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Abstract

Missing data are frequently present in datasets and give rise to a
myriad of issues that significantly affect data utilization. The
missing data needs to be handled before data can be efficiently
estimated and applied. New ratio estimators for population mean
nonresponse; were proposed for use when data are missing completely at
random and for a more flexible situation where missing data are
missing at random in the study variable under unequal probability
reverse framework; sampling without replacement. Furthermore, the variance
estimators of the proposed ratio estimators were investigated
under a reverse framework. We show theoretically that the
proposed estimators were approximately unbiased estimators. The
proposed estimators were utilized in simulation studies and were
applied to the study of fine particulate matter data in Suan Luang
District, Bangkok, Thailand in order to see how the proposed
estimators performed. The results from the application to fine
particulate matter showed that the ratio estimators and their
variance estimators worked better than existing estimators,
producing less estimated variances. Therefore, they could be
applied to estimate the average fine particulate matter even when
missing values appeared.
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1. Introduction

The available population mean of an auxiliary variable that is positively related to the study variable
can assist in estimating the population mean and make it more accurate. Cochran [1] invented a ratio
estimator for estimating population mean under SRSWOR using the known population mean of an
auxiliary variable in the case of a full response. Bacanli and Kadilar [2] suggested a ratio estimator
for population mean of a study variable based on the Horvitz and Thompson estimator [3]. The
Horvitz and Thompson estimator is a very popular linear estimator for population total that makes
use of the first order inclusion probability (7;) in its estimation. Later, Hajek [4] introduced a
nonlinear estimator for population mean and it is better than the Horvitz and Thompson estimator
in some situations including situations where 7; are not strong or are negatively correlated with y,

(see [5]). The ratio estimator is biased although the bias is small and can be negligible for large
sample size. Thongsak and Lawson [6] investigated the bias and the mean square error (MSE) of a
ratio estimator by introducing a transformation technique to solve bias and MSE under SRSWOR.
They studied how bias and MSE are reduced by applying new estimators to pollution data in Nan,
Thailand. They found that a transformed auxiliary variable can help decrease the bias and MSE
when compared to existing estimators with no transformed format (see [7-9]).

Nonresponse, which usually occurs in sample surveys, may occur as missing completely
at random (MCAR) or uniform nonresponse. MCAR occurs when the observed and missing values
do not depend on the missingness. However, when there is a connection between the missingnesses
and the observed values but not for missing values, nonresponse is called missing at random (MAR).
Ratio estimators have also been adapted for nonresponse. Lawson [10] suggested an approximately
unbiased estimator for estimating the population mean and total under probability proportional to
size sampling with replacement (PPSWR) when the sampling fraction was omitted, and nonresponse
was missing completely at random (MCAR). Lawson [10] invented a new way for creating a ratio
estimator that did not require known response probabilities, but it was under MCAR which does not
occur in practice. Ponkaew and Lawson [11] introduced a new ratio estimator for the population
total under unequal probability sampling without replacement (UPWOR) using a reverse framework
when the nonresponse mechanism was MCAR. Their suggested ratio estimator was based on the
estimator proposed by Sirndal and Lundstrom [12], which was an unbiased estimator for the
population total based on Horvitz and Thompson’s estimator [3]. Ponkaew and Lawson’s estimator
[11] considered a different framework when missing data. However, Sarndal and Lundstorm’s [12]
considered the two-phrase framework which is more complex as it uses a variance estimator under
nonresponse. Both available and unavailable response probability were considered under MCAR
and the sampling fraction was assumed to be small and negligible in Ponkaew and Lawson’s study
[11]. The results indicated that their suggested estimator performed better than the Sarndal and
Lundstrom estimator, based on the relative root mean square error. Ponkaew and Lawson [13]
suggested two estimators for estimating population total linear and ratio estimators based on Séarndal
and Lundstrom [12] and Lawson [10]. It is under the reverse framework for UPWOR in cases where
response probabilities are either known or unknown. The ratio estimator was in a nonlinear form
and it, therefore, needed to be transformed into a linear form using more complex methods. Lawson
and Ponkaew [14] introduced a new generalized regression estimator (GREG) by transforming the
nonlinear estimator suggested by Lawson [10]. They suggested the use of Lawson’s estimator [10]
that was free from response probabilities unlike GREG estimator [3]. The Lawson and Ponkaew
estimator [14] could only be used when nonresponse was under MCAR and only for a small
sampling fraction which is more restricted for use. Later, Lawson and Siripanich [15] improved the
GREG estimator proposed by Lawson and Ponkaew [14] by extending its applicability to a more
flexible situation when nonresponse occurred under missing at random (MAR) where the response
probabilities were not uniform and there was no need to ignore the sampling fraction. The Lawson
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and Siripanich estimator [15] could be used practically in real life situations and was based on the
work of Lawson and Ponkaew [14] and on assumption that the nonresponse was MCAR. Ponkaew
and Lawson [16] proposed new ratio GREG estimators in more flexible situations where the
sampling fraction was both large and small and also where the response probabilities were known
and unknown. Their estimators were in a general form when compared to previous ones and could
be applied more flexibly. Ponkaew and Lawson [17] suggested an improvement to the ratio
estimator proposed by Ponkaew and Lawson [11] that gave more flexibility when nonresponse
occurred under MAR. They proposed new ratio estimators in the presence of nonresponse under
UPWOR under a reverse framework when the population mean of the auxiliary variable was known
and unknown and needed to be estimated from the calibration variable based on the generalized
regression estimator. The results from water demand data in Thailand showed that their suggested
estimators gave smaller errors, especially for large response rates.

Pollution in Thailand attributable to the deleterious repercussions of alarming levels of fine
particulate matter has been perpetuated for years. This problem is destructive to human health and
affects numerous sectors of industry on a large-scale. The air quality in different locations across the
country is variable and tends to fluctuate between seasons as a result of disparate activity leading to
emissions. Data concerning these levels must be acquired to specifically solve the cause of poor air
quality in each location. An intriguing point that impedes the solution to this obstinate issue is the fact
that missing data persist in reports. It is critical for missing data to be dealt with before analysis.

Estimates of air pollution data assist in planning and preparing solutions for this issue.
Chodjuntug and Lawson [18] applied a new imputation method to estimate missing values of fine
particulate matter with a diameter of 2.5 microns (PM2.5) in Bangkok, Thailand and then estimated
the mean of the fine particulate matter under simple random sampling (SRSWOR). The estimator
was in exponential form which was complex when compared to common ratio estimators but had a
higher efficiency than the ratio estimators. The results indicated that the average PM2.5 was 48.20
ug/m? with MSE equal to 0.90 ug/m?. Chodjuntug and Lawson [19] suggested using a response rate
which was free from known parameters and therefore easy to use and also a constant to minimize
MSE to estimate the PM2.5 at Kanchana Phisek Road in Bangkok. The Chodjuntug and Lawson
estimator [19] was in the form of a regression and exponential estimator under SRSWOR. The
results showed that the mean PM2.5 from their suggested estimator was 42.22 pg/m* with MSE of
0.34 pg/m?®. Lawson [20] suggested a new imputation method to estimate carbon monoxide and
nitrogen dioxide based on PM2.5 in Bangkok, Thailand under SRSWOR. The Lawson estimator
used the response rate, a sample regression coefficient and an optimum constant in the estimator
which yielded better results than the existing estimator, producing a lower mean square error.
Similar to Chodjuntug and Lawson [19], Lawson [20] also suggested the use of response rate and
sample regression coefficient in the estimator so when there were no unknown auxiliary parameters
the Lawson estimator could still be applied to estimate the population mean with missing data.

The purpose of this study was to introduce ratio estimators in the case of nonresponse in
the study variables under the nonresponse mechanism MCAR and under a flexible situation when
nonresponse was not uniformly nonresponse under MAR. We also suggested variance estimators
under the reverse framework. The simulation studies and an application to air pollution data in
Thailand enabled us to see the performance of the proposed estimators.

2. Materials and Methods
2.1 Basic setup

Unequal probability sampling without replacement is considered in this study. Let j be the study



Curr. Appl. Sci. Technol. 2024, Vol. 24 (No. 3), e0258414 Ponkaew and Lawson

variable, x and Zz be the auxiliary variables where ) has a positive correlation with x and has
a negative correlation with z . Let £ be a size variable which is correlated with , and it is used

to define the first and joint inclusion probabilities. Let U ={1,2,..., N} be the finite population of
size yand s be a set of sample size n selected from population U/ with unequal probability
sampling without replacement. Let F be the set of all possible subsets of U and the sampling
design P(s) is the probability measure on the possible s, i.e., P(s)>0 forall SEF . Forall ; and
j €U, we define the notation as follows: let 7z, =P(ies)=> P(s) be the first order inclusion

probability and 7, = P(iA j €5)= >’ P(s) be the second order inclusion probability.
so{i,j}
Under a reverse framework, let 7; be a response indicator variable of y; where 7; =1 if
unit 7 responds to item y; otherwise 7; :O .Let R=(r; r, -+ ry)" be the vector of the response

indicator and p, = p = P(r; =1) be the response probability under MAR. Let E g (+) and Vq () be
the expectation and variance operators with respect to the nonresponse mechanism. Let £ P (+) and

Vp (s) be the expectation and variance operators with respect to sampling design. The overall

expectation and variance operators are defined by E(s) and V(e) respectively. The finite population

U is randomly classified into subpopulations according to the nonresponse mechanism that includes
both respondent and non-respondent population subtotals in the first phase. Then in the second

phase, a random sample is selected from the two subpopulations. Assume that ¥ is the estimator of

the population mean. Under a reverse framework, the variance of ¥ can be obtained by

V(V)=E, (?

R)+VqEP (Y

). (1)

2.2 The existing estimators
2.2.1 The estimators in the full response

In a full response case, Horvitz and Thompson [3] proposed a linear estimator for population total
of the study variable based on sample s of size # and it is defined by

Ji
Yir = Z

lES‘

The population mean estimator of Horvitz and Thompson [3] is

4 1 A Yi
Yyr = NHT NZ )

les
A

The variance of ~ HT is
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iU iU j\{iteU

(v, )= = [ZFy,+Z DI yl-y,},

where F =(1-x;)7;, Jljz(ﬂlj—ﬂiﬁj)(ﬂ[ﬁj)_l
The estimator of V(?'H T) is

i€s ies j\{i}es

()| BT T T ],

where £ =(1-7,)77, .},j=(7r,j —72'1-72']-)(72'1-1»72'1-72']4)71

Hajek [4] proposed a nonlinear estimator for estimating population mean and it is defined
by

z)’z

YHa/ ies 7 ] (3)

1
ies 7[

The variance of Y a1

iU iU j\iteU

r(5 A)=L[25(y,»—7)2+2 > J,,»(y,-—?xyj—?)]
Haj )™ p2
)i

The estimator of V( ?H

P (g ZE0TE T Ty 0T 0T |

ies ies j\ites

In the situations that an auxiliary variable x is available and highly correlated with the
study variable ) and the population mean of x is known, Bacanli and Kadilar [2] proposed a ratio

estimator for estimating the population mean of the study variable ) and it is given by

Vo =T =RX , 4)
Xpr
where Y, =N"'Y yz ', X,;;=N"'Y x ' and X=N"Yx.
ies ies ieU

The variance of Y} is
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iU ieU j\{i}eU

V()| BRI R E B IO Ra)0R)

where R=—.
X
The estimator of V()%R ) is

V(YLR):NL{ZF(% Rx) +Z Z A‘(yi—léxi)(yj—]%xj):|’

ies ies j\i}es

=P

where R=— L , Xyr =—Z and ?HT is defined in equation (2).

lEY

HT

When data are missing, the Horvitz and Thompson [3] and the Bacanli and Kadilar [2]
estimators cannot be used to estimate population mean because they require the values of all units
in the sample s.

2.2.2 The existing estimators in the presence of nonresponse

Based on a set of respondents and a reverse framework, Ponkaew and Lawson [13] suggested a
linear estimator that is defined by

7o = Z—ﬁ? (5)

If p, is unknown under the MAR mechanism, the logistic regression or probit models can be used
to approximate it. Then, the linear estimator to estimate population mean is defined by,
1 Ly Y
N ies 7T; pl

Y"(l)

”

Under a reverse framework, the variance of }7 "M is defined by

v(7)= {sz,+z > Syt L E y,},

iU ieU j\ileU ieU

1-p,

i

where F=(1-7)7;, J,;=(,~mz,)(ma;) " and E'=

The estimator of V' (?”(U) is given by

(6)

s 1 rEy? rdyvy; <k}
V(yro)= {z iy oy h Ly inidi ],

2
N ies  Pi ies j\{ites pzp] ies  D;
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where £ =(1-7,)7}, jjj =(my —m7; )7, 7, Y"'. In equation (6), if p; for ies is unknown

then the estimator values of p, are required and are obtained by the logistic regression or probit
models.
For simplicity, Ponkaew and Lawson [13] considered the case when p,=p forall ies

(MCAR nonresponse mechanism) and the Z'(l) is

S 1 <1y,
RS JUAT 7
' Ngs:”ip @
po_Lsny
If p is unknown, it can be estimated by p= z Z— or —. Asaresult, Y/ =—>""=L is
ies ies Nleg ﬁlp

the linear estimator.
Under the reverse framework with MCAR nonresponse mechanism, the variance of
Ponkaew and Lawson [13] estimator is

ieU ieU j\{i}eU ieU

V( «1)) 2 [ZFJ/,JFZ 2 Jyvyt L EY; }

The estimator of V()%_"(‘)) is

1| < rEy? Y rE'y?
V(Yr(l)) |: n lyl Z TRy , (8)
N ies P ies j\{ites p ies
where £ =(1-7,)7} . j[j:(ﬁij —ﬂiﬁj)(ﬂl-jﬂ'[ﬂj)_l and E'=p_—7£ .

The estimator Z'(l) in equation (7) requires the response probability. Therefore, Ponkaew

and Lawson [13] also suggested a nonlinear estimator for population mean that did not require the
response probability as follows.

ny 1Y

Y,(z) ies TP g 7T

' 04 4
Z >+

TT.

ies 1 ies

®

TT;

The variance of ¥/

V(50)s| A0 2 (DT ZE0 TP,

ieU iU j\ileU ieU
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1-p

where E/=—-—.

A

The estimator of V(Y’(Z)) is

(oo L |« nEG 1Y iy =Y (0= )
V(Y;(Z)):—ZI:Zz (=Y +Z Z J7i -
ies ies j\{iles p
v __}%,(2) 2
+Z i 1(yz r ) . (10)
ies p

Lawson [13] proposed a general form of the nonlinear estimator given by
nyi
?0(2) _les 7P
r Z 7; .

ies 70 Dj

an

However, the estimator of Lawson [10] was considered under PPSWR and could be used
to investigate the variance only when the sampling fraction was negligible. We investigate the
variance and associated estimator of Lawson [10] under UPWOR when the sampling fraction is not
negligible as follows.

The variance of ¥ is

V(ﬁ"<2>)=L[ZE(%—7)2+Z Z Jij (yi_Y)(yj_Y)-i-ZEi”(yi_?)z}_

N2 Liev iU jMiteU ieU

The estimator of V()AI”(Z)) is

R ey i 772 )
V(Yum):L ZFIFZ()’Z—Yr()) Yy iy =1 )Gy 1)
r N2
ies Di ies j\{ites pipj
'EAv‘rr '_?77(2) 2
_{_Z}? z(yz r ) i (12)
ies pi

When the data are missing in the study variable ) under MCAR and the auxiliary variable

X isavailable and the population total of X is known, Ponkaew and Lawson [11] proposed a ratio
estimator for population total based on a linear estimator given by

LY

?};(1) _les T.p X '
Zﬁ
ies T,

i
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Then, the ratio estimator for estimating population mean is

1l <1y
20 N 7o
Yé(l) IEY”pX_ X, (13)
Z— XHT
1 1y,
h Y'(l)—— L
where N%ﬂlp

Under the reverse framework, the variance of Zé(l) is

v(7o)= [ZF(,V, Riy+Y ¥ J (- )(Y;—R’?;)+ZE’(,V,-—RX,-)2]
LIV

ieU ieU j\{ijeU ieU

The estimator of V' ()L/R’(D) is

=L |5 A0—Rx)’ iy (=R Ox%) (R Vx;)
V(YR(I)) N2 |:Z +>> = . J J

ies ies j\{i}es

+ZFE(y, . r(l)x) :| (14)

ies

1 LY
N%ﬂp
727

zes i

where R'D—

Ponkaew and Lawson [17] adapted the ratio estimator proposed by Ponkaew and Lawson
[11] for a more flexible situation when nonresponse occurs under MAR. The Ponkaew and Lawson
equation [17] is

I 1y .
Y N . _ 7"(]) _
YR(I) ies pl X= r X, (15)
l & x
FEE  gIE

lGS ies ﬂ-i

S 1 ny;
where ¥V =—>111
' Nies ﬂ-[p[

Under the reverse framework, the variance of Ylé(l) is
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V(g'(l))ZL[ZE(yf_in)2+z 2 sz(yi_in)(yj_ij)szEi"(yi—in)z]

N2 Liev iU j\MiteU iU

The estimator of V(sz"(l)) is

~ A 7 pr(l pr(l
V(?rr(l))zL ZVI-F,-()’Z- —R"Vx,)? Y iy (=R x%) (0, =R"Vx))
R Nz ies Di ies j\{ites pipj
FE-" ‘—]lé”(l)x. 2
_I_Z i l(yl l) , (16)
ies pi
i 1)
where R?//(l):]vlies 7T, P; .
Xi
NZz

ies ‘%i

3. Results and Discussion
3.1 The proposed estimators

In this section, we assumed that the population mean of the auxiliary variable X is known and
nonresponse occurs in the study variable }. The nonresponse mechanisms are considered under
both MCAR and MAR.

Under MCAR, we proposed a new estimator for estimating population mean by adjusting
the Ponkaew and Lawson estimator [11] using Ponkaew and Lawson estimator [13] by replacing

}%r’(” from equation (13) with )%r'@) from equation (9). Then the proposed population mean estimator

-1
nYi i N
Z(Elj _ 7@ _

T

is

S oo T\ A —
YI; :les 11 = X: : X:Rl(z)X, (17)
X §%
3 Xyr
Nies ﬂ-i
. . L P 2
where z’(z)zzf_y’(z—ij and R'®="1—.
ies ﬂ-i ies ﬂ-i X
HT

We suggested a new ratio estimator under MCAR in equation (17) to estimate the population mean.
In Theorem 1, we then demonstrated that the proposed estimator 7: is an approximately unbiased

estimator of Y.

10



Curr. Appl. Sci. Technol. 2024, Vol. 24 (No. 3), e0258414 Ponkaew and Lawson

Theorem 1. Assume that the nonresponse mechanism is MCAR, and ?Rf* is an approximately

);7.

unbiased estimator of Y .

Proof. We show that E(?R’*):Equ (LR,

A, 7O
Let Y —X.
XHT

Under the reverse framework the overall expectation of };,; is defined by

R).

However, y;" is in a form of a nonlinear function. The Taylor linearization approach is

EG)=E,E, (W

applied to transform this estimator into a linear function defined by

711n~Y'(2’+ [(T 1Y (T, ~T)-R(T,~T;) . (18)

~ . . ~ = T
where 7, =) -+ fii , = zr;’ T z p Tzzz;_’, T,=— z;_ =X, Y;'(Z):Fl
ies ‘% [ iU ri ies i ieU Fi ies 2

d R'==L
an T

Then, £ (YR' ) can be approximated from

Ll = 1 o~ ~
7\ ~ ’ _ "(2) . ’ a 7
E(Yy)=E,E, (Y i R)_Equ (Yr T (7 -T)=7 (7, ~T,)~R(7, - RJ

4

= 1 =~ ~
— "(2) l
=E, (Yr +72[(T1 ~T)-Y'(T,-T,)-R(T;, -

Therefore, E (I?R'*)EY and in other words, }714* is an approximately unbiased estimator of Y.

Under MAR, we proposed a new ratio estimator for estimating population mean by
adjusting the Ponkaew and Lawson estimator [17] using the Lawson estimator [11] by replacing

Z"(l) from equation (15) with Z"(z) from equation (11). Then, the proposed population mean
estimator is

11
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-1
LY i
Z(Z] n(2)

)L/ﬂ* __les i Pi\ies Wi Pi
R =

l «x
NZx

ies v

X=R"?X, (19)

-1
N . - R "(2)
where Y,"(z)ZZl—yl(z—lj and R"® ="~
ies ”ipi ies ﬁipi

In Theorem 2 as follows, we demonstrate that }714'* is an approximately unbiased estimator of ¥ .
Theorem 2. Assume that the nonresponse mechanism is MAR, and 71;'* is an approximately

unbiased estimator of Y .

Proof. The proof is similar to Theorem 1.

In Theorem 1 and Theorem 2, we showed that the proposed ratio estimators both under
MCAR and MAR are approximately unbiased estimators of the population mean. Since the new
ratio estimators are in nonlinear forms, Taylor linearization is applied to transform them into linear
forms. In the next step, we investigate the variance and associated estimators of the proposed
estimators under the reverse framework.

3.2 The proposed variance estimators

Under MCAR, Theorem 3 illustrates the variance and its estimator for the proposed ratio estimator

Theorem 3. Under areverse framework with the nonresponse mechanism MCAR.
(1) The variance of };/; is

R PRI AN ]

N? p2 icU iU j\MiteU icU

where  F=(l-7)7; , Jz_'j:(ﬂzj_ﬂiZj)(m”j)il ., E=(-p)p . Z,-'=P()’,-_}7)_%x,- ’

’ v R —
Zj:p(yj—Y)—ij and R=

| =i

(2) The estimator of I}’( )%R’*) is

s 1 e e a
Iy, )=—2|:ZEZi2+Z 2 %yZiZj+Z—E(yi—YR<2>)2}’
h fes ies j\ijes jies P
z1)

12
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i A, PO R .~ PO <0 ?r(z)
! r ! A ’
where Zi=r(y,—Yz )— N X, Zj:rj(yj_YR )— N Xi, R =—= )
Xy

1
Lr r'y A 3 — 1 1_
o=y . Z—) E=(-n)a?, J,=(m;—mm ) mmm,) " p=4=pr.

ies ‘*i \ies

(3) If p is known, then the estimator of } ( ?R'*) is

7 (57)= {zmﬂz > J 22 L Zs@f]
5

[ i€s ies j\i}es ies P
ies ﬂl
r Yy _(=P)p
where p=— or p= z > — | is the estimator of p and E
n ies 7T ies ’ti i
Proof. Assume that the nonresponse mechanism is MCAR.
(1) Let
ny r\!
Z = (le }%/(2)
Yr* ics 7[1' ies 7T XY=t Y=RP)
Z— Xpr .
lG.S
Under the reverse framework, the variance of ?Rj* is equal to
V)=V ) =EY, (g | R +V,E, (Y | R)=V,+V;, (20)

where ¥, :Equ(I%,;* |R) and V, = Vqu(?/é* |R).
Step 1: Investigate the formula of V] =E_ 1V, (}%,;* | R) .

Since Yé* is in the form of a nonlinear function, the Taylor linearization approach is used to

transform this estimator into a linear function.

<k = 1 ~ ~

o yr(2) A ) ‘ p a

V=Y, +72[(T1—T1>—n‘2><7;—T2)—R”’(7;—73)] @D

it RS - so_h
here T=3 721, L s B==YE =%, 7P=L and
where g i leUryl 2 gl ieU,,lv : Niesﬂ- ’ Té o

R

SN

13
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We may rewrite YR’ g i (21) as
Z~r
v =C, +— —+ 22
R.lin Té = ﬂl’ ( )
) y RO - PNAY PR
r_ o 1(2) _ieU D! _icU .
where Z/=r; (yl,—Yr'(z))—TXi , 1T =4 p ,R'=- e and C, is constant.
ieU

Next, we consider £, (Z~['|R) =Z'=p(y,~7) —Exi .

Then, V; =E,V, (Y2"| R) can be approximated by

”(Tz [ZFZ'2+Z > JyZ ]} J v [ZFZ'2+Z > JUZIZJ}

N=E., (?1;

R) = Eq VP (}71:11'”

ieU iU j\{i}eU ieU ieU j\{i}eU

Therefore,

~

l

[Z FZ?+Y 3 JUZ,Z]} 23)

ieU ieU j\{i}eU

R).

R ) can be obtained by

N2p2

Step 2: Investigate the formula of 1, =V E ()L’,g*

The formula of V, =V, E, (I%,Q*

7]

~ Lr* _ 1(2) '
quEp(YR,,m R)—VqE [Y( +— [(T T)-V/O(1, -Ty)-R(T,-T) ] J
- 2V
v/ ieU
-7, (72|, SR|. (4)
ieU

-1
Since the term Z ry; ( Z ri) in equation (24) is in the form of a nonlinear function, the Taylor
ieU

linearization approach is used to transform this estimator into a linear function defined by

14
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where C, is a constant.

Therefore, v, = VqE » (ﬁé*

R) can be approximated from

v, quEp(Cl +NLZ n(; —7>Rj: Nl > E{(y,—Y). (25)

2.2
ieU P ieU

Substitute equations (23) and (25) in equation (20), the variance of ZQ* can then be approximated
by

V(i) o ZREE E J2Z+ ZEOT,

N2 p2Liv iU jMiteU iU
, _ R
where F.=(1-7,)x, , Jl.j:(ﬂijfﬁ,ﬂj)(ﬁiirj)*' ) El-’=(1—p)p > Zi:p(yi_Y)_ﬁxi and
Y

R=—.
X

(2) Assume that p is known.

Recall from equation (20), the variance of )%1;* is equal to
V) =EY, IR+V,E, Xy | R) =V +V,, (26)

where V] :Equ(I%,;* |R) and V, =Vqu(?1$* |R).

Let I}(Z;*) be the estimator of V(Z;*) under the reverse framework defined by
VA=V +V,. @7)

where Vm are the estimators of ¥, and 7 =1,2 . Next, we investigate the estimator of V,, where
m=1,2 as follows.

Step 1: Estimate V, =E_V, Yy |R).

Let ¥, be the estimator of ¥, =EJV, (I%; | R) . To estimate V;, we use the procedure from
Ponkaew and Lawson [14] defined by

15
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s e (1 7
n=v,Y IR)EVP(TZf

2 ies

R J 7 (28)
~ - R
where 7, =7 and Zl.':;; (yi _Zr(2) )_in .
ieU
1 VAR _ .
The term —Z—’ is in the form of Horvitz and Thompson’s [6] estimator, and then
2 ies ﬂi

11

ies ies j\{i}es

s s 1 Z
n=r, [722;
L [ZFZ’2+Z > J zz}

ies ies j\{i}es

j Tz[zm%z A AJ}

Therefore,

A — [ZFZ'ZJFZ > JZ ,} (29)

ies ies j\{i}es

Step 2: Estimate J, =V, E,, (? "

‘o)

1 — 7
From equation (25), V, = W D E(y,-Y ). Considering Y.~ under the reverse framework

ieU ies ¥

7. V. V. A Y
EE, [Zﬂ_—" R] = Np, then Y~ is the estimator of Np. Furthermore, Y, —E](y; — Y]é(z))2 is
ies %

ies /i ies

the approximately unbiased estimator of Z El-'( Y- Y )2 . Then, the estimator of V, is
ieU

11

A 1 }"l L L,*
Vy2———=YLE (-1 (30)

}’;. ies P

Substituting equations (29) and (30) in equation (27), V'(Zé*) can be approximated by

16
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V()?R) SEZP+Y Y J 22 +z _E(y, ?R'@))?]

(z I j |:zes ies j\{iles ies P

ies 70 i
(3) Assuming that p is unknown, then under the reverse framework it can be approximated by

-1
p=—or p=> -+ (z ;j . Therefore, the variance of ?Rj* can be approximated by

ies les

V(vr)= [2FZ'2+2 DA Y’%}
I ies ies j\{iles ies p
(ZJ

ies

, 1-
where p is the estimator of p and E'= ( A 2.2 )p

”i 7T

Theorem 4. Under areverse framework with nonresponse mechanism MAR.
(1) The variance of )%1;’* is

/(i )om | BFEC T T HEL BT

ieU ieU j\{iteU ieU

s =

_ 1-p.
Where Zir/:(yi_Y)_%Xi E}/rzﬂ andR—

><_|| ~|

i

(2) The estimator of V' ( i"*) is

i

T}(}%Rv*): I:ZFZHZ-FZ \Z}: J]ZI'ZJ" Z E"( YR"*)Z} ,
]’; 1es lES‘j 1{ES ies
(E’ T D; j

iy -1
R . ~ pr(2) . Yﬂ(2) ~ . 7
Where Zi”=i(yi_Y1g )_R _)Ci , R (2) :L_’ Yrﬂ(z) :Zl_'yl Z 1 ,
P; N XHT ies 70 Pi \ies 70 P
g Er= a=p)
T, p;

(3) If p; is unknown for some ies, then the estimator of }/ ( ?R"*) is
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A2 1 A T G =Y T
il [z ey 3 damsbiniy)
(z ri j ies ies j\ites ies Pi

ies 70 D;
2 -1
e RO e T o Cny(en Y., (-
where 2= "L(y, 5Ky ROl -y iy | e A
D N X, ies i Pj \ies 7T P; i Pi

and p,is the estimator of p; estimated by the probit or logistic regression models.

Proof. The proof is similar to Theorem 3.
The existing estimators and proposed estimators are shown in Table 1.
3.3 Simulation studies

The efficiency of the proposed estimators are compared with the existing estimators through
simulation studies. The data are generated following the idea of the package ‘sampling’ in R

program (R Core Team [21]) in a case where 7; are weakly correlated with y, which support the
results found in Sérndal et al. [5] that the Hajek estimator [4] is better than Horvitz and Thompson
[3] in some situations including situations where 7z; are not strong or are negatively correlated with

V; . Since the existing estimators are developed from the Horvitz and Thompson estimator [3] and

the proposed estimators are derived from the Hajek estimator [4] under the same situations when
nonresponse occurs in the study variable, generating the model shown below to see the performance

1
of the proposed estimators. The model is defined by y,=—20+—+8x” +6w? where N=2,000,
T

- - PGSO =) i=1,2,..,N. Th
x,~N(65,5), w~N@30,5), z,=P = +N—1’ g_ki/l;ki , and ,2,..,N. The

UPWOR is used to select six levels of sample sizes that are 50, 100, 200, 300, 400 and 500. In the
presence of nonresponse, we consider three levels of response probabilities; 60%, 75% and 90%,
and we assume the response probabilities are unknown because it is what occurs in real life. Then,
we define the notation of the estimators of response probabilities for both MCAR and MAR as
follows.

n A I 1 ) s
Let plzr/ n and p,=Y - /> — be the estimators of response probabilities under MCAR
ies *ti [ ies Y
while p, and p;, are the estimators of probability of responses using the logistic regression or

probit models under MAR. The mean square error ( MSE ) is used to compare the efficiency of the
proposed variance estimators and the formula of A/SE

Table 1. The existing estimators and proposed estimators
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Type of Author Nonresponse The estimator formula
Estimator Mechanism
E)i}'stirig ionkaew[ 1ag]d MCAR ?r a i > .y,
estimators awson roo
Nies ”ip
MAR YL"(I) :iz i
: Nies ﬂ-ipi
MCAR ny; z ny;
YAr(Z) zies ﬂ-ip ziex 7[[
Loy oy
ies 7[1' ies ﬂ’-i
Lawson [13] MAR LY,
A!I 2 1 ﬂ-ipi
Y; (2) _ies
D h
ies i P
Ponkaew and MCAR 1 Ly,
Lawson [14 . AT
[14] yro Nigmp 5%
! izﬁ
Nign,
Ponkaew and MAR 1 LY,
Lawson [20 A N~
[20] ?”(l)zNiesﬂ'ipi A_/
¥ izﬁ
Nies 71-1'
Proposed MCAR Ly 7 -l
. 171 1
estimators . Zﬂ[Zﬁ ]
Y}; :lES 11 les 1 X
72“&
Nies 7[[
MAR 3 1) (Z i j_l
Yirr*:iesﬂ-ipi ies 70 Pi )_(
K 1 ¥ X
Nies 7[1'
~ 1 M ~ _ )
MSE (Y)z—l (¥, -7,
“Lm=1
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~

where Y, is the estimator of population mean and Y is population mean. The simulation is

repeated 10,000 times (M =10,000). The results are shown in Tables 2-4.

The results from Table 2 show that the proposed estimators }714'* under MAR for both p,,

and p,, gave similar results and gave smaller MSEs compared to all other estimators for all sample

sizes when the response rate was equal to 60%. The proposed estimator }7; under MCAR performed

better than all existing estimators under MCAR and better than some existing estimators with MAR.
The proposed estimators gave a lot smaller MSEs especially for small sample sizes.

Tables 3 and 4 show similar results for the response rates equal to 75% and 90%,

respectively. The proposed estimators Z;'* performed the best in terms of minimum MSEs. Both

1714'* with different values of p.,and p., gave similar results under MAR. As expected, the bigger

response rate the smaller the MSEs seen in the study. The proposed estimators performed a lot better
than the existing estimators under both MCAR and MAR, especially for small sample sizes.

3.4 An application to air pollution data

The air pollution data in Suan Luang District, Bangkok, Thailand from the Air Quality and Noise
Management Division Bangkok [22] collected hourly in August 2022 are applied in this study to
assess the performances of the estimators. The study variable y is PM2.5 (mg/m?®), the temperature
(°C), and particulate matter 10 um or less in diameter (pm 10: mg/m?), are auxiliary variables x
and w, respectively. The average PM2.5 is 11.41 mg/m>. The variable X is used to construct a
proposed ratio estimator while variable W is used to estimate response probability using logistic

regression under the MAR nonresponse mechanism. The size variable k is relative humidity (%).
The correlation coefficient between y and X is 0.12 and between y and k is -0.067. The
nonresponse rate is 1.95% in this study. The Midzuno scheme [23] is used to select a sample size
n=150 records from a population of size 718 records. The results in Table 5 show that the
proposed estimators )71;'* under MAR for both p., and p., gave similar results to the results found

in the simulation studies and gave a smaller estimated variance of the mean of PM2.5 compared to
all other estimators. The proposed estimators under MAR gave a closer estimated mean of PM2.5
compared to the others. The proposed estimators under MCAR gave smaller variances with respect
to all other existing estimators under MCAR and some existing estimators under MAR.

4. Conclusions
New ratio estimators are developed in this study under two nonresponse mechanisms: MCAR and
MAR when the population mean of the auxiliary variable is known. The sampling plan is studied

under PPSWOR and the variance estimators are considered under a reverse framework, both under
MCAR where nonresponse occurs in the study variable under uniform nonresponse and under MAR
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Table 2. The mean square error of the existing estimators and proposed estimators with 60% response rate

Estimator

Mean Square Error

Nonresponse D
Mechanism n
50 100 200 300 400 500
7' MCAR 2 7.35%10°  3.63x10° 1.72x10° 1.16x10° 7.65x<10*  5.87x10%
"
D> 7.31x10° 3.62x10° 1.72x10° 1.15%10° 7.65x10% 5.87x10%
7 MAR Pa 7.35x10° 3.65x10° 1.72x10° 1.10x10° 7.44x10* 5.65x10*
Di> 7.29%10° 3.63x10° 1.72x10° 1.10x10° 7.43x10* 5.65x10*
i MCAR - 7.22x10°  3.61x10°  1.72x10° 1.15%10° 7.65x10*  5.87x10°
yr@ MAR P 7.08x10° 3.54x10° 1.71x10° 1.09x10° 7.43x10* 5.65x10*
Dis 7.09%x10° 3.54x10° 1.71x10° 1.09x10° 7.43x10% 5.65x10%
ﬁém MCAR ) 3.07x10° 1.49x10° 7.01x10* 5.08x10* 3x10% 2.39x10*
D> 3.04x10° 1.49x10° 7x104 5.07x10* 3x10¢ 2.39x10*
ﬁ;’“’ MAR DPa 3.12x10° 1.52x10° 6.92x10* 4.49x10* 2.83x10% 2.24x10%
Di> 3.05%x10° 1.49x10° 6.92x10* 4.49x10% 2.83x10% 2.25x10%
7 MCAR - 3.05x10°  1.49x10°  6.99x10* 4.47x10" 3x10° 2.39x10°
yR MAR Pa 2.93x10° 1.43x10° 6.86x10* 4.46x10* 2.82x10* 2.24x10*
Di> 2.93%10° 1.43x10° 6.87x10* 4.46x10% 2.82x10% 2.24x10%
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Table 3. The mean square error of the existing estimators and proposed estimators with 75% response rate

Estimator

Nonresponse

Mean Square Error

Mechanism p n
50 100 200 300 400 500

7' MCAR 2] 7.15%10° 3.46x10° 1.64x10° 1.08x10° 7.86%10% 6.37x10%
.

D> 7.17x10° 3.46x10° 1.64x10° 1.08%10° 7.86x10°% 6.37x10*

7 MAR Da 7.06x10° 3.38x10° 1.58x10° 1.07x10° 7.76x10* 6.07x10*
!

Din 6.99x10° 3.37x10° 1.58x105 1.07x105 7.76x10° 6.07x10*

i MCAR - 7.10%10% 3.45%10° 1.64x10° 1.08x10° 7.86x10° 6.37x10°

yr@ MAR Pi 6.86x10° 3.35x10° 1.58x10° 1.07x10° 7.74x10% 6.06x10*
"

Dir 6.86x10° 3.35%10° 1.58x10° 1.07%10° 7.74x10% 6.06x10°*

fé(l) MCAR b 2.76x10° 1.53x10° 7.88x10° 4.51x10% 3.22x10° 2.67x10%

D> 2.76x10° 1.53x105 7.85x10% 4.52x10% 3.22x10° 2.67x10%

@r(l) MAR P 2.75%10° 1.45x10° 7.27x10°% 4.30x10% 3.15x10° 2.42x10%

Di 2.66%10° 1.45%10° 7.27x10* 4.30x10* 3.15%10° 2.42x104

vy MCAR - 2.80%103 1.53x10% 7.56x10% 4.51x10% 3.23%10¢ 2.67x104

I?,;'* MAR Da 2.59%10° 1.43x10° 7.26x10* 4.29%10% 3.13x10* 2.42x10%

Dir 2.59x10° 1.43x105 7.26x10% 4.29x10% 3.13x10° 2.42x104
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Table 4. The mean square error of the existing estimators and proposed estimators with 90% response rate

Estimator Nonresponse 1’5 Mean Square Error
Mechanism n
50 100 200 300 400 500
?,(1) MCAR ]3] 4.02x10° 3.73x10° 1.63x10° 1.01x10° 8.71x10% 5.66x10*
’ ﬁz 4.02x10° 3.72x103 1.63x10° 1.01x10° 8.71x104 5.66x10%
?,,(1) MAR ﬁil 3.94x10° 3.65x10° 1.54x10° 9.75x10% 7.91x10% 5.49x10%
' [3[2 3.94x10° 3.64x10° 1.54x10° 9.74x10* 7.91x10* 5.49x10*
?,(2) MCAR - 4.02x10° 3.71x10° 1.62x10° 1.01x10° 8.71x10% 5.65x10*
-
)%,,(2) MAR ﬁ.l 3.89x10° 3.62x10° 1.53x10° 9.71x10* 7.85%10* 5.48x10*
1
" 131‘2 3.89%x10° 3.62x103 1.53x10° 9.71x10% 7.86x10% 5.48x10%
I?,(1) MCAR 131 1.77%10° 1.52x10° 6.72x10* 4.35x10* 4.27x10* 2.30x10*
R
ﬁz 1.77%10° 1.51x10° 6.72x10* 4.35x10* 4.27x10* 2.29x10*
?,,(1) MAR ﬁil 1.72x10° 1.45x10° 6.30x10% 3.88x10% 3.44x10% 2.15x10*
R
13‘2 1.72x10° 1.45x10° 6.29x10% 3.88x10% 3.43x10% 2.15x10*
1
}%,* MCAR - 1.77%10° 1.51x10° 6.30x10* 4.35x10* 4.27x10* 2.29x10*
R
}%,,* MAR ﬁ[l 1.68x10° 1.43x10° 6.26x10* 3.85x10* 3.36x10* 2.14x10*
R
’2_2 1.68x10° 1.43x10° 6.26x10* 3.85x10* 3.37x10* 2.14x10*
1
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Table 5. The estimated mean and variance of PM2.5 in Suan Luang District

Estimator Nonresponse p Estimated Mean of PM2.5 Estimated Variance
Mechanism of Mean of PM2.5
) MCAR P 12.16 0.17881
' P 12.16 0.17882
1 MAR Dit 12.14 0.17721
P 12.14 0.17757
7@ MCAR 2 0.17438
' 12.16
P 0.17436
Fr2) MAR P 12.14 0.17384
Py 12.14 0.17379
?(1) MCAR 2 12.00 0.17674
R
D» 12.00 0.17672
?n(l) MAR Pa 11.98 0.17621
R
Py 11.98 0.17615
Sy MCAR b 0.17437
R
P 1.8 0.17438
r MAR P 11.41 0.17373
R
P 11.41 0.17369

which enhances versatility, and where the nonresponse is not uniform which is more likely to
happen in the real world. The proposed estimators are shown in theory to be approximately unbiased
estimators. The results showed in both simulation studies and in the case of an application to air
pollution data that the proposed estimators under MAR performed the best with respect to all
estimators for all levels of nonresponse rates and sample sizes, and the proposed estimator under
MCAR also performed well when compared to other existing estimators, especially for small
sampling fractions. Although the new estimators offer more flexibility when missing values occur
in the study variable under MAR, the population mean of the auxiliary variable is required. In
future, we can extend our work to cases where the population mean of the auxiliary variable is
unknown and also to situations where nonresponse can occur in both the study and auxiliary
variables under different sampling plans. Nevertheless, the new estimators work well especially for
small sample sizes which can help in saving money and time for researchers in collecting data from
surveys and can be applied to real world problems with more accuracy in the estimation process.
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