
Current Applied Science and Technology e-ISSN: 2586-9396

Curr. Appl. Sci. Technol. 2025, Vol. 25 (No. 6), e0257532

Research article

*Corresponding author: E-mail: pradeepr@sit.ac.in
https://doi.org/10.55003/cast.2025.257532
Copyright © 2024 by King Mongkut’s Institute of Technology Ladkrabang, Thailand. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Security Analysis of Biometric Verification Protocol Using
Scyther Model Checker: A Case Study

Pradeep Rajanna* and Nagarajaiah Renukamba Sunitha

Department of Computer Science and Engineering, Siddaganga Institute of

Technology,Tumkur - Karnataka, 572103, India, Affiliated to Visvesvaraya Technological
University, Belagavi - Karnataka, 590018, India

Received: 24 January 2023, Revised: 3 February 2025, Accepted: 22 March 2025, Published: 8 May 2025

Abstract

Aadhaar is a biometric-based national identification system used in India that relies on
fingerprints, iris scans, and face images as primary means of verification. Ensuring the
reliability and security of biometric protocols is critical, as they must be robust and resistant
to attacks. To achieve and prove the reliability of a biometric security protocol, the
traditional testing technique is not a desirable solution because of its limitations. The formal
verification technique is a better solution to prove the reliability of a biometric security
protocol as it provides mathematical proofs to validate security protocols. The biometric
capture devices used in the Aadhaar system must comply with either Level-0 (L0) or Level-
1 (L1) security standards as defined by the Unique Identification Authority of India (UIDAI).
The L0 protocol is widely adopted due to its cost-effectiveness, though it is less secure
compared to the L1 protocol. This paper focuses on the formal analysis and verification of
the L0 iris-based biometric verification security protocol. Using the Scyther model checker,
security vulnerabilities in the L0 protocol are identified. A security solution is then proposed
by addressing these vulnerabilities and formally proving the correctness of the improved
security model against the Dolev-Yao adversary model.

Keywords: biometric; Aadhar; security; L1 protocol; formal verification; Scyther

1. Introduction

The Biometric authentication protocols (Sireesha & Reddy, 2016) are a specific type of
security protocol that uses unique physical or behavioral traits to verify user identity. Key
biometrics include face, iris, voice, vein pattern, and even gait. Biometric verification
protocols (Jain et al., 2022) must be highly secure when communicating biometric data
over an insecure network, as biometric data are highly confidential and harder to replicate
or forge than conventional authentication methods such as passwords or security tokens
(Sharma et al., 2023). The primary benefit of biometric security protocols is that biometrics
cannot be shared, unlike passwords. Additionally, they spare users from remembering or
managing other credentials. A variety of biometrics-based authentication protocols are
applied globally, each with advantages and disadvantages. Metrics such as accuracy,

Rajanna & Sunitha Curr. Appl. Sci. Technol. 2025, Vol. 25 (No. 6), e0257532

2

measurement speed, and cost determine their suitability for specific tasks. Biometric
security protocols are not perfect or ideally secure, despite their benefits. Privacy concerns
and the potential for misuse or exploitation of biometric data (Adeyanju et al., 2021) are
significant challenges. Some biometric features are more vulnerable to impersonation or
hacking than others. Most biometric authentication systems, such as Aadhaar (Singh &
Jackson, 2021) and MOSIP (Sheik et al., 2022), which handle large databases, use a
client-server model where users' biometrics are stored in centralized data centers. Aadhaar
primarily uses two biometric security protocols for biometric authentication, Level-0 L0 and
Level-1 L1, which represent different levels of biometric template protection when
communicating over insecure channels. L0 protocols have less significant security
enhancements for biometric data, making the biometric templates vulnerable to attacks
such as spoofing, replay, or tampering. L1 protocols, in contrast, use primitive security
enhancement techniques such as biometric data encryption, hashing, and template
transformation. The L1 attempts to obfuscate compromised biometric templates so
attackers cannot reverse-engineer or misuse them. The L1 protocol uses hardware
encryption technique (Bao et al., 2024) in which the captured biometric template is
encrypted by the key, which is pre-stored in the hardware chip. The UIDAI has pre-certified
this key.

Biometric security protocols (Adeyanju et al., 2021) are critical protocols widely
used in access control systems and KYC applications by verifying user identity based on
biometric traits. Biometric protocols must be highly reliable and free from attacks. To
achieve reliability, testing technique is not a desirable solution because of its limitations.
One such limitation is the tester cannot predict attacker's capabilities. Formal verification
technique overcomes all the limitations of testing technique, and it helps to prove the
reliability of biometric security protocols by providing mathematical proofs. Formal
verification technique not only shows the presence of attacks but also proves the absence
of security attacks. Despite significant progress, formal verification of security protocols
faces multiple ongoing challenges. One major issue is the state explosion problem (Jiang
et al., 2021), which arises due to the vast number of possible protocol states, especially in
complex or real-world protocols. Researchers have explored abstraction techniques and
compositional verification to address this challenge, but scalability remains a concern.
Moreover, formal verification often assumes idealized models of cryptographic primitives,
which may not accurately reflect real-world implementations.

The advancement of formal verification (Lewis et al., 2023) technology in the
biometric security protocol domain, specifically the model-checking technique, addressed
the strong need for proving the reliability of secure communication protocols. However, as
the protocols became more complex, informal security analysis methods, such as legacy
testing techniques and manual reviews, often failed to detect design flaws and security
vulnerabilities. The application of formal methods to the analysis of security protocols
marked a significant shift in the early 1990s. Burrows, Abadi, and Needham's seminal work
(BAN logic) (Thakur et al., 2024), which introduced a formal reasoning system specifically
for authentication security protocols, paved the way. BAN logic, although limited in scope,
highlighted the potential of the use of formal verification methods to rigorously analyze and
verify security properties of protocols. Over time, formal verification approaches evolved
by incorporating techniques from model checking, theorem proving, and symbolic analysis.
Model-checking methods (Pradeep & Sunitha, 2022) gained popularity in verifying finite-
state protocols by exhaustively exploring the protocol state space, which encompasses all
possible behaviors of the protocol. The development of automated and advanced tools
further increased the strength of formal verification techniques (Krichen, 2023). One such
tool is FDR (Failures-Divergence Refinement), which is used for verifying CSPs

Rajanna & Sunitha Curr. Appl. Sci. Technol. 2025, Vol. 25 (No. 6), e0257532

3

(Cryptographic Security Protocols). FDR exponentially increased the practical applicability
of formal methods in security protocol verification. Formal verification of security protocols
primarily relies on the development of abstract security protocol models that represent
protocol behavior and interaction with adversaries. These models vary depending on the
type of protocol and the desired security properties, such as confidentiality, integrity, or
authentication that must be satisfied by the model under verification.

Process algebras such as CSP and Pi-calculus (Baillot & Ghyselen, 2022) are
widely used to model the communication and concurrency aspects of security protocols.
These mathematical frameworks allow for formal reasoning about the interactions between
protocol entities and adversaries. For instance, in CSP, model checkers such as FDR can
express security properties as refinements and verify these properties against protocol
specifications. Symbolic analysis abstracts cryptographic operations by treating them as
black boxes, allowing verification without delving into cryptographic primitives' details. The
Dolev-Yao (Rakotonirina et al., 2024) model is an example of symbolic analysis, where
messages are represented symbolically, and adversaries are assumed to have complete
control over the communication channel, except for the ability to break cryptography. Tools
such as ProVerif (Blanchet et al., 2022) have built on this model, enabling automatic
verification of security properties through symbolic execution. Security protocols have
adopted tools like SPIN (Garanina et al., 2023) and Murphi (Cai et al., 2024) for verification.
The model-checking methods systematically explore the protocol's state space to ensure
that security properties are held in all possible states. Although model checking is
exhaustive, it faces challenges with scalability due to the state explosion problem.
Techniques like abstraction and symmetrical reduction are often employed to mitigate this
issue.

Theorem Proving (Yang et al., 2023): Unlike model checking, theorem proving
requires the manual construction of formal proofs demonstrating that a protocol satisfies
certain properties. Isabelle and Coq are environments used to develop and mechanically
check such proofs. Theorem proving provides more generality and works for infinite-state
systems, but it is much harder and requires expertise in the area. The industry standard
formal verification tools for formal analysis and verification of security protocols are: 1)
ProVerif - a tool that performs symbolic verification of security properties such as secrecy
and authenticity in cryptographic protocols. ProVerif uses the Dolev-Yao model and can
reason about protocols in the presence of active adversaries. 2) Tamarin (Celi et al., 2022)
- a verification tool that combines symbolic reasoning with equational theories for handling
cryptographic operations. It verifies a broad class of security properties, including
indistinguishability and trace properties. 3) AVISPA (Ram et al., 2024) - the Automated
Validation of Internet Security Protocols and Applications is a framework for analysing
security protocols and provides several back-end solvers for protocol verification. 4)
Scyther (Le et al., 2024) – a model checker specially designed for formal analysis and
verification of security protocols. Scyther analyses protocols for vulnerabilities such as
authentication failures or data leakage by modelling interactions and attack scenarios. It
provides automated analysis, visual representations, proofs or counterexamples and
handles state-explosion to ensure protocol security, which makes it the best tool for formal
analysis of biometric security protocols.

2. Materials and Methods

In this work, we provide the first independent examination of the L0 Aadhar iris-based
verification models. This study demonstrates a successful compromise of biometric data

Rajanna & Sunitha Curr. Appl. Sci. Technol. 2025, Vol. 25 (No. 6), e0257532

4

confidentiality. We introduce an innovative protocol for Aadhar, namely the Secure L0 Iris
Biometric Verification Protocol (SLIBAP), and provide the findings of the assessment
together with the details of a prototype implementation. Using GNY logic and the Scyther
tool, we prove the security of the proposed protocol and ascertain that SLIBAP offers the
necessary defense against diverse passive and active cryptographic attacks. The Scyther
model checker tool (v1.1.3), a formal verification instrument for security protocols that
leverages the Dolev-Yao attacker model to simulate an active opponent, was employed.
Python 2.7, Graphviz version 6.0.2, and wxPython 2.8 were used for the creation of attack
graphs.

Figure 1 shows the secure, biometric-based authentication using a combination
of biometric devices, Aadhar infrastructure, and secure key management techniques.

Figure 1. Aadhar L0 IRIS verification protocol stakeholders

L0/L1 biometric devices: These devices collect the user's biometric data (e.g.,
fingerprint, iris scan) and send it for authentication. Biometric devices were designed in 2
categories: 1) enrolment devices and 2) authentication devices. L0 devices represent the
level-0 and refer to the most basic level of biometric devices used in the Aadhar
authentication ecosystem. These devices are typically used for capturing biometric data,
such as fingerprints or iris scans, and transmitting a biometric template for authentication
purposes. These devices are used in applications where biometric capture is required, but
real-time remote authentication is sufficient, such as public distribution systems, financial
services, and identity verification processes. L0 devices capture biometric data such as
fingerprints with minimal processing done on the device itself, and no advanced security
mechanism such as hardware encryption were included. The device is primarily
responsible for data acquisition. The L0 device does not perform local biometric matching
or authentication. Instead, it sends the captured biometric data to an external server,
typically the UIDAI Aadhar Authentication Server, where the verification is done against the
central Aadhar database. The L0 have lower security and processing requirements
compared to L1 devices. The key stakeholders in Aadhar ecosystem are as follows:

User biometrics: The user biometric characteristics, such as fingerprints or iris
scans, that are being captured using L0 or L1 devices for authentication.

Aadhar server: This is a centralized server that verifies the biometric data received
against its biometric template stored in the database for identity verification. It plays a key
role in authenticating users based on their Aadhar demographics.

Rajanna & Sunitha Curr. Appl. Sci. Technol. 2025, Vol. 25 (No. 6), e0257532

5

Management server for key rotation: This server handles cryptographic keys used
in securing communication between the biometric devices and the Aadhar server. It mainly
handles regular key rotation to ensure enhanced security for the biometric authentication
transactions.

2.1 Security properties tested

Security protocols are mainly designed to ensure various security properties that protect
communication and biometric data. These properties can be formally verified to assess the
security and integrity of the protocol under verification. Common security properties that
can be verified with a security protocol model include:

Confidentiality: Confidentiality is the primary property in any security protocol to
ensure that sensitive information remains accessible only to intended parties. It protects
data from unauthorized access or disclosure, maintaining privacy and trust. Encryption
techniques, secure communication channels, and strict access controls achieve this,
safeguarding confidential data from eavesdropping and cyber threats from attacker.

 ∀ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴,𝑃𝑃𝑃𝑃[𝐴𝐴(𝐶𝐶) = 𝑀𝑀] ≤ ϵ (1)

Where: A represents the active adversary, C represents the encrypted ciphertext, M
represents the plaintext message, and ϵ is a negligible probability.

Integrity: The integrity of a security protocol ensures that data is accurate,
consistent, and unaltered by the communicating roles during transmission or storage. It
protects against unauthorized modifications, ensuring that the information received is
exactly as intended. We employ techniques such as hashing, checksums, and digital
signatures to verify data integrity, prevent tampering, and ensure reliability.

 ∀ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴,𝑃𝑃𝑃𝑃[𝐴𝐴(𝐶𝐶’) → 𝑀𝑀 𝑎𝑎𝑎𝑎𝑎𝑎 𝑀𝑀′ ≠ 𝑀𝑀] ≤ ϵ (2)

Where: A represents the adversary, C’ represents the modified ciphertext, M represents
the original plaintext message, M’ represents the adversary’s altered plaintext, and ϵ is a
negligible probability.

Authentication: In security protocols, the authentication property verifies the
identity of the users or systems before granting access to the network resources. It ensures
that only legitimate entities can interact with the system after verifying their identities. It is
primarily achieved using passwords, biometrics, multi-factor authentication, and digital
certificates. Let us consider a message M and the recipient R:

∀𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴, Pr [𝐴𝐴 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑅𝑅 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑀𝑀 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 (3)

 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑆𝑆] ≤ 𝜖𝜖

Where: A represents the adversary, M represents the original plaintext message, R
represents the recipient, and ε is a negligible probability.

Non-repudiation: The non-repudiation property of a security protocol ensures that
a party cannot deny the authenticity of their actions or communications. It provides proof
of origin and integrity of the messages sent, often through digital signatures and audit trails.
This guarantees that transactions and messages are verifiable and legally binding,
preventing parties from falsely denying involvement.

Rajanna & Sunitha Curr. Appl. Sci. Technol. 2025, Vol. 25 (No. 6), e0257532

6

 ∀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑆𝑆 𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑅𝑅,𝑃𝑃𝑃𝑃 [𝑆𝑆 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑀𝑀 𝑡𝑡𝑡𝑡 𝑅𝑅, (4)
𝑏𝑏𝑏𝑏𝑏𝑏 𝑅𝑅 𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑀𝑀 𝑤𝑤𝑤𝑤𝑤𝑤 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑏𝑏𝑏𝑏 𝑆𝑆] ≥ 1 − 𝜀𝜀

Where: S represents the sender, R represents the recipient, M represents the message,
and ε is a negligible probability.

2.2 Dolev-Yao (DY) attacker model

The Dolev-Yao adversary is the strongest attacker model used in the formal verification of
security protocols. This adversary is active, with the ability to intercept, modify, inject, and
delete messages sent over an insecure network. The model assumes that the adversary
has complete access to the network and can manipulate any message passing through it,
as shown in Figure 2. This includes the ability to eavesdrop on every communication, alter
the content of messages, and fabricate new messages entirely. Despite these capabilities,
the Dolev-Yao adversary is constrained by the cryptographic primitives in use. Specifically,
the adversary cannot break encryption schemes, generate valid digital signatures without
the correct private key, or solve complex mathematical problems that underlie
cryptographic algorithms, such as factoring large numbers or computing discrete
logarithms. The Dolev-Yao adversary model assumes that the adversary has several
significant capabilities:

Eavesdropping: The attacker has access to any data sent across the network and
can listen in on all conversations between participants.

Message modification: The adversary can modify communications in transit,
thereby altering the content, origin, or destination of the communication. This capability is
essential for the simulation of real-world scenarios in which adversaries may attempt to
manipulate data.

Message injection: The adversary can introduce new communications into the
network by assuming the identity of a legitimate party. This enables the adversary to
evaluate the protocol's capacity to differentiate between authentic and forged messages.

Message deletion: By deleting messages, the adversary can obstruct them from
reaching their intended recipients. This capability simulates denial-of-service attacks or
other forms of communication disruption.

Message replay: The adversary can store messages and replay them at a later
time, potentially causing confusion or unauthorised actions if the protocol does not account
for such attacks.

Figure 2. Roles communicating over the DY channel

Rajanna & Sunitha Curr. Appl. Sci. Technol. 2025, Vol. 25 (No. 6), e0257532

7

The Scyther model checker uses the DY attacker model to prove the security
properties of the protocol under verification. Figure 3 shows the L0 protocol abstract
security model. Table 1 gives the description of parameters used to build the L0 protocol
abstract model.

Figure 3. Existing UIDAI L0 IRIS verification protocol steps

Table 1. Notations used in the L0 protocols' description

Acronym Meaning

L0-Dev Device in Level 0 of biometric security protocol

Uidai-server Unique Identification Authority of India (UIDAI) Server

DevSerNumber Device Serial Number

IrisImgRcd Iris Image Record

DevProvID Device Provider ID

DevModCode Device Model Code

DevProKey Device Provision Key (Session Key)

SHA256 Secure Hash Algorithm 256-bit

timestamp Time reference used in the protocol

nonce Number used once in a cryptographic context

VeriStatus Verification Status

sk(Uidai-server) UIDAI Server’s Private Key

pk(L0-Dev) L0 Device’s Public Key

pk(Uidai-server) UIDAI Server’s Public Key

Nisynch Non-injective synchronization

Niagree Non-injective agreement

Rajanna & Sunitha Curr. Appl. Sci. Technol. 2025, Vol. 25 (No. 6), e0257532

8

2.3 Existing L0 IRIS verification protocol

Model 1- Existing Aadhar L0 IRIS verification protocol model.
usertype SessionKey;
usertype String;
hashfunction SHA256;
usertype Imgrcd;
usertype Binary;
usertype timestamp;

protocol Aadhar(L0-Dev, Uidai-server) {
 role L0-Dev {
 fresh DevSerNumber: String;
 fresh IrisImgRcd: Imgrcd;
 var DevProvID: String;
 var DevModCode: String;
 var DevProKey: SessionKey;
 fresh Timestamp: timestamp;
 var nonce1: Nonce;
 fresh nonce2: Nonce;
 var VeriStatus: Binary;

 recv_1(Uidai-server, L0-Dev, {
 DevProvID, DevModCode, {DevProKey}sk(Uidai-server)
 }pk(L0-Dev));

 send_2(L0-Dev, Uidai-server, {{IrisImgRcd}{pk(L0-Dev)}DevProKey, timestamp,
SHA256(DevSerNumber)}pk(Uidai-server));

 recv_3(Uidai-server, L0-Dev, {
 DevProvID, DevModCode, VeriStatus
 }pk(L0-Dev));

 // Security claims
 claim(L0-Dev, Secret, timestamp);
 claim(L0-Dev, Secret, IrisImgRcd);
 claim(L0-Dev, Secret, DevSerNumber);
 claim(L0-Dev, Secret, VeriStatus);
 claim(L0-Dev, Secret, DevProKey);
 claim(L0-Dev, Secret, DevModCode);
 claim(L0-Dev, Secret, DevProvID);
 claim(L0-Dev, Secret, sk(Uidai-server));
 claim(L0-Dev, Alive);
 claim(L0-Dev, Weakagree);
 claim(L0-Dev, Nisynch);
 claim(L0-Dev, Niagree);
 }

 role Uidai-server {

Rajanna & Sunitha Curr. Appl. Sci. Technol. 2025, Vol. 25 (No. 6), e0257532

9

 fresh DevProvID: String;
 fresh DevModCode: String;
 fresh DevProKey: SessionKey;
 var DevSerNumber: String;
 var IrisImgRcd: Imgrcd;
 var timestamp: timestamp;
 fresh nonce1: Nonce;

 send_1(Uidai-server, L0-Dev, {
 DevProvID, DevModCode, {DevProKey}sk(Uidai-server)
 }pk(L0-Dev));

 claim(Uidai-server, Secret, DevProKey);

 var nonce2: Nonce;
 recv_2(L0-Dev, Uidai-server, {{IrisImgRcd}{pk(L0-Dev)}DevProKey, timestamp,
SHA256(DevSerNumber) }pk(Uidai-server));

 fresh VeriStatus: Binary;
 send_3(Uidai-server, L0-Dev, {
 DevProvID, DevModCode, VeriStatus
 }pk(L0-Dev));

 // Security claims
 claim(Uidai-server, Secret, DevProKey);
 claim(Uidai-server, Secret, DevSerNumber);
 claim(Uidai-server, Secret, VeriStatus);
 claim(Uidai-server, Secret, DevProvID);
 claim(Uidai-server, Secret, sk(Uidai-server));
 claim(Uidai-server, Secret, IrisImgRcd);
 claim(Uidai-server, Secret, timestamp);
 claim(Uidai-server,Nisynch);
 claim(Uidai-server, Niagree);
 claim(Uidai-server, Alive);
 }
}

When the existing L0 protocol was formally verified using the Scyther model checker, the
security attacks listed in Table 2 were detected, indicating that the existing protocol was
not fully secure. The attacks on L0 protocol and its solutions are as follows:

1. Replay attacks:

• Attack: An attacker could capture valid messages exchanged between the L0-
Device and UIDAI server and replay them at a later time.

• Impact: The UIDAI server or L0-Device could accept old, valid messages, believing
they are fresh. This could lead to false authentication of stale or compromised
biometric data.

• Prevention: Introduce nonces or timestamps in all messages and ensure that they
are validated for freshness by both parties.

Rajanna & Sunitha Curr. Appl. Sci. Technol. 2025, Vol. 25 (No. 6), e0257532

10

Table 2. Attacks detected in the L0 protocol

Attack Type Attack Present
Replay Attack 

Man-in-the-Middle (MitM) Attacks 
Key Compromise 
Insider Attacks 

Biometric Data Theft 
Collision Attack 

Denial of Service (DoS) Attacks 

2. Man-in-the-Middle (MitM) attacks:

• Attack: An attacker could intercept communication between the L0-Device and the
UIDAI server and alter the contents of messages, especially if they can break the
encryption.

• Impact: The attacker could modify data such as the IrisImgRcd, DevSerNumber,
or VeriStatus and send it to the other party, leading to false identification or
authentication.

• Prevention: The current protocol encrypts sensitive data with public and private
keys, but adding message authentication codes (HMAC) or signatures on all
critical parts of the message could provide integrity checks, making it harder for
attackers to modify messages undetected.

3. Key compromise:
• Attack: If the shared session key (DevProKey) or the UIDAI server's private key

(sk(Uidai-server)) is compromised, an attacker can decrypt and re-encrypt
messages, or impersonate either of the communicating roles.

• Impact: The attacker could completely take over communication, leading to
unauthorised access, replay of biometric template data, or impersonation.

• Prevention: Use session key rotation and possibly a more frequent exchange of
fresh keys. Ensuring that keys are not reused for extended periods can help limit
the impact of a key compromise attack.

4. Insider attacks:
• Attack: An insider at the UIDAI server could tamper with VeriStatus or other

sensitive data and send false verification results.
• Impact: The L0-Device would receive fraudulent verification results, potentially

leading to unauthorized access for a verified person.
• Prevention: Use accountability mechanisms like logs or non-repudiation

techniques to ensure that every action within the server can be traced to an
authenticated user.

5. Biometric data theft:
• Attack: If the IrisImgRcd (biometric data) is intercepted or extracted from the L0-

Device or UIDAI server by an attacker, the attacker could use this stolen biometric
template information for future authentication for that verified person and perform
biometric based transactions.

• Impact: Stolen biometric data could be reused, compromising the authentication
process and privacy of the user.

• Prevention: Ensure that biometric data is properly encrypted during transmission
({IrisImgRcd}{pk(L0-Dev)}) and apply encryption standards that are resilient

Rajanna & Sunitha Curr. Appl. Sci. Technol. 2025, Vol. 25 (No. 6), e0257532

11

against known attacks. Using homomorphic encryption techniques for biometric
data could also mitigate the impact of data interception by allowing computations
on encrypted data without decryption.

6. Weakness in hashing (collision attack):
• Attack: If the hash function used to hash the DevSerNumber is weak or

compromised, an attacker could find two different inputs that hash to the same
value (collision attack).

• Impact: The attacker could send a different serial number that produces the same
hash, leading the server to believe it's valid, which would weaken the integrity of
the protocol.

• Prevention: Ensure that the hash function is secure and resilient to collision
attacks. SHA-256 is considered secure at present, but this could change in the
future. Regularly update to stronger cryptographic algorithms when necessary.

7. Nonce reuse:
• Attack: If the nonces (nonce1, nonce2) are not generated uniquely for each

session or reused across different sessions, an attacker could replay or predict
messages.

• Impact: Reusing nonces would make it easier for attackers to inject or replay
previous valid messages.

• Prevention: Ensure that nonces are fresh and unique for each session and use
larger nonce values (128-bit or more) to prevent collisions or predictability.

8. Lack of mutual authentication:
• Attack: The protocol may only authenticate one party (e.g., the L0-Device), leaving

the other party (e.g., UIDAI server) vulnerable to impersonation attacks.
• Impact: The L0-Device might send sensitive data (biometric or otherwise) to a fake

UIDAI server.
• Prevention: Implement mutual authentication where both the L0-Device and UIDAI

server authenticate each other before exchanging sensitive data.
9. Denial of service (DoS) attacks:

• Attack: An attacker could send repeated invalid authentication requests to the
UIDAI server or L0-Device, overwhelming the system and preventing legitimate
users from authenticating.

• Impact: The server or device could be made unavailable, leading to a denial of
service for legitimate users.

• Prevention: Implement rate-limiting, CAPTCHA, or similar mechanisms to mitigate
the impact of repeated malicious requests. Adding resource checks to reject
obviously invalid data before consuming too many resources is also crucial.

2.3 Securing L0 verification protocol

The potential vulnerabilities identified; the existing model can be fixed using the
cryptographic techniques below.

• Nonce and timestamp validation: Ensure that all nonces and timestamps are
validated for freshness and are unique.

• Mutual authentication: Ensure that both parties authenticate each other, not just
one side.

• Use of HMAC/Signatures: Include signatures or HMAC on critical parts of
messages to ensure integrity and authenticity.

Rajanna & Sunitha Curr. Appl. Sci. Technol. 2025, Vol. 25 (No. 6), e0257532

12

• Regular key rotation: Rotate session keys after a set number of sessions or time
to limit the impact of key compromises.

The model 2, as shown in Figure 4, is the fixed version of the L0 protocol.

Figure 4. Proposed secure L0 IRIS verification protocol steps

Model 2 Proposed secure L0 verification protocol model
usertype SessionKey;
usertype String;
hashfunction SHA256;
usertype Imgrcd;
usertype Binary;
usertype timestamp;

protocol Aadhar(L0-Dev, Uidai-server) {
 role L0-Dev {
 fresh DevSerNumber: String;
 fresh IrisImgRcd: Imgrcd;
 var DevProvID: String;
 var DevModCode: String;
 var DevProKey: SessionKey;
 fresh Timestamp: timestamp;
 var nonce1: Nonce;
 fresh nonce2: Nonce;
 var VeriStatus: Binary;

 # Receive initial parameters from server, including nonce1 for freshness
 recv_1(Uidai-server, L0-Dev, {
 DevProvID, DevModCode, nonce1, {DevProKey}sk(Uidai-server)
 }pk(L0-Dev));
 # Send biometric data, DevSerNumber hash, and freshness (timestamp and
nonce2)

Rajanna & Sunitha Curr. Appl. Sci. Technol. 2025, Vol. 25 (No. 6), e0257532

13

 send_2(L0-Dev, Uidai-server, {
 {IrisImgRcd, SHA256(DevSerNumber)}DevProKey, nonce2, timestamp
 }pk(Uidai-server));

 # Receive verification status with nonce validation
 recv_3(Uidai-server, L0-Dev, {
 DevProvID, DevModCode, VeriStatus, nonce1
 }pk(L0-Dev));

 # Security claims
 claim(L0-Dev, Secret, timestamp);
 claim(L0-Dev, Secret, IrisImgRcd);
 claim(L0-Dev, Secret, DevSerNumber);
 claim(L0-Dev, Secret, VeriStatus);
 claim(L0-Dev, Secret, DevProKey);
 claim(L0-Dev, Secret, DevModCode);
 claim(L0-Dev, Secret, DevProvID);
 claim(L0-Dev, Secret, sk(Uidai-server));
 claim(L0-Dev, Alive);
 claim(L0-Dev, Weakagree);
 claim(L0-Dev, Nisynch);
 claim(L0-Dev, Niagree);
 }

 role Uidai-server {
 fresh DevProvID: String;
 fresh DevModCode: String;
 fresh DevProKey: SessionKey;
 var DevSerNumber: String;
 var IrisImgRcd: Imgrcd;
 var timestamp: timestamp;
 fresh nonce1: Nonce;
 fresh nonce2: Nonce;

 # Send initial message with nonce1 for freshness
 send_1(Uidai-server, L0-Dev, {
 DevProvID, DevModCode, nonce1, {DevProKey}sk(Uidai-server)
 }pk(L0-Dev));

 claim(Uidai-server, Secret, DevProKey);

 # Receive biometric data and nonce2, validate nonce for freshness
 recv_2(L0-Dev, Uidai-server, {
 {IrisImgRcd, SHA256(DevSerNumber)}DevProKey, nonce2, timestamp
 }pk(Uidai-server));

 # Generate verification status
 fresh VeriStatus: Binary;
 # Respond with verification status and nonce1 to ensure freshness
 send_3(Uidai-server, L0-Dev, {

Rajanna & Sunitha Curr. Appl. Sci. Technol. 2025, Vol. 25 (No. 6), e0257532

14

 DevProvID, DevModCode, VeriStatus, nonce1
 }pk(L0-Dev));

 # Security claims
 claim(Uidai-server, Secret, DevProKey);
 claim(Uidai-server, Secret, DevSerNumber);
 claim(Uidai-server, Secret, VeriStatus);
 claim(Uidai-server, Secret, DevProvID);
 claim(Uidai-server, Secret, sk(Uidai-server));
 claim(Uidai-server, Secret, IrisImgRcd);
 claim(Uidai-server, Secret, timestamp);
 claim(Uidai-server, Nisynch);
 claim(Uidai-server, Niagree);
 claim(Uidai-server, Alive);
 }
}

3. Results and Discussion

Based on the verification results presented in Figures 5 and 6, the findings demonstrate
that the model-checking technique effectively identifies the attacks inherent in the Aadhar
L0 security protocol. According to the existing L0 protocol specification, the L0 protocol is
less secure than the L1 protocol. This work proposes a possible fix to the existing attacks
and introduces a new model that is attack-free. Figures 5 and 6 illustrate how the proposed
Model-2 resolves the attacks identified in the existing Model-1. The data in Table 3 presents
the model-checking verification time consumed by both the existing and proposed models.
The existing model requires less time compared to the proposed model, as this is expected
because as the number of variables and cryptographic operations increases, the
verification time increases exponentially because of increased numbers of states and
transitions in the protocol state space.

Figure 5. Existing system L0 IRIS verification protocol result

Rajanna & Sunitha Curr. Appl. Sci. Technol. 2025, Vol. 25 (No. 6), e0257532

15

Figure 6. Secure L0 IRIS verification protocol result

Table 3. Verification time consumed by L0 existing and proposed system

Number of Rounds Verification Times in Seconds

L0 Existing L0 Proposed

1 1 5

6 9 15

10 22 32

15 46 53

20 59 69

25 74 89

4. Conclusions

This study explores the formal analysis and verification of the L0 Iris biometric security
protocol for the Aadhar biometric infrastructure. Model checking the current Aadhar L0
biometric verification security protocol revealed the possible security vulnerabilities against
the Dolev-Yao adversary, which is the most powerful active adversary model. The
verification results showed that when the iris biometric data was sent over the DY channel,
there existed replay attacks, MitM attacks, key compromise, insider attacks, biometric data
theft, collision attacks, and DoS attacks. The attacks were fixed by proposing a new fixed
model for the L0 iris biometric protocol, which incorporated cryptographic techniques such

Rajanna & Sunitha Curr. Appl. Sci. Technol. 2025, Vol. 25 (No. 6), e0257532

16

as the addition of nonce values and role identitty communication. Finally, the proposed L0
iris model was proved secure using the Scyther model checker.
 This study showed the effectiveness of the formal verification technique in formal
analysis and verification of the L0 biometric security protocol. The experimental results
show how the model checking technique can be used to mathematically prove the reliability
of the L0 biometric security protocols. This work can be further extended to formal analysis
and verification of more advanced biometric security protocols such as the L1 biometric
protocol.

5. Acknowledgements

The authors would like to thank the Siddaganga Institute of Technology for providing the
opportunity to carry out this work.

6. Conflicts of Interest

The authors declare no conflict interest.

7. Authors’ Contribution

Pradeep Rajanna: Problem identification, literature review, implementation, model
creation, manuscript preparation.
Nagarajaiah Renukamba Sunitha: Research guidance, manuscript correction.

ORCID
Pradeep Rajanna https://orcid.org/0000-0003-4990-1689

Nagarajaiah Renukamba Sunitha https://orcid.org/0000-0003-2865-720X

References

Adeyanju, I. A., Emake, E. D., Olaniyan, O. M., Omidiora, E. O., Adefarati, T., Uzedhe, G.

O., & Okomba, N. S. (2021). Digital industrial control systems: Vulnerabilities and
security technologies. Current Applied Science and Technology, 21(1), 188-207.
https://doi.org/10.14456/cast.2021.18

Baillot, P., & Ghyselen, A. (2022). Types for complexity of parallel computation in Pi-
calculus. ACM Transactions on Programming Languages and Systems, 44(3), 1-50.
https://doi.org/10.1145/3495529

Bao, H., Su, Y., Hua, Z., Chen, M., Xu, Q., & Bao, B. (2024). Grid homogeneous coexisting
hyperchaos and hardware encryption for 2-D HNN-like map. IEEE Transactions on Circuits and
Systems I: Regular Papers, 71(9), 4145-4155. https://doi.org/10.1109/TCSI.2024.3423805

Blanchet, B., Cheval, V., & Cortier, V. (2022). ProVerif with Lemmas, induction, fast
subsumption, and much more. IEEE Symposium on Security and Privacy (69-86).
IEEE. https://doi.org/10.1109/SP46214.2022.9833653

Cai, Z., Li, Y., & Zhao, Y. (2024). Murphi2Chisel: A protocol compiler from Murphi to Chisel.
Proceedings of the 15th Asia-Pacific Symposium on Internetware (pp. 209-218).
https://doi.org/10.1145/3671016.3671376

Celi, S., Hoyland, J., Stebila, D., & Wiggers, T. (2022). A tale of two models: Formal
verification of KEMTLS via Tamarin. In V. Atluri, R. Di Pietro, C. D. Jensen, & W. Meng

Rajanna & Sunitha Curr. Appl. Sci. Technol. 2025, Vol. 25 (No. 6), e0257532

17

(Eds.). Computer Security – ESORICS 2022. Lecture Notes in Computer Science. Vol
13556 (pp. 63-83). Springer. https://doi.org/10.1007/978-3-031-17143-7_4

Garanina, N., Staroletov, S., & Gorlatch, S. (2023). Auto-tuning high-performance programs
using model checking in Promela. https://doi.org/10.48550/arXiv.2305.09130

Jain, A. K., Deb, D., & Engelsma, J. J. (2022). Biometrics: Trust, but verify. IEEE
Transactions on Biometrics, Behavior, and Identity Science, 4(3), 303-323.
https://doi.org/10.1109/TBIOM.2021.3115465

Jiang, G.-J., Li, Z.-Y., Qiao, G., Chen, H.-X., Li, H. Bin, & Sun, H.-H. (2021). Reliability analysis of
dynamic fault tree based on binary decision diagrams for explosive vehicle. Mathematical
Problems in Engineering, 2021, Article 5559475. https://doi.org/10.1155/2021/5559475

Krichen, M. (2023). A survey on formal verification and validation techniques for internet of
things. Applied Sciences, 13(14), Article 8122. https://doi.org/10.3390/app13148122

Le, T. M. C., Pham, X. T., & Le, V. T. (2024). Advancing security protocol verification: A
comparative study of Scyther, Tamarin. Journal of Technical Education Science,
19(1), 43-53. https://doi.org/10.54644/jte.2024.1523

Lewis, M., Soudjani, S., & Zuliani, P. (2023). Formal verification of quantum programs:
Theory, tools, and challenges. ACM Transactions on Quantum Computing, 5(1), 1-35.
https://doi.org/10.1145/3624483

Pradeep, R., & Sunitha, N. R. (2022). Formal verification of CHAP PPP authentication
protocol for smart city/safe city applications. Journal of Physics: Conference Series,
2161, Article 012046. https://doi.org/10.1088/1742-6596/2161/1/012046

Rakotonirina, I., Barthe, G., & Schneidewind, C. (2024). Decision and complexity of Dolev-
Yao hyperproperties. Proceedings of the ACM on Programming Languages, 8, 1913-
1944. https://doi.org/10.1145/3632906

Ram, A., Dutta, M. P., & Chakraborty, S. K. (2024). An authentication mechanism to prevent
various security threats in software defined networking by using AVISPA. Journal of
Scientific and Industrial Research, 83(9), 977-988. https://doi.org/10.56042/jsir.v83i9.6313

Sharma, S., Saini, A., & Chaudhury, S. (2023). A survey on biometric cryptosystems and
their applications. Computers and Security, 134, Article 103458.
https://doi.org/10.1016/j.cose.2023.103458

Sheik, A. T., Maple, C., & Epiphaniou, G. (2022). Considerations for secure MOSIP
deployment. IET Conference Proceedings, 2022(8), 135-143.
https://doi.org/10.1049/icp.2022.2054

Singh, R., & Jackson, S. (2021). Seeing like an Infrastructure: Low-resolution citizens and
the Aadhaar identification project. Proceedings of the ACM on Human-Computer
Interaction, 5(CSCW2), Article 315. https://doi.org/10.1145/3476056

Sireesha, V., & Reddy, S. R. K. (2016). Two levels fusion based multimodal biometric
authentication using iris and fingerprint modalities. International Journal of Intelligent
Engineering and Systems, 9(3), 21-35. https://doi.org/10.22266/ijies2016.0930.03

Thakur, G., Prajapat, S., Kumar, P., & Chen, C.-M. (2024). A privacy-preserving three-factor
authentication system for IoT-enabled wireless sensor networks. Journal of Systems
Architecture, 154, Article 103245. https://doi.org/10.1016/j.sysarc.2024.103245

Yang, K., Swope, A. M., Gu, A., Chalamala, R., Song, P., Yu, S., Godil, S., Prenger, R., &
Anandkumar, A. (2023). LeanDojo: Theorem proving with retrieval-augmented
language models. 37th Conference on neural information processing systems
(NeurIPS 2023) (pp. 1-40). NeurIPS.

