Current Applied Science and Technology Vol. 24 No. 2

Research article

In Silico Assessment of Naphthalene Interaction with Glutathione
Reductase and Histological Changes in Naphthalene Exposed Rats

Tissues

Olubukola Agboola', Ige Olaoye'*, Ayodeji Awotula', Babatunde Oso', Godswill
Akhigbe? and Peace Nwaoha'

!Department of Biochemistry, McPherson University, Seriki Sotayo, Nigeria
’Department of Chemical Sciences, McPherson University, Seriki Sotayo, Nigeria

Curr. Appl. Sci. Technol. 2024, Vol. 24 (No. 2), €0256918; https://doi.org/10.55003/cast.2023.256918

Received: 19 December 2022, Revised: 15 February 2023, Accepted: 19 July 2023, Published: 6 October 2023

Keywords

naphthalene;
naphthalene metabolites;
exposure;

histology;

Wistar rats

Abstract

Naphthalene (NA), a bicyclic aromatic compound that is widely
used in various commercial and industrial applications including
lavatory scent disks and mothballs, is known to be readily absorbed
into the systemic circulation following either inhalation or ingestion
and may cause systemic toxicity. This study examined the
histopathological changes in some tissues (lung, liver and kidney) of
NA-exposed Wistar rats. Twenty-four rats (175-250 g) were
randomly divided into six groups of four rats each. The rats in all
groups were given food and water while in addition rats in the
experimental groups were exposed to NA at 0.75 mg/m* and 1.50
mg/m? for 2 h and 4 h. Rats were sacrificed at 24 h after the last hour
of NA exposure. The tissues were excised for histological
examination. The effects of NA and some selected metabolites using
the rat glutathione reductase homology model were examined via
molecular docking and dynamic simulation. From this study,
exposure of rats to NA resulted in hepatocyte necrosis at 0.75 mg/m?
for 2 h, dilation of the alveolar duct of the lung at 0.75 mg/m? and
severe epithelial hyperplasia and chronic infiltration of
inflammatory cells in the lung at 1.50 mg/m? for 4 h. Also, vascular
congestion was observed in the kidneys at 0.75 mg/m? for 2 h and
1.50 mg/m? for 4 h. The in silico study revealed the NA metabolite
toxic potential, and NA showed the lowest binding score (-5.40+
0.00 kcal/mol). Therefore, the study concludes that NA exposure
irrespective of duration can lead to hepatic and alveolar damage in
the absence of mechanisms that can ameliorate its toxic effects.

*Corresponding author: E-mail: igelaoye@gmail.com
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1. Introduction

Naphthalene, the simplest polycyclic aromatic hydrocarbon, is a white crystal-like solid whose
distinguishing odor is noticeable at concentrations as low as 0.08 ppm by mass [1]. Being an
aromatic hydrocarbon, its structure consists of a fused pair of benzene rings, and it is ubiquitously
released into the human environment by incomplete combustion practices from domestic, industrial
and natural sources. Naphthalene is prominent as the main constituent of traditional mothballs. Even
though naphthalene mothballs are universally used in houses, it has been rarely referred to as agent
of poisoning worldwide [2]. Over a decade ago, naphthalene posed huge challenges in the fields of
occupational and environmental medicine [3]. It is regarded as a substance that can increase the risk
of cancer in humans [4, 5]. Studies have shown that naphthalene toxicity could be the result of
excessive production of free oxygen radicals, leading to lipid peroxidation and damage of
deoxyribonucleic acid [6]. The toxicity of naphthalene is dependent on the cell, tissue, and species,
and it has been reported to cause hemolytic anemia, cataracts, bronchial epithelial (Clara) cell
damage and damage of the kidney proximal tubules [7-9]. Furthermore, naphthalene was also
implicated in liver dysfunction and hepatocyte damage [8, 10, 11]. This damage from free radicals
can be ameliorated through the supply of some antioxidant metabolites like reduced glutathione
(GSH). The depleted GSH is replenished through various processes involving enzymes such as
glutathione reductase, glutamate-cysteine ligase, etc. Thus, glutathione reductase is an enzyme that
catalyzes the reduction of oxidized glutathione (GSSG) to ensure there is an effective defense
mechanism in the biological system [9]. The in silico assessment of naphthalene and its selected
metabolites towards GR via molecular docking and molecular dynamics simulation provides
insights on its molecular mechanism. Therefore, the histopathological changes in the lungs, kidneys
and livers of naphthalene exposed male Wistar rats were examined in the study.

2. Materials and Methods
2.1 Chemicals and reagents

Naphthalene (99%) was obtained from LOBA Chemie, Mumbai, India, formalin and xylene were
purchased from Sigma Chemical Co., Saint Louis, MO USA. All other chemicals were of analytical
grade.

2.2 Animals

The adult male Wistar rats (175 and 250 g) used for the study were kept in ventilated cages at room
temperature (28-30°C) and maintained on normal laboratory chow (Ladokun Feeds Ibadan, Oyo
State) and water ad libitum. All experimental procedures were carried out in accordance with the
NIH Guidelines following Helsinki declaration for the care and use of laboratory animals [12]. The
animals were allowed to acclimatize for two weeks before the experiment.

2.3 Study design

Twenty-four Wistar rats (175-250 g) were randomly divided into six groups of four rats each. Group
1 (Control 1) and group 2 (Control 2) rats were given food and water only, group 3 (N1) rats were
exposed to naphthalene (N1) at 0.75 mg/m? for 2 h, group 4 (N2) rats were exposed to naphthalene
at 1.50 mg/m?> for 2 h, group 5 (N3) rats were exposed to naphthalene at 0.75 mg/m? for 4 h and
group 6 (N4) rats were exposed to naphthalene at 1.50 mg/m? for 4 h [13]. The animals were given
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standard laboratory food and water ad libitum, except when exposed to naphthalene vapor and were
sacrificed 24 h after the last hour of naphthalene exposure and an overnight fast. The lungs, kidneys
and livers were excised for histological examination.

2.4 Preparation of tissues

Rats were sacrificed 24 h after the last dose of naphthalene exposure and an overnight fast via
cervical dislocation. Lungs, kidneys, and livers were quickly removed and washed in ice-cold 0.25
M sucrose solution, dried and weighed. A section of the lung, kidney and liver samples were fixed
in 10% formalin for histological examination.

2.5 Histology examination

The portions of the lungs, kidneys and livers that had been fixed in 10% formalin were dehydrated
in 95% ethanol and then cleared in xylene before being embedded in paraffin. Micro sections (about
4 pm) were prepared and stained with Haematoxylin and Eosin (H&E) dye and were examined
under a light microscope by a histopathologist who was ignorant of the treatment groups.

2.6 In silico assessment
2.6.1 Homology modelling

The direct assessment of glutathione reductase (GR) through in silico approach was hindered due to
the non-availability of the 3D crystal structure of GR in the RCSB website. Hence, the structural
characterization of GR from rat was carried out. The primary sequence of rat GR with accession
number ID: P70619 was retrieved from UniProt knowledgebase (UniProtKB)
(https://www.uniprot.org/) and has 424 amino acids [14]. This obtained primary sequence was used
for the modelling of the 3-dimensional structure of GR using Swiss model webserver
(https://swissmodel.expasy.org/interactive/) [ 15]. A single crystal model structure was obtained, and
the quality of this model was checked via the structural authentication and characterization using
the online PROCHECK webserver (https://saves.mbi.ucla.edu/) [16, 17] via Ramachandran plot.

2.6.2 Molecular docking

The docking of the selected ligands to the structural characterized GR model and determination of
binding affinities was carried out using PyRx-Python prescription 0.8 autodock vina tool [18]. The
autodocked GR model was selected with a single ligand at a time and run using blind docking
approach. The dimensions were set as grid center: x = 81.4317, y =36.1011, z = 17.6066 with the
grid size x = 113.3325, y = 104.5586, z = 15.3563. The first three ranking binding score results for
all the ligands towards GR model obtained were selected and subjected to statistical analysis to see
any significant difference among the GR model-ligand interactions. The obtained statistical results
were expressed as meantstandard deviation of three determinations and analyzed using one-way
analysis of variance (ANOVA) for mean differences between different ligands followed by Duncan
post hoc correlation. The obtained autodocked files for all the ligands and the autodocked GR model
were visualized using Discovery Studio BIOVIA 2020 and the interaction views presented in 2D
and 3D.
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2.6.3 Molecular simulation

The obtained autodocked files for all the ligands and the autodocked GR model from the docking study
were converted to PDB format using Discovery Studio BIOVIA 2020. Each ligand PDB file was
combined with the GR model PDB file using PyMOL as molecule for molecular dynamic simulations.
The HETATMs of the respective combinations were retrieved and pasted in the prodrug online
webserver (http://davapcl.bioch.dundee.ac.uk/cgi-bin/prodrg/submit.html) for GROMOS topology in
ZIP format as ligands [19]. The respective prepared molecules (PDB files) and ligands (ZIP files) were
uploaded into simlab online webserver (https://simlab.uams.edu/ProteinWithLigand/protein_with
ligand.html) [20, 21] for the molecular simulation using the server default settings.

3. Results and Discussion

3.1 Histopathological study

Exposure to naphthalene, a bicyclic aromatic compound widely used in various commercial and
industrial applications, is associated with the development of haemolytic anaemia in humans and
laboratory animals [22, 23]. Naphthalene is known to be readily absorbed into the systemic
circulation after either ingestion or inhalation and may possibly produce systemic toxicity. The
histopathological result depicted in Figure 1 (plate A and C) revealed normal alveolar ducts (Control
1 and naphthalene at 1.50 mg/m? for 2 h) while fibrosis was observed in plate D (Control 2). Cell
necrosis was observed in plate B (naphthalene at 0.75 mg/m? for 2 h). Also, dilated alveolar ducts
were observed in plate E (rats exposed to 0.75 mg/m? at 4 h) while severe epithelial hyperplasia and
chronic infiltration of inflammatory cells were seen in the rats exposed to naphthalene at 1.50 mg/m?
for 4 h (plate F). This suggested that exposure to naphthalene via nose inhalation could cause
necrosis in the lungs at 0.75 mg/m? for 2 h and this was in agreement with ATSDR [24] and WHO
[25], who reported that chronic inflammation of the lungs, nasal inflammation, hyperplasia of the
respiratory epithelium in the nose, and metaplasia of the olfactory epithelium were observed in mice
chronically exposed to naphthalene via inhalation.

The liver is known as the key organ for the breakdown and removal of drugs and its major
function is to metabolize xenobiotics [26, 27]. Being commonly linked with the digestive tract, the
organ is extremely susceptible to damage from drugs and some other substances [28]. Such
substances can cause damage to the liver cells although the organ has a large capability to rejuvenate.
However, in most cases, the liver only shows signs after extensive damage. It is evident from Figure
2 that a normal architecture of the hepatocytes was observed in plates A and E (Control 1 and rats
exposed to naphthalene at 0.75 mg/m? for 4 h) while plate B (rats exposed to naphthalene at 0.75
mg/m? for 2 h) and plate D (Control 2) showed necrosis of some hepatocytes. Also, portal tracts
with moderate periportal infiltration of inflammatory cells as well as necrosis of some hepatocytes
were observed in plates C and F (rats exposed to naphthalene at 1.50 mg/m3 for 2 and 4 h,
respectively) suggesting hepatic damage irrespective of the duration of exposure to naphthalene.

The kidney is the organ responsible for the maintenance of body homeostasis, and their
primary function is the elimination of metabolic wastes, and the regulation of acid-base balance,
composition of electrolyte, and volume of intracellular fluid [29]. This, therefore, implies that any
harmful effect on body metabolism could be suggestive of toxic insult to the kidney [30]. Although
normal architecture of the kidney cells was observed in all other plates (Figure 3), it can be concluded
from Figure 3 that exposure of male Wistar rat to naphthalene at 0.75 mg/m? for 4 h caused moderate
infiltration of inflammatory cells and mild vascular congestion, while in rats exposed to naphthalene
at 1.50 mg/m? for 2 h only congestion of the interstitial vessels was observed.
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Figure 1. Photomicrograph of the lung from naphthalene exposed male Wistar rats (MX400)
A= Control 1, B = (N1 = Rats exposed to naphthalene at 0.75 mg/m? for 2 h), C= (N2 = Rats
exposed to naphthalene at 1.50 mg/m? for 2 h), D = Control 2, E= (N3 = Rats exposed to
naphthalene at 0.75 mg/m? for 4 h), F = (N4 = Rats exposed to naphthalene at 1.50 mg/m? for 4 h).
The red arrows indicate normal aveolar duct, the green arrow indicates necrosis, the white arrow
indicates fibrosis, the blue arrow indicates aveolar duct dilated, and the yellow arrow indicates
severe epithelial hyperplasia and chronic infiltration of inflammatory cells.
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Figure 2. Photomicrographs of the liver from naphthalene-exposed male rats (MX400)

A= Control 1, B = (N1 = Rats exposed to naphthalene at 0.75 mg/m? for 2 h), C= (N2 = Rats
exposed to naphthalene at 1.50 mg/m? for 2 h), D = Control 2, E= (N3 = Rats exposed to
naphthalene at 0.75 mg/m? for 4 h), F = (N4 = Rats exposed to naphthalene at 1.50 mg/m? for 4 h).
Blue arrows show normal architecture; white arrows show necrosis in some of the hepatocytes
while black arrows show portal tracts with moderate periportal infiltration of inflammatory cells as
well as necrosis of some hepatocytes.
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Figure 3. Photomicrographs of the kidney from naphthalene exposed male rats (MX400)

A= Control 1, B = (N1 = Rats exposed to naphthalene at 0.75 mg/m? for 2 h), C= (N2 = Rats
exposed to naphthalene at 1.50 mg/m? for 2 h), D = Control 2, E= (N3 = Rats exposed to
naphthalene at 0.75 mg/m? for 4 h), F = (N4 = Rats exposed to naphthalene at 1.50 mg/m? for 4 h)
White arrow shows normal architecture, yellow arrow shows interstitial vessels with congestion
while the green arrow shows interstitial spaces show focal area of moderate infiltration of
inflammatory cells, mild congestion as well as vascular congestion.

3.2 Computational studies
3.2.1 Homolog modeling

The histopathological study on naphthalene exposure was supported with computational studies.
The human GR with PDB ID: 2GRT, resolution 2.70 A was used as a template for the modeling of
rat GR (Figures 4a and 4b). The Swiss model for rat GR results revealed t GMQE and QMEAN
scores of 0.94 and -0.32, respectively. These closest respective GMQE, QMEANDisco (between 0
and 1) and QMEAN Z-score (between -4.0 and 0) values for the rat model suggested a good quality,
reliability, and the degree of nativeness of the built model to the experimental structure of similar
size [31-33]. In addition to the model quality result, the rat GR model percentage sequence identity
matrix was 85.24%, confirming the sequence similarity of GR model. The plot of the predicted local
similarity to target against the residue number of the predicted 3D model structure (Figure 4) showed
a good estimate of local quality of the residues of the predicted model since the residues value was
above 0.6 [34, 35]. Interestingly, the quality of the predicted GR model revealed a summary result
of 91.1% Ramachandran plot core, suggesting a 3D structure of better quality (Figure 5a). In
addition, the statistical result of the Ramachandran plots of the GR amino acid residues showed that
91.1% of the residues (671 residues) were found in the favored region (A, B, and L; Red color),
8.1% (60 residues) were found in the additional allowed region (a, b, 1 and p; yellow color), 0.3%
(2 residues) were found in the generously allowed region (~a, ~b, ~1, and ~p; light green and cream
colors), and 0.5% (4 residues) were found in the disallowed region (white color) (Figure 5b). The
result suggested that the phi and psi backbone dihedral angles in the predicted structure of the rat
GR model were reasonably accurate [36].
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3.2.2 Molecular docking

To substantiate the GR model quality, the molecular mechanisms were assessed via molecular
docking and, the interactions of naphthalene as well as its metabolites were obtained and analyzed.
The docking results showed that none of the ligands had better interaction with the GR model than
the standard (4-hydrox chalcone) as observed in the binding score (-7.23+0.06 kcal/mol) (Table 1).
Intriguingly, naphthalene had the lowest affinity towards GR compared to its metabolites,
suggesting lesser toxic effects via oxidative stress from naphthalene than its metabolites. This
observation is in agreement with our previous work on the effect of naphthalene on glutamate
cysteine ligase [13] where naphthalene had less interactions compared to its metabolites. Also,
naphthalene and 1-methylnaphthalene bind with similar residues (Vall35, Argl60 and Lys193)
found in the most favored region with no conventional hydrogen linkages, suggesting that they have
low binding scores compared to others. This could also suggest the same binding site on the GR
model. However, 1-nitronaphthalene and 1,2-naphthoquinone showed better interactions towards
the GR via donation of electrons to hydrogen atoms on the respective residues of GR, which
constituted conventional hydrogen interactions. These conventional hydrogen interactions may be
responsible for the high binding scores [37] seen in both ligands (Figures 6 and 7). Moreover, these
ligands (1-nitronaphthalene and 1,2-naphthoquinone) interacted with similar residues (Lys 8 and Ile
140).

Table 1. The binding scores and interacting residues of compounds towards glutathione reductase

Compounds Binding Score (kcal/mol) Interacting residues with GR model
Naphthalene -5.40+0.00? Vall35, Argl60, Lys193, 11e235
1-nitronaphthalene -6.40+0.00° LysS, Ile140
1-methyl naphthalene -5.83+0.06°¢ Vall35, Argl60, Lys193
1,2-naphthoquinone -6.2320.06¢ Lys8, Serl119, Ile140
4-hydroxy chalcone -7.23+0.06° Cys5, LysS, Ile140, Leu284

Different letters stand for statistically significant differences (p < 0.05).
3.2.3 Molecular dynamics simulations

To explore the structural and dynamic differences, the stability of the docked complexed GR
molecule with ligands was validated by performing molecular dynamics simulation via root mean
square deviation (RMSD), root mean square fluctuation (RMSF), Radii of gyration (Rg), hydrogen
bond and solvent accessible surface area (SASA) analyses. The stability attained was examined by
exploring the RMSD values with respect to the evolution time [38]. The plot of GR-ligands molecule
RMSD that was based on all backbone Ca atoms relative to the corresponding starting structures
with the time progression is depicted in Figure 8. All the docked complexes show RMSD values
closed to 0.25 nm including the standard (4-hydroxyl chalcone) in the early stage of the simulation
except for 1-methyl naphthalene and 1,2-naphthoquinone, suggesting a fairly good stability in the
GR structure [39, 40]. Also, a quick increase in root mean square deviation was observed during the
first 0.1-0.4 ns for all the docked complexes except in the case of the GR-1,2-naphthoquinone
complex. In a similar manner, variability in the complexes suggesting GR backbone stability was
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observed in the last 0.5-0.6 ns of the simulation time in all the docked complexes except for the GR-
1,2-naphthoquinone complex [41- 43]. In Figure 9, stability was observed in all the ligand orthologs
starting from 0.2 ns except for 1-methyl naphthalene which started from 0.5 ns. In addition, the
residue-specific flexibility was examined by measuring the RMSF values for individual residues.
The RMSF for most residues in all the simulated complexes was within 0.4 nm and 0.5 nm except
for 1,2-naphthoquinone whose RMSF exceeded 0.5 nm (Figure 10). This relatively reduced
fluctuations observed in all the complexes except 1,2-naphthoquinone could lead to slight or no
conformational changes in the simulated GR. Also, a slight fluctuation was observed in the
interacting residues Argl60, and Argl60 and Lys193 for the GR-naphthalene and GR-1-methyl
naphthalene complexes, respectively. However, fluctuation greater than 0.25 nm was seen in all
ligands including 4-hydroxy chalcone complex, suggesting the formation of less stable complexes
[44]. The radius of gyration is a fundamental in molecular structure that defines the root mean square
distance from the center of a molecule [45, 46]. The Rg result (Figure 11) revealed that all the
metabolites of naphthalene showed higher Rg values (>3.05 nm) compared to naphthalene and 4-
hydroxy chalcone within the first 0.1 ns, suggesting the opening of the hydrophobic structure of GR
molecule [43]. However, in the last 0.2 ns of the simulation, naphthalene and 1,2-naphthoquinone
showed similar Rg value (<2.95 nm) to 4-hydroxy chalcone while 1-nitronaphthalene and 1-methyl
naphthalene showed higher Rg value (>2.964 nm). Furthermore, hydrogen bond interaction was
observed in the last 200 ps for all the simulated ligand-GR molecules (Figure 12). Moreover, the
number of hydrogen bonds in the molecular dynamics simulation supported the molecular docking
results where no hydrogen bond was seen in naphthalene and 1-methyl naphthalene while a small
number of it occurred in the standard (Figure 13). Lastly, the SASA factor was examined, and the
results showed no significant increase in GR-ligand complexes during simulation (Figure 14), which
suggested no structural relaxation and thus no protein variability [47, 48].

4. Conclusions

From this study, exposure of male Wistar rats to naphthalene resulted in the necrosis of the
hepatocytes at 0.75 mg/m? for 2 h, and dilation of the alveolar duct of the lungs at 0.75 mg/m3 and
at 1.50 mg/m3 for 4 h. Moreover, after exposure of 1.50 mg/m? for 4 h, there was severe epithelial
hyperplasia and chronic infiltration of inflammatory cells in the lungs. Also, there was vascular
congestion in the kidneys at 0.75 mg/m? for 2 h and 1.50 mg/m? for 4 h. The molecular docking and
dynamic simulation results showed higher interactions of the metabolites of naphthalene with GR.
Therefore, it can be concluded from this study that exposure to naphthalene irrespective of the
duration may have detrimental effects on rat tissues.
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Figure 9. Ligands root mean square deviation for the average distance between the backbone

atoms of (i) naphthalene, (ii) 1-nitronaphthalene, (iii) 1-methyl naphthalene, (iv) 1,2-

naphthoquinone and (v) 4-hydroxy chalcone simulated with glutathione reductase (GR)
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Figure 11. The effect of simulated ligands: (i) naphthalene, (ii) 1-nitronaphthalene, (iii) 1-methyl
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gyration and the x-, y- and z-axes radii of gyration, as a function of time

15



Curr. Appl. Sci. Technol. 2024, Vol. 24 (No. 2), e0256918

Agboola et al.

Hydrogen Bonds Hydrogen Bonds
640 — ! ! ! J
i 1 |~ Hydrogen bonds 600 [~ — Hydrogen bonds
600 — — 580 —
L ‘] o~ L ‘
g 2
E sso- | £
Z Z 560 ‘ ‘
560 7
| | 1
540
540 o
| | | | sl L1 1]
2y 00 400 600 800 1000 0 200 400 600 800 1000
Time (ps) Time (ps)
1 1
Hydrogen Bonds Hydrogen Bonds
620 — ! ! —— 620 —
— Hydrogen bonds — Hydrogen bonds
600
580 J'\
g g
2 Z
560
| 560 ‘l
N ] '\
J 540
520 L [ | |
0 200 400 600 800 1000 0 200 400 600 800 1000
Time (ps) Time (ps)
11 1v
Hydrogen Bonds
. ; . . ; : : :
sool- -
B I
580 Ii.
5 |
E]
Z 560 | —
| b
540 ]
520 1 . . 1 . 1 .
0 200 400 600 800 1000
Time (ps)
\ 4

Figure 12. Hydrogen bond plots of simulated ligands: (i) naphthalene, (ii) 1-nitronaphthalene, (iii)
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Figure 13. The GR-simulated ligands: (i) naphthalene, (ii) 1-nitronaphthalene, (iii) 1-methyl
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