55±0.01   0.76±0.00   0.57±0.02   0.76±0.02   0.62±0.02   0.74±0.01   0.63±0.01   0.77±0.01   0.60±0.02   0.75±0.01   0.61±0.04   0.76±0.00  
F1↑  0.60±0.01   0.78±0.01   0.61±0.02   0.77±0.02   0.62±0.02   0.74±0.02   0.63±0.02   0.78±0.02   0.59±0.02   0.74±0.01   0.62±0.02   0.77±0.01  
Macro P↑  0.57±0.05   0.75±0.04   0.56±0.07   0.73±0.04   0.49±0.06   0.66±0.03   0.50±0.04   0.71±0.02   0.47±0.02   0.65±0.04   0.51±0.03   0.72±0.04  
Macro R↑  0.32±0.00   0.54±0.01   0.34±0.01   0.53±0.02   0.39±0.01   0.54±0.01   0.38±0.00   0.54±0.01   0.40±0.01   0.59±0.02   0.36±0.03   0.54±0.01  
Macro F1↑  0.35±0.00   0.59±0.01   0.37±0.01   0.58±0.02   0.40±0.01   0.57±0.01   0.37±0.00   0.58±0.01   0.42±0.01   0.61±0.02   0.37±0.01   0.58±0.01  
Micro P↑  0.74±0.03   0.87±0.03   0.73±0.02   0.85±0.02   0.67±0.02   0.79±0.02   0.68±0.02   0.84±0.03   0.65±0.02   0.78±0.03   0.70±0.03   0.83±0.02  
Micro R↑  0.55±0.01   0.75±0.01   0.57±0.01   0.74±0.02   0.61±0.02   0.73±0.01   0.62±0.01   0.75±0.01   0.59±0.01   0.74±0.01   0.60±0.03   0.75±0.01  
Micro F1↑  0.63±0.01   0.80±0.01   0.64±0.01   0.79±0.01   0.64±0.02   0.76±0.01   0.65±0.01   0.79±0.01   0.62±0.01   0.76±0.01   0.65±0.02   0.79±0.01  
H Loss↓  0.19±0.01   0.11±0.00   0.19±0.01   0.12±0.01   0.21±0.01   0.14±0.00   0.20±0.01   0.12±0.01   0.22±0.01   0.14±0.01   0.20±0.01   0.12±0.00  
 
 
Table 14. Comparative results for Emotions dataset between Native and TEN 

  Metric  BR CC LP MLTSVM ML-𝒌𝒌NN RAkELd 
   Native TEN Native TEN Native TEN Native TEN Native TEN Native TEN 
Precision↑  0.56±0.07   0.56±0.01   0.56±0.05   0.60±0.05   0.57±0.05   0.57±0.03   0.31±0.06   0.60±0.04   0.42±0.05   0.63±0.03   0.55±0.03   0.55±0.04  
Recall↑  0.51±0.07   0.52±0.05   0.51±0.06   0.57±0.05   0.50±0.04   0.56±0.06   0.36±0.08   0.68±0.08   0.37±0.08   0.63±0.07   0.53±0.08   0.56±0.04  
F1↑  0.50±0.04   0.51±0.02   0.50±0.04   0.55±0.01   0.53±0.03   0.54±0.03   0.31±0.05   0.62±0.04   0.37±0.06   0.60±0.04   0.51±0.05   0.53±0.03  
Macro P↑  0.61±0.09   0.62±0.02   0.59±0.08   0.62±0.04   0.56±0.04   0.57±0.05   0.11±0.03   0.59±0.04   0.42±0.07   0.63±0.03   0.57±0.06   0.60±0.04  
Macro R↑  0.51±0.07   0.51±0.06   0.57±0.07   0.58±0.07   0.57±0.04   0.58±0.08   0.28±0.08   0.70±0.07   0.35±0.08   0.62±0.08   0.52±0.07   0.57±0.05  
Macro F1↑  0.53±0.05   0.54±0.03   0.50±0.07   0.57±0.03   0.55±0.04   0.55±0.03   0.15±0.04   0.63±0.03   0.37±0.07   0.62±0.05   0.52±0.06   0.57±0.01  
Micro P↑  0.54±0.07   0.64±0.03   0.52±0.05   0.65±0.04   0.56±0.05   0.57±0.03   0.32±0.06   0.60±0.04   0.45±0.05   0.65±0.02   0.60±0.04   0.60±0.03  
Micro R↑  0.45±0.04   0.53±0.05   0.50±0.05   0.58±0.06   0.50±0.03   0.58±0.07   0.30±0.10   0.70±0.08   0.38±0.08   0.64±0.07   0.53±0.07   0.58±0.04  
Micro F1↑  0.48±0.04   0.58±0.02   0.55±0.05   0.61±0.02   0.56±0.03   0.57±0.03   0.31±0.06   0.64±0.04   0.41±0.07   0.64±0.04   0.56±0.05   0.59±0.02  
H Loss↓  0.29±0.03   0.25±0.02   0.29±0.03   0.24±0.02   0.29±0.02   0.28±0.02   0.40±0.04   0.25±0.02   0.30±0.04   0.24±0.04   0.29±0.03   0.26±0.02  
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Figure 3. The results were obtained from the proposed feature reconstruction method and the 
Native data feature. In the reconstruction method, the number of feature dimensions is varied, 

from 10 to 100. 
 

The experimental results deliberately delineated the performance of the proposed 
technique. For all data sets, TEN essentially provided promising results, which were better than EN. 
TEN worked well with the Yeast and Emotions datasets and gave better results for all the MLC 
algorithms and the measurement metrics. The Yeast and Emotion were the only two datasets with 
high density. The density of the dataset in MLC indicates the wellness of presentation of the class 
labels. Therefore, TEN worked well with the high-density dataset (well-presented data) for MLC 
problems. In addition, the results obtained from the second experiment on the Yeast and Emotions 
datasets showed that the reconstruction technique was superior to the Native data features (without 
feature transformation processes). In general, feature reconstruction can produce different sizes of 
compact features. Therefore, we varied the sizes of the reconstructed features to observe the 
sensitivity of the technique. The results indicated that TEN gave better results than the Native 
features for all MLC problems and measurement metrics. 

In future work, we will investigate how to further improve methods of dealing with 
classification problems, and especially datasets with low density. From the classification 
perspective, we anticipate exploring ways to improve the classification process as well. 
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(a) Result BR mesure (b) Result CC mesure 
  

  

(c) Result LP mesure (d) Result MLTSVM mesure 
  

  

(e) Result ML-𝑘𝑘NN mesure (f) Result RAkELd mesure 
  

Figure 4. Comparative results for Yeast dataset between Native features and TEN 
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