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Abstract 

 
Aadhaar is a biometric-based national identification system used in India that relies on 
fingerprints, iris scans, and face images as primary means of verification. Ensuring the 
reliability and security of biometric protocols is critical, as they must be robust and resistant 
to attacks. To achieve and prove the reliability of a biometric security protocol, the 
traditional testing technique is not a desirable solution because of its limitations. The formal 
verification technique is a better solution to prove the reliability of a biometric security 
protocol as it provides mathematical proofs to validate security protocols. The biometric 
capture devices used in the Aadhaar system must comply with either Level-0 (L0) or Level-
1 (L1) security standards as defined by the Unique Identification Authority of India (UIDAI). 
The L0 protocol is widely adopted due to its cost-effectiveness, though it is less secure 
compared to the L1 protocol. This paper focuses on the formal analysis and verification of 
the L0 iris-based biometric verification security protocol. Using the Scyther model checker, 
security vulnerabilities in the L0 protocol are identified. A security solution is then proposed 
by addressing these vulnerabilities and formally proving the correctness of the improved 
security model against the Dolev-Yao adversary model. 
 
Keywords: biometric; Aadhar; security; L1 protocol; formal verification; Scyther 
 

1. Introduction 
 
The Biometric authentication protocols (Sireesha & Reddy, 2016) are a specific type of 
security protocol that uses unique physical or behavioral traits to verify user identity. Key 
biometrics include face, iris, voice, vein pattern, and even gait. Biometric verification 
protocols (Jain et al., 2022) must be highly secure when communicating biometric data 
over an insecure network, as biometric data are highly confidential and harder to replicate 
or forge than conventional authentication methods such as passwords or security tokens 
(Sharma et al., 2023). The primary benefit of biometric security protocols is that biometrics 
cannot be shared, unlike passwords. Additionally, they spare users from remembering or 
managing other credentials. A variety of biometrics-based authentication protocols are 
applied globally, each with advantages and disadvantages. Metrics such as accuracy,  
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measurement speed, and cost determine their suitability for specific tasks. Biometric  
security protocols are not perfect or ideally secure, despite their benefits. Privacy concerns 
and the potential for misuse or exploitation of biometric data (Adeyanju et al., 2021) are 
significant challenges. Some biometric features are more vulnerable to impersonation or 
hacking than others. Most biometric authentication systems, such as Aadhaar (Singh & 
Jackson, 2021) and MOSIP (Sheik et al., 2022), which handle large databases, use a 
client-server model where users' biometrics are stored in centralized data centers. Aadhaar 
primarily uses two biometric security protocols for biometric authentication, Level-0 L0 and 
Level-1 L1, which represent different levels of biometric template protection when 
communicating over insecure channels. L0 protocols have less significant security 
enhancements for biometric data, making the biometric templates vulnerable to attacks 
such as spoofing, replay, or tampering. L1 protocols, in contrast, use primitive security 
enhancement techniques such as biometric data encryption, hashing, and template 
transformation. The L1 attempts to obfuscate compromised biometric templates so 
attackers cannot reverse-engineer or misuse them. The L1 protocol uses hardware 
encryption technique (Bao et al., 2024) in which the captured biometric template is 
encrypted by the key, which is pre-stored in the hardware chip. The UIDAI has pre-certified 
this key. 

Biometric security protocols (Adeyanju et al., 2021)  are critical protocols widely 
used in access control systems and KYC applications by verifying user identity based on 
biometric traits. Biometric protocols must be highly reliable and free from attacks. To 
achieve reliability, testing technique is not a desirable solution because of its limitations. 
One such limitation is the tester cannot predict attacker's capabilities. Formal verification 
technique overcomes all the limitations of testing technique, and it helps to prove the 
reliability of biometric security protocols by providing mathematical proofs. Formal 
verification technique not only shows the presence of attacks but also proves the absence 
of security attacks. Despite significant progress, formal verification of security protocols 
faces multiple ongoing challenges. One major issue is the state explosion problem (Jiang 
et al., 2021), which arises due to the vast number of possible protocol states, especially in 
complex or real-world protocols. Researchers have explored abstraction techniques and 
compositional verification to address this challenge, but scalability remains a concern. 
Moreover, formal verification often assumes idealized models of cryptographic primitives, 
which may not accurately reflect real-world implementations. 

The advancement of formal verification (Lewis et al., 2023) technology in the 
biometric security protocol domain, specifically the model-checking technique, addressed 
the strong need for proving the reliability of secure communication protocols. However, as 
the protocols became more complex, informal security analysis methods, such as legacy 
testing techniques and manual reviews, often failed to detect design flaws and security 
vulnerabilities. The application of formal methods to the analysis of security protocols 
marked a significant shift in the early 1990s. Burrows, Abadi, and Needham's seminal work 
(BAN logic) (Thakur et al., 2024), which introduced a formal reasoning system specifically 
for authentication security protocols, paved the way. BAN logic, although limited in scope, 
highlighted the potential of the use of formal verification methods to rigorously analyze and 
verify security properties of protocols. Over time, formal verification approaches evolved 
by incorporating techniques from model checking, theorem proving, and symbolic analysis. 
Model-checking methods (Pradeep & Sunitha, 2022) gained popularity in verifying finite-
state protocols by exhaustively exploring the protocol state space, which encompasses all 
possible behaviors of the protocol. The development of automated and advanced tools 
further increased the strength of formal verification techniques (Krichen, 2023). One such 
tool is FDR (Failures-Divergence Refinement), which is used for verifying CSPs 
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(Cryptographic Security Protocols). FDR exponentially increased the practical applicability 
of formal methods in security protocol verification. Formal verification of security protocols 
primarily relies on the development of abstract security protocol models that represent 
protocol behavior and interaction with adversaries. These models vary depending on the 
type of protocol and the desired security properties, such as confidentiality, integrity, or 
authentication that must be satisfied by the model under verification. 

Process algebras such as CSP and Pi-calculus (Baillot & Ghyselen, 2022) are 
widely used to model the communication and concurrency aspects of security protocols. 
These mathematical frameworks allow for formal reasoning about the interactions between 
protocol entities and adversaries. For instance, in CSP, model checkers such as FDR can 
express security properties as refinements and verify these properties against protocol 
specifications. Symbolic analysis abstracts cryptographic operations by treating them as 
black boxes, allowing verification without delving into cryptographic primitives' details. The 
Dolev-Yao (Rakotonirina et al., 2024) model is an example of symbolic analysis, where 
messages are represented symbolically, and adversaries are assumed to have complete 
control over the communication channel, except for the ability to break cryptography. Tools 
such as ProVerif (Blanchet et al., 2022) have built on this model, enabling automatic 
verification of security properties through symbolic execution. Security protocols have 
adopted tools like SPIN (Garanina et al., 2023) and Murphi (Cai et al., 2024) for verification. 
The model-checking methods systematically explore the protocol's state space to ensure 
that security properties are held in all possible states. Although model checking is 
exhaustive, it faces challenges with scalability due to the state explosion problem. 
Techniques like abstraction and symmetrical reduction are often employed to mitigate this 
issue. 

Theorem Proving (Yang et al., 2023): Unlike model checking, theorem proving 
requires the manual construction of formal proofs demonstrating that a protocol satisfies 
certain properties. Isabelle and Coq are environments used to develop and mechanically 
check such proofs. Theorem proving provides more generality and works for infinite-state 
systems, but it is much harder and requires expertise in the area. The industry standard 
formal verification tools for formal analysis and verification of security protocols are: 1) 
ProVerif - a tool that performs symbolic verification of security properties such as secrecy 
and authenticity in cryptographic protocols. ProVerif uses the Dolev-Yao model and can 
reason about protocols in the presence of active adversaries. 2) Tamarin (Celi et al., 2022) 
- a verification tool that combines symbolic reasoning with equational theories for handling 
cryptographic operations. It verifies a broad class of security properties, including 
indistinguishability and trace properties. 3) AVISPA (Ram et al., 2024) -  the Automated 
Validation of Internet Security Protocols and Applications is a framework for analysing 
security protocols and provides several back-end solvers for protocol verification. 4) 
Scyther (Le et al., 2024) – a model checker specially designed for formal analysis and 
verification of security protocols. Scyther analyses protocols for vulnerabilities such as 
authentication failures or data leakage by modelling interactions and attack scenarios. It 
provides automated analysis, visual representations, proofs or counterexamples and 
handles state-explosion to ensure protocol security, which makes it the best tool for formal 
analysis of biometric security protocols.  
 

2. Materials and Methods 
 
In this work, we provide the first independent examination of the L0 Aadhar iris-based 
verification models. This study demonstrates a successful compromise of biometric data 
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confidentiality. We introduce an innovative protocol for Aadhar, namely the Secure L0 Iris 
Biometric Verification Protocol (SLIBAP), and provide the findings of the assessment 
together with the details of a prototype implementation. Using GNY logic and the Scyther 
tool, we prove the security of the proposed protocol and ascertain that SLIBAP offers the 
necessary defense against diverse passive and active cryptographic attacks. The Scyther 
model checker tool (v1.1.3), a formal verification instrument for security protocols that 
leverages the Dolev-Yao attacker model to simulate an active opponent, was employed. 
Python 2.7, Graphviz version 6.0.2, and wxPython 2.8 were used for the creation of attack 
graphs. 

Figure 1 shows the secure, biometric-based authentication using a combination 
of biometric devices, Aadhar infrastructure, and secure key management techniques. 

 

 
 

Figure 1. Aadhar L0 IRIS verification protocol stakeholders 
 

L0/L1 biometric devices: These devices collect the user's biometric data (e.g., 
fingerprint, iris scan) and send it for authentication. Biometric devices were designed in 2 
categories: 1) enrolment devices and 2) authentication devices. L0 devices represent the 
level-0 and refer to the most basic level of biometric devices used in the Aadhar 
authentication ecosystem. These devices are typically used for capturing biometric data, 
such as fingerprints or iris scans, and transmitting a biometric template for authentication 
purposes. These devices are used in applications where biometric capture is required, but 
real-time remote authentication is sufficient, such as public distribution systems, financial 
services, and identity verification processes. L0 devices capture biometric data such as 
fingerprints with minimal processing done on the device itself, and no advanced security 
mechanism such as hardware encryption were included. The device is primarily 
responsible for data acquisition. The L0 device does not perform local biometric matching 
or authentication. Instead, it sends the captured biometric data to an external server, 
typically the UIDAI Aadhar Authentication Server, where the verification is done against the 
central Aadhar database. The L0 have lower security and processing requirements 
compared to L1 devices. The key stakeholders in Aadhar ecosystem are as follows: 

User biometrics: The user biometric characteristics, such as fingerprints or iris 
scans, that are being captured using L0 or L1 devices for authentication. 

Aadhar server: This is a centralized server that verifies the biometric data received 
against its biometric template stored in the database for identity verification. It plays a key 
role in authenticating users based on their Aadhar demographics. 
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Management server for key rotation: This server handles cryptographic keys used 
in securing communication between the biometric devices and the Aadhar server. It mainly 
handles regular key rotation to ensure enhanced security for the biometric authentication 
transactions. 
 
2.1 Security properties tested 
 
Security protocols are mainly designed to ensure various security properties that protect 
communication and biometric data. These properties can be formally verified to assess the 
security and integrity of the protocol under verification. Common security properties that 
can be verified with a security protocol model include: 

Confidentiality: Confidentiality is the primary property in any security protocol to 
ensure that sensitive information remains accessible only to intended parties. It protects 
data from unauthorized access or disclosure, maintaining privacy and trust. Encryption 
techniques, secure communication channels, and strict access controls achieve this, 
safeguarding confidential data from eavesdropping and cyber threats from attacker. 
 
                                          ∀ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴,𝑃𝑃𝑃𝑃[𝐴𝐴(𝐶𝐶) = 𝑀𝑀]  ≤  ϵ                       (1) 
  
Where: A represents the active adversary, C represents the encrypted ciphertext, M 
represents the plaintext message, and ϵ is a negligible probability. 

Integrity: The integrity of a security protocol ensures that data is accurate, 
consistent, and unaltered by the communicating roles during transmission or storage. It 
protects against unauthorized modifications, ensuring that the information received is 
exactly as intended. We employ techniques such as hashing, checksums, and digital 
signatures to verify data integrity, prevent tampering, and ensure reliability. 
 
                              ∀ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴,𝑃𝑃𝑃𝑃[𝐴𝐴(𝐶𝐶’)  → 𝑀𝑀 𝑎𝑎𝑎𝑎𝑎𝑎 𝑀𝑀′ ≠ 𝑀𝑀]  ≤  ϵ        (2)                 

 
Where: A represents the adversary, C’ represents the modified ciphertext, M represents 
the original plaintext message, M’ represents the adversary’s altered plaintext, and ϵ is a 
negligible probability. 

Authentication: In security protocols, the authentication property verifies the 
identity of the users or systems before granting access to the network resources. It ensures 
that only legitimate entities can interact with the system after verifying their identities. It is 
primarily achieved using passwords, biometrics, multi-factor authentication, and digital 
certificates. Let us consider a message M and the recipient R: 
 
∀𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴,  Pr [𝐴𝐴 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑅𝑅 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑀𝑀 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜               (3) 

  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑆𝑆] ≤ 𝜖𝜖                                 
 
Where: A represents the adversary, M represents the original plaintext message, R 
represents the recipient, and ε is a negligible probability. 

Non-repudiation: The non-repudiation property of a security protocol ensures that 
a party cannot deny the authenticity of their actions or communications. It provides proof 
of origin and integrity of the messages sent, often through digital signatures and audit trails.  
This guarantees that transactions and messages are verifiable and legally binding, 
preventing parties from falsely denying involvement. 
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              ∀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑆𝑆 𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑅𝑅,𝑃𝑃𝑃𝑃 [𝑆𝑆 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑀𝑀 𝑡𝑡𝑡𝑡 𝑅𝑅,            (4) 
𝑏𝑏𝑏𝑏𝑏𝑏 𝑅𝑅 𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑀𝑀 𝑤𝑤𝑤𝑤𝑤𝑤 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑏𝑏𝑏𝑏 𝑆𝑆]  ≥  1 −  𝜀𝜀                             

 
Where: S represents the sender, R represents the recipient, M represents the message, 
and ε is a negligible probability. 
 
2.2 Dolev-Yao (DY) attacker model 
 
The Dolev-Yao adversary is the strongest attacker model used in the formal verification of 
security protocols. This adversary is active, with the ability to intercept, modify, inject, and 
delete messages sent over an insecure network. The model assumes that the adversary 
has complete access to the network and can manipulate any message passing through it, 
as shown in Figure 2. This includes the ability to eavesdrop on every communication, alter 
the content of messages, and fabricate new messages entirely. Despite these capabilities, 
the Dolev-Yao adversary is constrained by the cryptographic primitives in use. Specifically, 
the adversary cannot break encryption schemes, generate valid digital signatures without 
the correct private key, or solve complex mathematical problems that underlie 
cryptographic algorithms, such as factoring large numbers or computing discrete 
logarithms. The Dolev-Yao adversary model assumes that the adversary has several 
significant capabilities: 

Eavesdropping: The attacker has access to any data sent across the network and 
can listen in on all conversations between participants. 

Message modification: The adversary can modify communications in transit, 
thereby altering the content, origin, or destination of the communication. This capability is 
essential for the simulation of real-world scenarios in which adversaries may attempt to 
manipulate data. 

Message injection: The adversary can introduce new communications into the 
network by assuming the identity of a legitimate party. This enables the adversary to 
evaluate the protocol's capacity to differentiate between authentic and forged messages. 

Message deletion: By deleting messages, the adversary can obstruct them from 
reaching their intended recipients. This capability simulates denial-of-service attacks or 
other forms of communication disruption. 

Message replay: The adversary can store messages and replay them at a later 
time, potentially causing confusion or unauthorised actions if the protocol does not account 
for such attacks. 

 

 
 

Figure 2. Roles communicating over the DY channel 
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The Scyther model checker uses the DY attacker model to prove the security 
properties of the protocol under verification. Figure 3 shows the L0 protocol abstract 
security model. Table 1 gives the description of parameters used to build the L0 protocol 
abstract model. 

 

 
 

Figure 3. Existing UIDAI L0 IRIS verification protocol steps 
 

Table 1. Notations used in the L0 protocols' description 

Acronym Meaning 

L0-Dev Device in Level 0 of biometric security protocol 

Uidai-server Unique Identification Authority of India (UIDAI) Server 

DevSerNumber Device Serial Number 

IrisImgRcd Iris Image Record 

DevProvID Device Provider ID 

DevModCode Device Model Code 

DevProKey Device Provision Key (Session Key) 

SHA256 Secure Hash Algorithm 256-bit 

timestamp Time reference used in the protocol 

nonce Number used once in a cryptographic context 

VeriStatus Verification Status 

sk(Uidai-server) UIDAI Server’s Private Key 

pk(L0-Dev) L0 Device’s Public Key 

pk(Uidai-server) UIDAI Server’s Public Key 

Nisynch Non-injective synchronization 

Niagree Non-injective agreement 
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2.3 Existing L0 IRIS verification protocol 
 
Model 1- Existing Aadhar L0 IRIS verification protocol model. 
usertype SessionKey; 
usertype String; 
hashfunction SHA256; 
usertype Imgrcd; 
usertype Binary; 
usertype timestamp; 
 
protocol Aadhar(L0-Dev, Uidai-server) { 
    role L0-Dev { 
        fresh DevSerNumber: String; 
        fresh IrisImgRcd: Imgrcd; 
        var DevProvID: String; 
        var DevModCode: String; 
        var DevProKey: SessionKey; 
        fresh Timestamp: timestamp; 
        var nonce1: Nonce; 
        fresh nonce2: Nonce; 
        var VeriStatus: Binary; 
 
        recv_1(Uidai-server, L0-Dev, { 
            DevProvID, DevModCode, {DevProKey}sk(Uidai-server) 
        }pk(L0-Dev)); 
 
        send_2(L0-Dev, Uidai-server, {{IrisImgRcd}{pk(L0-Dev)}DevProKey, timestamp, 
SHA256(DevSerNumber)}pk(Uidai-server)); 
 
        recv_3(Uidai-server, L0-Dev, { 
            DevProvID, DevModCode, VeriStatus 
        }pk(L0-Dev)); 
 
        // Security claims 
        claim(L0-Dev, Secret, timestamp); 
        claim(L0-Dev, Secret, IrisImgRcd); 
        claim(L0-Dev, Secret, DevSerNumber); 
        claim(L0-Dev, Secret, VeriStatus); 
        claim(L0-Dev, Secret, DevProKey); 
        claim(L0-Dev, Secret, DevModCode); 
        claim(L0-Dev, Secret, DevProvID); 
        claim(L0-Dev, Secret, sk(Uidai-server)); 
        claim(L0-Dev, Alive); 
        claim(L0-Dev, Weakagree); 
        claim(L0-Dev, Nisynch); 
        claim(L0-Dev, Niagree); 
    } 
 
    role Uidai-server { 
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        fresh DevProvID: String; 
        fresh DevModCode: String; 
        fresh DevProKey: SessionKey; 
        var DevSerNumber: String; 
        var IrisImgRcd: Imgrcd; 
        var timestamp: timestamp; 
        fresh nonce1: Nonce; 
 
        send_1(Uidai-server, L0-Dev, { 
            DevProvID, DevModCode, {DevProKey}sk(Uidai-server) 
        }pk(L0-Dev)); 
 
        claim(Uidai-server, Secret, DevProKey); 
 
        var nonce2: Nonce; 
        recv_2(L0-Dev, Uidai-server, {{IrisImgRcd}{pk(L0-Dev)}DevProKey, timestamp, 
SHA256(DevSerNumber) }pk(Uidai-server)); 
 
        fresh VeriStatus: Binary; 
        send_3(Uidai-server, L0-Dev, { 
            DevProvID, DevModCode, VeriStatus 
        }pk(L0-Dev)); 
 
        // Security claims 
        claim(Uidai-server, Secret, DevProKey); 
        claim(Uidai-server, Secret, DevSerNumber); 
        claim(Uidai-server, Secret, VeriStatus); 
        claim(Uidai-server, Secret, DevProvID); 
        claim(Uidai-server, Secret, sk(Uidai-server)); 
        claim(Uidai-server, Secret, IrisImgRcd); 
        claim(Uidai-server, Secret, timestamp); 
        claim(Uidai-server,Nisynch); 
        claim(Uidai-server, Niagree); 
        claim(Uidai-server, Alive); 
    } 
} 
 
When the existing L0 protocol was formally verified using the Scyther model checker, the 
security attacks listed in Table 2 were detected, indicating that the existing protocol was 
not fully secure. The attacks on L0 protocol and its solutions are as follows: 
 
1. Replay attacks: 

• Attack: An attacker could capture valid messages exchanged between the L0-
Device and UIDAI server and replay them at a later time. 

• Impact: The UIDAI server or L0-Device could accept old, valid messages, believing 
they are fresh. This could lead to false authentication of stale or compromised 
biometric data. 

• Prevention: Introduce nonces or timestamps in all messages and ensure that they 
are validated for freshness by both parties. 
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Table 2. Attacks detected in the L0 protocol 
 

Attack Type Attack Present 
Replay Attack  

Man-in-the-Middle (MitM) Attacks  
Key Compromise  
Insider Attacks  

Biometric Data Theft  
Collision Attack  

Denial of Service (DoS) Attacks  
 
2. Man-in-the-Middle (MitM) attacks: 

• Attack: An attacker could intercept communication between the L0-Device and the 
UIDAI server and alter the contents of messages, especially if they can break the 
encryption. 

• Impact: The attacker could modify data such as the IrisImgRcd, DevSerNumber, 
or VeriStatus and send it to the other party, leading to false identification or 
authentication. 

• Prevention: The current protocol encrypts sensitive data with public and private 
keys, but adding message authentication codes (HMAC) or signatures on all 
critical parts of the message could provide integrity checks, making it harder for 
attackers to modify messages undetected. 

3. Key compromise: 
• Attack: If the shared session key (DevProKey) or the UIDAI server's private key 

(sk(Uidai-server)) is compromised, an attacker can decrypt and re-encrypt 
messages, or impersonate either of the communicating roles. 

• Impact: The attacker could completely take over communication, leading to 
unauthorised access, replay of biometric template data, or impersonation. 

• Prevention: Use session key rotation and possibly a more frequent exchange of 
fresh keys. Ensuring that keys are not reused for extended periods can help limit 
the impact of a key compromise attack. 
 

4. Insider attacks: 
• Attack: An insider at the UIDAI server could tamper with VeriStatus or other 

sensitive data and send false verification results. 
• Impact: The L0-Device would receive fraudulent verification results, potentially 

leading to unauthorized access for a verified person. 
• Prevention: Use accountability mechanisms like logs or non-repudiation 

techniques to ensure that every action within the server can be traced to an 
authenticated user. 

5. Biometric data theft: 
• Attack: If the IrisImgRcd (biometric data) is intercepted or extracted from the L0-

Device or UIDAI server by an attacker, the attacker could use this stolen biometric 
template information for future authentication for that verified person and perform 
biometric based transactions. 

• Impact: Stolen biometric data could be reused, compromising the authentication 
process and privacy of the user. 

• Prevention: Ensure that biometric data is properly encrypted during transmission 
({IrisImgRcd}{pk(L0-Dev)}) and apply encryption standards that are resilient 
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against known attacks. Using homomorphic encryption techniques for biometric 
data could also mitigate the impact of data interception by allowing computations 
on encrypted data without decryption. 

6. Weakness in hashing (collision attack): 
• Attack: If the hash function used to hash the DevSerNumber is weak or 

compromised, an attacker could find two different inputs that hash to the same 
value (collision attack). 

• Impact: The attacker could send a different serial number that produces the same 
hash, leading the server to believe it's valid, which would weaken the integrity of 
the protocol. 

• Prevention: Ensure that the hash function is secure and resilient to collision 
attacks. SHA-256 is considered secure at present, but this could change in the 
future. Regularly update to stronger cryptographic algorithms when necessary. 

7. Nonce reuse: 
• Attack: If the nonces (nonce1, nonce2) are not generated uniquely for each 

session or reused across different sessions, an attacker could replay or predict 
messages. 

• Impact: Reusing nonces would make it easier for attackers to inject or replay 
previous valid messages. 

• Prevention: Ensure that nonces are fresh and unique for each session and use 
larger nonce values (128-bit or more) to prevent collisions or predictability. 

8. Lack of mutual authentication: 
• Attack: The protocol may only authenticate one party (e.g., the L0-Device), leaving 

the other party (e.g., UIDAI server) vulnerable to impersonation attacks. 
• Impact: The L0-Device might send sensitive data (biometric or otherwise) to a fake 

UIDAI server. 
• Prevention: Implement mutual authentication where both the L0-Device and UIDAI 

server authenticate each other before exchanging sensitive data. 
9. Denial of service (DoS) attacks: 

• Attack: An attacker could send repeated invalid authentication requests to the 
UIDAI server or L0-Device, overwhelming the system and preventing legitimate 
users from authenticating. 

• Impact: The server or device could be made unavailable, leading to a denial of 
service for legitimate users. 

• Prevention: Implement rate-limiting, CAPTCHA, or similar mechanisms to mitigate 
the impact of repeated malicious requests. Adding resource checks to reject 
obviously invalid data before consuming too many resources is also crucial. 

 
2.3 Securing L0 verification protocol 
 
The potential vulnerabilities identified; the existing model can be fixed using the 
cryptographic techniques below. 

• Nonce and timestamp validation: Ensure that all nonces and timestamps are 
validated for freshness and are unique. 

• Mutual authentication: Ensure that both parties authenticate each other, not just 
one side. 

• Use of HMAC/Signatures: Include signatures or HMAC on critical parts of 
messages to ensure integrity and authenticity. 
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• Regular key rotation: Rotate session keys after a set number of sessions or time 
to limit the impact of key compromises. 
 
The model 2,  as shown in Figure 4, is the fixed version of the L0 protocol. 

 

 
 

Figure 4. Proposed secure L0 IRIS verification protocol steps 
 

Model 2 Proposed secure L0 verification protocol model 
usertype SessionKey; 
usertype String; 
hashfunction SHA256; 
usertype Imgrcd; 
usertype Binary; 
usertype timestamp; 
 
protocol Aadhar(L0-Dev, Uidai-server) { 
    role L0-Dev { 
        fresh DevSerNumber: String; 
        fresh IrisImgRcd: Imgrcd; 
        var DevProvID: String; 
        var DevModCode: String; 
        var DevProKey: SessionKey; 
        fresh Timestamp: timestamp; 
        var nonce1: Nonce; 
        fresh nonce2: Nonce; 
        var VeriStatus: Binary; 
 
        # Receive initial parameters from server, including nonce1 for freshness 
        recv_1(Uidai-server, L0-Dev, { 
            DevProvID, DevModCode, nonce1, {DevProKey}sk(Uidai-server) 
        }pk(L0-Dev)); 
        # Send biometric data, DevSerNumber hash, and freshness (timestamp and 
nonce2) 
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        send_2(L0-Dev, Uidai-server, { 
            {IrisImgRcd, SHA256(DevSerNumber)}DevProKey, nonce2, timestamp 
        }pk(Uidai-server)); 
 
        # Receive verification status with nonce validation 
        recv_3(Uidai-server, L0-Dev, { 
            DevProvID, DevModCode, VeriStatus, nonce1 
        }pk(L0-Dev)); 
 
        # Security claims 
        claim(L0-Dev, Secret, timestamp); 
        claim(L0-Dev, Secret, IrisImgRcd); 
        claim(L0-Dev, Secret, DevSerNumber); 
        claim(L0-Dev, Secret, VeriStatus); 
        claim(L0-Dev, Secret, DevProKey); 
        claim(L0-Dev, Secret, DevModCode); 
        claim(L0-Dev, Secret, DevProvID); 
        claim(L0-Dev, Secret, sk(Uidai-server)); 
        claim(L0-Dev, Alive); 
        claim(L0-Dev, Weakagree); 
        claim(L0-Dev, Nisynch); 
        claim(L0-Dev, Niagree); 
    } 
 
    role Uidai-server { 
        fresh DevProvID: String; 
        fresh DevModCode: String; 
        fresh DevProKey: SessionKey; 
        var DevSerNumber: String; 
        var IrisImgRcd: Imgrcd; 
        var timestamp: timestamp; 
        fresh nonce1: Nonce; 
        fresh nonce2: Nonce; 
 
        # Send initial message with nonce1 for freshness 
        send_1(Uidai-server, L0-Dev, { 
            DevProvID, DevModCode, nonce1, {DevProKey}sk(Uidai-server) 
        }pk(L0-Dev)); 
 
        claim(Uidai-server, Secret, DevProKey); 
 
        # Receive biometric data and nonce2, validate nonce for freshness 
        recv_2(L0-Dev, Uidai-server, { 
            {IrisImgRcd, SHA256(DevSerNumber)}DevProKey, nonce2, timestamp 
        }pk(Uidai-server)); 
 
        # Generate verification status 
        fresh VeriStatus: Binary; 
        # Respond with verification status and nonce1 to ensure freshness 
        send_3(Uidai-server, L0-Dev, { 
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            DevProvID, DevModCode, VeriStatus, nonce1 
        }pk(L0-Dev)); 
 
        # Security claims 
        claim(Uidai-server, Secret, DevProKey); 
        claim(Uidai-server, Secret, DevSerNumber); 
        claim(Uidai-server, Secret, VeriStatus); 
        claim(Uidai-server, Secret, DevProvID); 
        claim(Uidai-server, Secret, sk(Uidai-server)); 
        claim(Uidai-server, Secret, IrisImgRcd); 
        claim(Uidai-server, Secret, timestamp); 
        claim(Uidai-server, Nisynch); 
        claim(Uidai-server, Niagree); 
        claim(Uidai-server, Alive); 
    } 
} 
 

3. Results and Discussion 
 
Based on the verification results presented in Figures 5 and 6, the findings demonstrate 
that the model-checking technique effectively identifies the attacks inherent in the Aadhar 
L0 security protocol. According to the existing L0 protocol specification, the L0 protocol is 
less secure than the L1 protocol. This work proposes a possible fix to the existing attacks 
and introduces a new model that is attack-free. Figures 5 and 6 illustrate how the proposed 
Model-2 resolves the attacks identified in the existing Model-1. The data in Table 3 presents 
the model-checking verification time consumed by both the existing and proposed models. 
The existing model requires less time compared to the proposed model, as this is expected 
because as the number of variables and cryptographic operations increases, the 
verification time increases exponentially because of increased numbers of states and 
transitions in the protocol state space. 
 

 
 

Figure 5. Existing system L0 IRIS verification protocol result 
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Figure 6. Secure L0 IRIS verification protocol result 
 
Table 3. Verification time consumed by L0 existing and proposed system 

Number of Rounds Verification Times in Seconds 

L0 Existing L0 Proposed 

1 1 5 

6 9 15 

10 22 32 

15 46 53 

20 59 69 

25 74 89 

 
4. Conclusions 

 
This study explores the formal analysis and verification of the L0 Iris biometric security 
protocol for the Aadhar biometric infrastructure. Model checking the current Aadhar L0 
biometric verification security protocol revealed the possible security vulnerabilities against 
the Dolev-Yao adversary, which is the most powerful active adversary model. The 
verification results showed that when the iris biometric data was sent over the DY channel, 
there existed replay attacks, MitM attacks, key compromise, insider attacks, biometric data 
theft, collision attacks, and DoS attacks. The attacks were fixed by proposing a new fixed 
model for the L0 iris biometric protocol, which incorporated cryptographic techniques such 
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as the addition of nonce values and role identitty communication. Finally, the proposed L0 
iris model was proved secure using the Scyther model checker. 
               This study showed the effectiveness of the formal verification technique in formal 
analysis and verification of the L0 biometric security protocol. The experimental results 
show how the model checking technique can be used to mathematically prove the reliability 
of the L0 biometric security protocols. This work can be further extended to formal analysis 
and verification of more advanced biometric security protocols such as the L1 biometric 
protocol. 
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