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    Abstract 
 

Missing data are frequently present in datasets and give rise to a 
myriad of issues that significantly affect data utilization. The 
missing data needs to be handled before data can be efficiently 
estimated and applied. New ratio estimators for population mean 
were proposed for use when data are missing completely at 
random and for a more flexible situation where missing data are 
missing at random in the study variable under unequal probability 
sampling without replacement. Furthermore, the variance 
estimators of the proposed ratio estimators were investigated 
under a reverse framework.  We show theoretically that the 
proposed estimators were approximately unbiased estimators. The 
proposed estimators were utilized in simulation studies and were 
applied to the study of fine particulate matter data in Suan Luang 
District, Bangkok, Thailand in order to see how the proposed 
estimators performed. The results from the application to fine 
particulate matter showed that the ratio estimators and their 
variance estimators worked better than existing estimators, 
producing less estimated variances. Therefore, they could be 
applied to estimate the average fine particulate matter even when 
missing values appeared. 
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1. Introduction 
 
The available population mean of an auxiliary variable that is positively related to the study variable 
can assist in estimating the population mean and make it more accurate. Cochran [1] invented a ratio 
estimator for estimating population mean under SRSWOR using the known population mean of an 
auxiliary variable in the case of a full response. Bacanli and Kadilar [2] suggested a ratio estimator 
for population mean of a study variable based on the Horvitz and Thompson estimator [3]. The 
Horvitz and Thompson estimator is a very popular linear estimator for population total that makes 
use of the first order inclusion probability ( iπ ) in its estimation. Later, Hájek [4] introduced a 
nonlinear estimator for population mean and it is better than the Horvitz and Thompson estimator 
in some situations including situations where iπ are not strong or are negatively correlated with iy  
(see [5]). The ratio estimator is biased although the bias is small and can be negligible for large 
sample size. Thongsak and Lawson [6] investigated the bias and the mean square error (MSE) of a 
ratio estimator by introducing a transformation technique to solve bias and MSE under SRSWOR. 
They studied how bias and MSE are reduced by applying new estimators to pollution data in Nan, 
Thailand. They found that a transformed auxiliary variable can help decrease the bias and MSE 
when compared to existing estimators with no transformed format (see [7-9]).  

Nonresponse, which usually occurs in sample surveys, may occur as missing completely 
at random (MCAR) or uniform nonresponse. MCAR occurs when the observed and missing values 
do not depend on the missingness. However, when there is a connection between the missingnesses 
and the observed values but not for missing values, nonresponse is called missing at random (MAR).  
Ratio estimators have also been adapted for nonresponse. Lawson [10] suggested an approximately 
unbiased estimator for estimating the population mean and total under probability proportional to 
size sampling with replacement (PPSWR) when the sampling fraction was omitted, and nonresponse 
was missing completely at random (MCAR). Lawson [10] invented a new way for creating a ratio 
estimator that did not require known response probabilities, but it was under MCAR which does not 
occur in practice. Ponkaew and Lawson [11] introduced a new ratio estimator for the population 
total under unequal probability sampling without replacement (UPWOR) using a reverse framework 
when the nonresponse mechanism was MCAR.  Their suggested ratio estimator was based on the 
estimator proposed by Särndal and Lundström [12], which was an unbiased estimator for the 
population total based on Horvitz and Thompson’s estimator [3].  Ponkaew and Lawson’s estimator 
[11] considered a different framework when missing data. However, Sarndal and Lundstorm’s [12] 
considered the two-phrase framework which is more complex as it uses a variance estimator under 
nonresponse.  Both available and unavailable response probability were considered under MCAR 
and the sampling fraction was assumed to be small and negligible in Ponkaew and Lawson’s study 
[11].  The results indicated that their suggested estimator performed better than the Särndal and 
Lundström estimator, based on the relative root mean square error. Ponkaew and Lawson [13] 
suggested two estimators for estimating population total linear and ratio estimators based on Särndal 
and Lundström [12] and Lawson [10]. It is under the reverse framework for UPWOR in cases where 
response probabilities are either known or unknown. The ratio estimator was in a nonlinear form 
and it, therefore, needed to be transformed into a linear form using more complex methods. Lawson 
and Ponkaew [14] introduced a new generalized regression estimator (GREG) by transforming the 
nonlinear estimator suggested by Lawson [10]. They suggested the use of Lawson’s estimator [10] 
that was free from response probabilities unlike GREG estimator [3]. The Lawson and Ponkaew 
estimator [14] could only be used when nonresponse was under MCAR and only for a small 
sampling fraction which is more restricted for use.  Later, Lawson and Siripanich [15] improved the 
GREG estimator proposed by Lawson and Ponkaew [14] by extending its applicability to a more 
flexible situation when nonresponse occurred under missing at random (MAR) where the response 
probabilities were not uniform and there was no need to ignore the sampling fraction.  The Lawson 
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and Siripanich estimator [15] could be used practically in real life situations and was based on the 
work of Lawson and Ponkaew [14] and on assumption that the nonresponse was MCAR.  Ponkaew 
and Lawson [16] proposed new ratio GREG estimators in more flexible situations where the 
sampling fraction was both large and small and also where the response probabilities were known 
and unknown. Their estimators were in a general form when compared to previous ones and could 
be applied more flexibly. Ponkaew and Lawson [17] suggested an improvement to the ratio 
estimator proposed by Ponkaew and Lawson [11] that gave more flexibility when nonresponse 
occurred under MAR.  They proposed new ratio estimators in the presence of nonresponse under 
UPWOR under a reverse framework when the population mean of the auxiliary variable was known 
and unknown and needed to be estimated from the calibration variable based on the generalized 
regression estimator. The results from water demand data in Thailand showed that their suggested 
estimators gave smaller errors, especially for large response rates.  

Pollution in Thailand attributable to the deleterious repercussions of alarming levels of fine 
particulate matter has been perpetuated for years. This problem is destructive to human health and 
affects numerous sectors of industry on a large-scale. The air quality in different locations across the 
country is variable and tends to fluctuate between seasons as a result of disparate activity leading to 
emissions. Data concerning these levels must be acquired to specifically solve the cause of poor air 
quality in each location. An intriguing point that impedes the solution to this obstinate issue is the fact 
that missing data persist in reports.  It is critical for missing data to be dealt with before analysis. 

Estimates of air pollution data assist in planning and preparing solutions for this issue. 
Chodjuntug and Lawson [18] applied a new imputation method to estimate missing values of fine 
particulate matter with a diameter of 2.5 microns (PM2.5) in Bangkok, Thailand and then estimated 
the mean of the fine particulate matter under simple random sampling (SRSWOR). The estimator 
was in exponential form which was complex when compared to common ratio estimators but had a 
higher efficiency than the ratio estimators. The results indicated that the average PM2.5 was 48.20 
μg/m3 with MSE equal to 0.90 μg/m3. Chodjuntug and Lawson [19] suggested using a response rate 
which was free from known parameters and therefore easy to use and also a constant to minimize 
MSE to estimate the PM2.5 at Kanchana Phisek Road in Bangkok. The Chodjuntug and Lawson 
estimator [19] was in the form of a regression and exponential estimator under SRSWOR. The 
results showed that the mean PM2.5 from their suggested estimator was 42.22 μg/m3 with MSE of 
0.34 μg/m3. Lawson [20] suggested a new imputation method to estimate carbon monoxide and 
nitrogen dioxide based on PM2.5 in Bangkok, Thailand under SRSWOR. The Lawson estimator 
used the response rate, a sample regression coefficient and an optimum constant in the estimator 
which yielded better results than the existing estimator, producing a lower mean square error.  
Similar to Chodjuntug and Lawson [19], Lawson [20] also suggested the use of response rate and 
sample regression coefficient in the estimator so when there were no unknown auxiliary parameters 
the Lawson estimator could still be applied to estimate the population mean with missing data. 

 The purpose of this study was to introduce ratio estimators in the case of nonresponse in 
the study variables under the nonresponse mechanism MCAR and under a flexible situation when 
nonresponse was not uniformly nonresponse under MAR.  We also suggested variance estimators 
under the reverse framework. The simulation studies and an application to air pollution data in 
Thailand enabled us to see the performance of the proposed estimators.  

 
 
2. Materials and Methods 
 
2.1 Basic setup 
 
Unequal probability sampling without replacement is considered in this study. Let y  be the study 
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variable,  x  and z  be the auxiliary variables where y  has a positive correlation with x   and has 
a negative correlation with z .  Let k  be a size variable which is correlated with y  and it is used 
to define the first and joint inclusion probabilities.    Let {1,2,..., }=U N be the finite population of 
size N and s  be a set of sample size n  selected from population U  with unequal probability 
sampling without replacement. Let F be the set of all possible subsets of U  and the sampling 
design ( )P •  is the probability measure on the possible ,s  i.e., ( ) 0P s ≥  for all s∈F . For all i  and 
j U∈ , we define the notation as follows: let ( ) ( )i

s i
P i s P sπ

∋
= ∈ =∑  be the first order inclusion 

probability and 
{ , }

( ) ( )ij
s i j

P i j s P sπ
⊃

= ∧ ∈ = ∑  be the second order inclusion probability.  

Under a reverse framework, let ir  be a response indicator variable of  iy  where 1ir =  if 
unit i  responds to item iy  otherwise 0ir = . Let 1 2( )R Nr r r ′=   be the vector of the response 

indicator and ( 1)i ip p P r= = =  be the response probability under MAR. Let ( )qE •  and ( )qV •  be 

the expectation and variance operators with respect to the nonresponse mechanism. Let ( )pE •  and 

( )pV •  be the expectation and variance operators with respect to sampling design. The overall 

expectation and variance operators are defined by ( )E •  and ( )V •  respectively. The finite population 
U is randomly classified into subpopulations according to the nonresponse mechanism that includes 
both respondent and non-respondent population subtotals in the first phase. Then in the second 
phase, a random sample is selected from the two subpopulations. Assume that Ŷ  is the estimator of 
the population mean. Under a reverse framework, the variance of Ŷ  can be obtained by 
 

 
( ) ( )ˆ ˆ ˆ( ) R Rq p q pV Y E V Y V E Y= + .  (1) 

 
2.2 The existing estimators 
 
2.2.1 The estimators in the full response 
 
In a full response case, Horvitz and Thompson [3] proposed a linear estimator for population total 
of the study variable based on sample s of size n  and it is defined by 
 

  ˆ
π∈

=∑ i
HT

i s i

yY  .  

   
The population mean estimator of Horvitz and Thompson [3] is 
 

  
1 1ˆ ˆ

π∈
= = ∑ i

HT HT
i s i

yY Y
N N

 .  (2) 

 

The variance of 
ˆ
HTY is  
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 ( ) 2

2 \{ }

1ˆ i i ij i j
HT i U i U j i U

F y J y yV Y N ∈ ∈ ∈
 +=   
∑ ∑ ∑ ,  

  
where (1 )i i iF π π= − , 1( )( )ij ij i j i jJ π π π π π −= −  .  

The estimator of  ( )ˆ
HT

V Y  is  

 

 ( ) 2

2 \{ }

1 ˆ ˆˆ ˆ i i ij i j
HT i s i s j i s

F y J y yV Y N ∈ ∈ ∈
 +=   
∑ ∑ ∑ , 

 
where 2ˆ (1 )i i iF π π= − , 1ˆ ( )( )ij ij i j ij i jJ π π π π π π −= −  . 
 Hájek [4] proposed a nonlinear estimator for estimating population mean and it is defined 
by 
 

  
ˆ

1

i

i s i
Haj

i s i

y

Y π

π

∈

∈

=
∑

∑
 .  (3) 

 
The variance of ˆ

HajY  is  
 

 ( ) 2

2 \{ }

1ˆ ( ) ( )( )i i ij i jHaj i U i U j i U
F y Y J y Y y YV Y

N ∈ ∈ ∈

 − + − −=   
∑ ∑ ∑ ,  

  
The estimator of  ( )ˆ

HajV Y  is  

 

 ( ) 2

2 \{ }

1 ˆ ˆˆ ˆˆˆ ( ) ( )( )i i ij i Haj j HajHaj i s i s j i s
F y Y J y Y y YV Y

N ∈ ∈ ∈

 − + − −=   
∑ ∑ ∑ . 

 
 In the situations that an auxiliary variable x  is available and highly correlated with the 
study variable y

 
and the population mean of x  is known, Bacanli and Kadilar [2] proposed a ratio 

estimator for estimating the population mean of  the study variable y  and it is given by 
 

 
ˆˆ ˆ
ˆ= =HT

R
HT

YY X RX
X

,  (4) 

where 1 1ˆ
HT i i

i s
Y N yπ− −

∈
= ∑ , 1 1ˆ

HT i i
i s

X N xπ− −

∈
= ∑ and 1

i
i U

X N x−

∈
= ∑ .  

 

The variance of ˆ
RY  is  
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 ( ) 2

2 \{ }

1 ( ) ( )( )ˆ i i i ij i i j j
R i U i U j i U

F y Rx J y Rx y RxV Y N ∈ ∈ ∈
 − + − −=   
∑ ∑ ∑ ,  

 

where 
YR
X

= .   

The estimator of  ( )ˆ
R

V Y  is  

 

 ( )
2

2 \{ }

1 ˆ ˆ ˆ ˆ ˆˆ ˆ ( ) ( )( )i i i ij i i j jR i s i s j i s
F y Rx J y Rx y RxV Y N ∈ ∈ ∈

 − + − −=   
∑ ∑ ∑ ,  

 

where 
ˆ

ˆ
ˆ
HT

HT

YR
X

= , 
1ˆ i

HT
i s i

xX
N π∈

= ∑ and ˆ
HTY is defined in equation (2). 

  
 When data are missing, the Horvitz and Thompson [3] and the Bacanli and Kadilar [2] 
estimators cannot be used to estimate population mean because they require the values of all units 
in the sample .s  
 
2.2.2 The existing estimators in the presence of nonresponse 
 
Based on a set of respondents and a reverse framework, Ponkaew and Lawson [13] suggested a 
linear estimator that is defined by 
 

  (1)ˆ
π∈

′′ =∑ i i
r

i s i i

r yY
p

, (5) 

 
If ip  is unknown under the MAR mechanism, the logistic regression or probit models can be used 
to approximate it. Then, the linear estimator to estimate population mean is defined by,

(1) 1ˆ
ˆ

i i
r

i s i i

r yY
N pπ∈

′′ = ∑ .  

 Under a reverse framework, the variance of (1)ˆ
rY ′′ is defined by 

 ( ) 2 2(1)
2 \{ }

1ˆ i i ij i j i ir i U i U j i U i U
F y J y y E yV Y N ∈ ∈ ∈ ∈

 ′′+ +=′′   
∑ ∑ ∑ ∑ ,  

  

where (1 )i i iF π π= − , 1( )( )ij ij i j i jJ π π π π π −= −  and 
1 i

i
i

pE
p
−′′ = .  

The estimator of ( )(1)ˆ
r

V Y ′′  is given by 

 ( )
2 2

(1)
2

\{ }

ˆˆ ˆ1ˆ ˆ i j ij i ji i i i i i
r

i s i s j i s i si i j i

r r J y yr F y r E yV Y p p p pN ∈ ∈ ∈ ∈

 ′′
= + +′′  

 
∑ ∑ ∑ ∑ ,  (6) 
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where 2ˆ (1 )i i iF π π= − , 1ˆ ( )( )ij ij i j ij i jJ π π π π π π −= − . In equation (6), if ip  for i s∈  is unknown 

then the estimator values of ip  are required and are obtained by the logistic regression or probit 
models.   
 For simplicity, Ponkaew and Lawson [13] considered the case when =ip p  for all   ∈i s

(MCAR nonresponse mechanism)  and the (1)ˆ
rY ′   is  

 

  (1) 1ˆ
π∈

′ = ∑ i i
r

i s i

r yY
N p

. (7) 

 

If p  is unknown, it can be estimated by 
1ˆ i

i s i si i

rp
π π∈ ∈

=∑ ∑  or r
n

. As a result, (1) 1ˆ
ˆπ∈

′ = ∑ i i
r

i s i

r yY
N p

  is 

the linear estimator.  
 Under the reverse framework with MCAR nonresponse mechanism, the variance of 
Ponkaew and Lawson [13] estimator is  
 

 
( ) 2 2

(1)
2 \{ }

1ˆ i i ij i j i i
r i U i U j i U i U

F y J y y E yV Y N ∈ ∈ ∈ ∈
′ + +=′   

∑ ∑ ∑ ∑ . 
  
The estimator of ( )(1)ˆ

r
V Y ′′  is  

 

 ( )
2 2

(1)
2 2

\{ }

ˆˆ ˆ1ˆ ˆ i j ij i ji i i i i i
r

i s i s j i s i s

r r J y yr F y r E yV Y p pN p∈ ∈ ∈ ∈

 ′= + +′  
 
∑ ∑ ∑ ∑ ,   (8) 

 

where 2ˆ (1 )i i iF π π= − , 1ˆ ( )( )ij ij i j ij i jJ π π π π π π −= −  and 
1ˆ

i

pE
pπ
−′=  . 

 The estimator (1)ˆ
rY ′  in equation (7) requires the response probability.  Therefore, Ponkaew 

and Lawson [13] also suggested a nonlinear estimator for population mean that did not require the 
response probability as follows. 
 

 (2)ˆ π π

π π

∈ ∈

∈ ∈

′ = =
∑ ∑

∑ ∑

i i i i

i s i si i
r

i i

i s i si i

r y r y
pY r p r . (9) 

 

The variance of (2)ˆ
rY ′  is  

 

 
( ) ( ) ( )( )2 2

(2)
2 \{ }

1ˆ ( )ji ij i ii ir i U i U j i U i U
y YF J E y Yy Y y YV Y N ∈ ∈ ∈ ∈

 ′−+ + −− −=′   
∑ ∑ ∑ ∑ ,  
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where 
1

i
pE

p
−′= .  

The estimator of ( )(2)ˆ
r

V Y ′  is  

 

 ( )
(2) (2)(2) 2

(2)
2 2

\{ }

ˆ ˆˆ ˆˆ1 ( )( )( )ˆ ˆ i j ij i r i ri i i r
r

i s i s j i s

r r J y Y y Yr F y YV Y N p p∈ ∈ ∈

 ′ ′− −′−= ′ +

∑ ∑ ∑  

                           
(2) 2ˆˆ ( )i i i r

i s

r E y Y
p∈

′ ′−
+ 


∑  . (10) 

 
Lawson [13] proposed a general form of the nonlinear estimator given by 

 (2)ˆ π

π

∈

∈

′′ =
∑

∑

i i

i s i i
r

i

i s i i

r y
pY r
p

. (11) 

 
 However, the estimator of Lawson [10] was considered under PPSWR and could be used 
to investigate the variance only when the sampling fraction was negligible. We investigate the 
variance and associated estimator of Lawson [10] under UPWOR when the sampling fraction is not 
negligible as follows.   

The variance of (2)ˆ
rY ′′ is  

 

 
( ) ( ) ( )( )2 2

(2)
2 \{ }

1ˆ ( )ji ij i ii ir i U i U j i U i U
y YF J E y Yy Y y YV Y N ∈ ∈ ∈ ∈

 ′′−+ + −− −=′′   
∑ ∑ ∑ ∑ . 

 
The estimator of ( )(2)ˆ

r
V Y ′′  is  

 

 ( )
(2) (2)(2) 2

(2)
2

\{ }

ˆ ˆˆ ˆˆ1 ( )( )( )ˆ ˆ i j ij i r j ri i i r
r

i s i s j i si i j

r r J y Y y Yr F y YV Y N p p p∈ ∈ ∈

 ′′ ′′− −′′−= ′′ +

∑ ∑ ∑  

                             
(2) 2ˆˆ ( )i i i r

i s i

r E y Y
p∈

′′ ′′−
+ 


∑  . (12) 

 
 When the data are missing in the study variable y  under MCAR and the auxiliary variable 
x  is available and the population total  of x  is known, Ponkaew and Lawson [11] proposed a ratio 

estimator for population total based on a linear estimator  given by 

 (1)ˆ π

π

∈

∈

′ =
∑

∑

i i

i s i
R

i

i s i

r y
pY Xx . 
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Then, the ratio estimator for estimating population mean is  
 

 
(1)

(1)

1
ˆˆ
ˆ1

π

π

∈

∈

′
′ = =

∑

∑

i i

i s i r
R

i HT
i s i

r y
N p YY X Xx X
N

, (13) 

 

where (1) 1ˆ
π∈

′ = ∑ i i
r

i s i

r yY
N p . 

Under the reverse framework, the variance of (1)ˆ
RY ′  is  

 

( ) ( ) ( )( )2 2
(1)

2 \{ }

1ˆ ( )j ji i i ij i i i i i
R i U i U j i U i U

y RxF y Rx J y Rx E y RxV Y N ∈ ∈ ∈ ∈

 − ′− + − + −=′   
∑ ∑ ∑ ∑ . 

 
The estimator of ( )(1)ˆ

R
V Y ′  is  

 

 ( )
(1) (1)(1) 2

(1)
2 2

\{ }

ˆ ˆ ˆˆ ˆ ( )( )1 ( )ˆ ˆ i j ij i i j ji i i i
R

i s i s j i s

r r J y R x y R xr F y R xV Y pN p∈ ∈ ∈

 ′ ′− −′−= +′ 

∑ ∑ ∑  

                        
(1) 2ˆ ˆ( )i i i i

i s

r E y R x
p∈

′ ′−
+ 
∑  , (14) 

 

where (1)

1

ˆ
1

i i

i s i

i

i s i

r y
N pR x
N

π

π

∈

∈

′ =
∑

∑
. 

  
 Ponkaew and Lawson [17] adapted the ratio estimator proposed by Ponkaew and Lawson 
[11] for a more flexible situation when nonresponse occurs under MAR. The Ponkaew and Lawson 
equation [17] is 
 

 

(1)
(1)

1
ˆˆ

1 1

i i

i s i i r
R

i i

i s i si i

r y
N p YY X Xx x
N N

π

π π

∈

∈ ∈

′′
′′ = =

∑

∑ ∑
, (15) 

where (1) 1ˆ
π∈

′′ = ∑ i i
r

i s i i

r yY
N p .   

Under the reverse framework, the variance of (1)ˆ
RY ′  is  
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( ) ( ) ( )( )2 2
(1)

2 \{ }

1ˆ ( )j ji i i ij i i i i i
R i U i U j i U i U

y RxF y Rx J y Rx E y RxV Y N ∈ ∈ ∈ ∈

 − ′′− + − + −=′′   
∑ ∑ ∑ ∑ . 

 
The estimator of ( )(1)ˆ

R
V Y ′′  is  

 

 ( )
(1) (1)(1) 2

(1)
2

\{ }

ˆ ˆ ˆˆ ˆ ( )( )1 ( )ˆ ˆ i j ij i i j ji i i i
R

i s i s j i si i j

r r J y R x y R xr F y R xV Y p p pN ∈ ∈ ∈

 ′′ ′′− −′′−= +′′ 

∑ ∑ ∑  

                      
(1) 2ˆ ˆ( )i i i i

i s i

r E y R x
p∈

′′ ′′−
+ 


∑  , (16) 

 

where (1)

1

ˆ
1

i i

i s i i

i

i s i

r y
N pR x
N

π

π

∈

∈

′′ =
∑

∑
. 

 
 
3. Results and Discussion 
 
3.1  The proposed estimators 
 
In this section, we assumed that the population mean of the auxiliary variable X  is known and 
nonresponse occurs in the study variable .y   The nonresponse mechanisms are considered under 
both MCAR and MAR.    

Under MCAR, we proposed a new estimator for estimating population mean by adjusting 
the Ponkaew and Lawson estimator [11] using Ponkaew and Lawson estimator [13] by replacing 

(1)ˆ
rY ′  from equation (13) with (2)ˆ′rY  from equation (9). Then the proposed population mean estimator 

is  

   

1

(2)
* (2)

ˆˆ ˆ ,ˆ1

ii i

i si s ii r
R

i HT
i s i

rr y
YY X X R Xx X

N

−

∈∈

∈

 
  ′ ′ ′= = =
∑∑

∑

ππ

π

 (17) 

 

where 
1

(2)ˆ
ππ

−

∈∈

 ′ =  
 
∑∑ ii i

r
i si s ii

rr yY  and  
(2)

(2)
ˆ

ˆ
ˆ
r

HT

YR
X

′
′ = . 

 
We suggested a new ratio estimator under MCAR in equation (17) to estimate the population mean. 

In Theorem 1, we then demonstrated that the proposed estimator *ˆ
RY ′  is an approximately unbiased 

estimator of .Y  
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Theorem 1. Assume that the nonresponse mechanism is MCAR, and *ˆ
RY ′  is an approximately 

unbiased estimator of Y . 
 

Proof.  We show that ( )* *ˆ ˆ( ) RR q p RE Y E E Y Y′ ′= ≅ . 

Let 
(2)

*
ˆˆ
ˆ
r

R
HT

YY X
X

′
′ = .  

Under the reverse framework the overall expectation of  *ˆ
RY ′  is defined by 

 

 
( )* *ˆ ˆ( ) RR q p RE Y E E Y′ ′= . 

  
However, *ˆ

RY ′  is in a form of a nonlinear function. The Taylor linearization approach is 
applied to transform this estimator into a linear function defined by 
 

                                  * (2) (2)
, 1 1 2 2 3 3

2

1ˆ ˆ ˆ ˆ( ) ( ) ( )R lin r rY Y T T Y T T R T TT
′ ′  ≅ + ′ ′− − − − − 

   , (18) 

 

where 1̂ π∈
=∑ i i

i s i i

r yT
p ,  1

∈
=∑ i i

i U i

r yT
p ,  2̂ π∈

=∑ i

i s i i

rT
p  ,  2

∈
=∑ i

i U i

rT
p ,  3

1ˆ
π∈

= ∑ i

i s i

xT
N  ,  3 =T X ,  (2) 1

2
′ =

r
TY
T   

and 1

3

TR
T

′= .  

Then, *ˆ( )RE Y ′  can be approximated from 
 

          ( )* * (2) (2)
, 1 1 2 2 3 3

2

1ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )R RR q p R lin q p r rE Y E E Y E E Y T T Y T T R T TT
 ′ ′ ′  ≅ = + ′− − − − −   
    

(2) (2)
1 1 2 2 2 3

2

1
( ) ( ) ( ) Rq r rE Y T T Y T T R T TT

 ′  = + ′− − − − −   
                            

                       ( )(2) 1R R

i i

i U i
q r q i

i Ui

i U i

r y
pE Y E y Yr N
p

∈

∈

∈

 
 

′= = ≅ = 
  
 

∑
∑

∑

 . 

 

Therefore, *ˆ( )RE Y Y′ ≅  and in other words, *ˆ
RY ′  is an approximately unbiased estimator of .Y  

Under MAR, we proposed a new ratio estimator for estimating population mean by 
adjusting the Ponkaew and Lawson estimator [17]  using the Lawson estimator [11]  by replacing 

(1)ˆ
rY ′′  from equation (15) with (2)ˆ

rY ′′  from equation (11). Then, the proposed population mean 
estimator is  
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1

(2)
* (2)

ˆˆ ˆ ,ˆ1

ii i

i si s i ii i r
R

i HT
i s i

rr y
pp YY X X R Xx X

N

−

∈∈

∈

 
  ′′ ′′ ′′= = =
∑∑

∑

ππ

π

  (19) 

 

  where 
1

(2)ˆ
ππ

−

∈∈

 ′′ =  
 
∑∑ ii i

r
i si s i ii i

rr yY
pp  and 

(2)
(2)

ˆ
ˆ .ˆ

r

HT

YR
X

′′
′′ =  

 

In Theorem 2 as follows, we demonstrate that *ˆ
RY ′′  is an approximately unbiased estimator of  Y . 

Theorem 2. Assume that the nonresponse mechanism is MAR, and *ˆ
RY ′′  is an approximately 

unbiased estimator of Y . 
 
Proof.  The proof is similar to Theorem 1.  
 In Theorem 1 and Theorem 2, we showed that the proposed ratio estimators both under 
MCAR and MAR are approximately unbiased estimators of the population mean. Since the new 
ratio estimators are in nonlinear forms, Taylor linearization is applied to transform them into linear 
forms. In the next step, we investigate the variance and associated estimators of the proposed 
estimators under the reverse framework. 
 
3.2  The proposed variance estimators 
 
Under MCAR, Theorem 3 illustrates the variance and its estimator for the proposed ratio estimator 

*ˆ .RY ′  
 
Theorem 3. Under  a reverse framework with the nonresponse mechanism MCAR.   
(1) The variance of *ˆ

RY ′  is  
 

 ( ) 2 2
*

2 2 \{ }

1 ( )ˆ i i ij i j i i
R i U i U j i U i U

F Z J Z Z E y YV Y N p ∈ ∈ ∈ ∈
′ ′ ′ ′ + + −=′   

∑ ∑ ∑ ∑ ,   

 

where (1 )i i iF π π= − , 1( )( )ij ij i j i jJ π π π π π −= − , (1 )′= −iE p p , ( )′= − −i i i
RZ p y Y x
N

 , 

( )j j j
RZ p y Y x
N

′ = − −  and =
YR
X

.  

(2) The estimator of ( )*ˆ ˆ
R

V Y′ ′  is  

 

       ( ) 2 (2) 2*
2

\{ }

1 ˆˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ( )i
i i ij i j i i RR i s i s j i s i si

i s i

rF Z J Z Z E y YV Y pr
π

∈ ∈ ∈ ∈

∈

 ′ ′ ′ ′ ′+ + −=′    
 
 

∑ ∑ ∑ ∑
∑

, 
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where  
(2)

*
ˆˆˆ ( )i i i R i
RZ r y Y x

N
′

′ ′= − −  , 
(2)

*
ˆˆˆ ( )j j j R j
RZ r y Y x

N
′

′ ′= − − , 
(2)

(2)
ˆ

ˆ
ˆ
r

HT

YR
X

′
′ = , 

1
(2)ˆ

ππ

−

∈∈

 ′ =  
 
∑∑ ii i

r
i si s ii

rr yY , 2ˆ (1 )π π= −i i iF ,  1ˆ ( )( )π π π π π π −= −ij ij i j ij i jJ  , 
(1 )ˆ

i
i

p pE
π
−′= .  

 
(3) If p  is known, then the estimator of ( )*ˆ

R
V Y ′  is 

 

   ( ) 2 (2) 2*
2

\{ }

1 ˆˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ( )ˆ
i

i i ij i j i i RR i s i s j i s i si

i s i

rF Z J Z Z E y YV Y pr
π

∈ ∈ ∈ ∈

∈

 ′ ′ ′ ′ ′+ + −=′    
 
 

∑ ∑ ∑ ∑
∑

, 

 

where ˆ = rp
n

 or 
11

ˆ
ππ

−

∈∈

 
=  

 
∑∑ i

ii i si s

rp  is the estimator of p  and 
ˆ ˆ(1 )ˆ

i
i

p pE
π
−′= .    

      
Proof.  Assume that the nonresponse mechanism is MCAR. 
(1) Let  
 

                               

1

(2)
* (2)

ˆˆ ˆ
ˆ1

ii i

i si s ii r
R

i HT
i s i

rr y
YY X X R Xx X

N

ππ

π

−

∈∈

∈

 
  ′ ′ ′= = =
∑∑

∑
.  

 
Under the reverse framework, the variance of *ˆ

RY ′  is equal to 
 
 * * * *

1 2
ˆ ˆ ˆ ˆ( ) ( ) ( | ) ( | )R RR R q p R q p RV Y V Y E V Y V E Y V V′ ′ ′ ′ ′= = + = + ,             (20) 

 
where *

1
ˆ( | )Rq p RV E V Y ′=  and *

2
ˆ( | )Rq p RV V E Y ′= .  

Step 1: Investigate the formula of *
1

ˆ( | )Rq p RV E V Y ′= .  

Since *ˆ
RY ′  is in the form of a nonlinear function, the Taylor linearization approach is used to 

transform this estimator into a linear function.  

     * (2) (2) (2)
, 1 1 2 2 3 3

2

1ˆ ˆ ˆ ˆ( ) ( ) ( )R lin r rY Y T T Y T T R T TT
′ ′  ≅ + ′ ′− − − − − 

   , (21) 

where 1̂ π∈
=∑ i i

i s i

r yT ,  1
∈

=∑ i i
i U

T r y ,  2̂ π∈
=∑ i

i s i

rT  ,  2
∈

=∑ i
i U

T r ,  3
1ˆ

π∈
= ∑ i

i s i

xT
N  ,  3 =T X ,  (2) 1

2
′ =

r
TY
T  and 

(2) 1

3

TR
T

′ = .  
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We may rewrite *
,

ˆ
R linY ′  in (21) as   

     *
,

2

1ˆ i
R lin o

i s i

ZY C
T π∈

′
′ ≅ + ∑


, (22) 

 

where ( )
(2)

(2)
i i ii r

RZ r xy Y N
′

′= −′−


  , (2) ∈

∈

′ =
∑

∑


i i
i U

r
i

i U

r y
Y

r  , ∈′=
∑


i i

i U
r y

R
X

and oC  is constant.  

 

Next, we consider ( ) ( )′= = − −′ Rq i i ii
RE Z p y Y xZ N

. 

Then, *
1

ˆ( | )Rq p RV E V Y ′=  can be approximated by 
 

     ( ) ( )**
1 ,

2 2

1 1ˆˆ R R R Ri i
q p q p q p q poR linR

i s i si i

Z ZV E V E V E V E VCYY T Tπ π∈ ∈

   ′ ′
= ≅ = =+′′    

   
∑ ∑

 

 

          
2

2 \{ }
2

1
i i ij i jq i U i U j i U

F Z J Z ZE
T ∈ ∈ ∈

  ′ ′ ′+=     
∑ ∑ ∑   R

2

2 2 \{ }

1
i i ij i j

i U i U j i U
F Z J Z Z

N p ∈ ∈ ∈

 ′ ′ ′+=   
∑ ∑ ∑ . 

 
Therefore,   
 

 
2

1 2 2 \{ }

1
i i ij i j

i U i U j i U
F Z J Z ZV

N p ∈ ∈ ∈

 ′ ′ ′+≅   
∑ ∑ ∑ . (23) 

 

Step 2: Investigate the formula of ( )*
2

ˆ Rq p RV V E Y ′= .  

The formula of  ( )*
2

ˆ Rq p RV V E Y ′=
 
can be obtained by 

 

  ( )*
2

ˆ Rq p RV V E Y ′=

 

 

( )* (2) (2)
, 1 1 2 2 3 3

2

1ˆ ˆ ˆ ˆ( ) ( ) ( )R Rq p R lin q p r rV E Y V E Y T T Y T T R T TT
  ′ ′≅ = + ′ ′− − − − −   
    

 ( )(2) ∈

∈

 
 ′= =   
 

∑

∑
 R R

i i
i U

q r q
i

i U

r y
V Y V

r .  (24) 

Since the term ( ) 1−

∈∈

∑∑ ii i i Ui U

rr y  in equation (24) is in the form of a nonlinear function, the Taylor 

linearization approach is used to transform this estimator into a linear function defined by   
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 1
1 ( )∈

∈
∈

≅ + −
∑

∑∑

i i
i U

i i
i Ui

i U

r y
C r y Y

r Np , 

 
where 1C  is a constant. 

Therefore, ( )*
2

ˆ Rq p RV V E Y ′=
 
can be approximated from  

 

 

2
2 1 2 2

1 1( ) ( )
∈ ∈

  ′≅ + − = − 
 

∑ ∑Rq p i i i i
i U i U

V V E C r y Y E y Y
Np N p

. (25) 

 

Substitute equations (23) and (25) in equation (20), the variance of *ˆ
RY ′   can then be approximated 

by 
 

 ( ) 2 2
*

2 2 \{ }

1 ( )ˆ i i ij i j i i
R i U i U j i U i U

F Z J Z Z E y YV Y N p ∈ ∈ ∈ ∈

 ′ ′ ′ ′+ + −=′   
∑ ∑ ∑ ∑ ,   

where (1 )π π= −i i iF , 1( )( )π π π π π −= −ij ij i j i jJ , (1 )′= −iE p p , ( )′= − −i i i
RZ p y Y x
N

 and

=
YR
X

.  

(2) Assume that p is known. 
Recall from equation (20), the variance of *ˆ

RY ′  is equal to  
 
 * * *

1 2
ˆ ˆ ˆ( ) ( | ) ( | )R RR q p R q p RV Y E V Y V E Y V V′ ′ ′= + = + ,             (26) 

 
where *

1
ˆ( | )Rq p RV E V Y ′=  and *

2
ˆ( | )Rq p RV V E Y ′= .  

Let *ˆˆ ( )RV Y ′  be the estimator of *ˆ( )RV Y ′  under the reverse framework defined by 
 

 *
1 2

ˆˆ ˆ ˆ( )RV Y V V′ = + ,             (27) 
 
where m̂V  are the estimators of mV

 
and 1,2m = .  Next, we investigate the estimator of mV  where 

1,2m = as follows. 

Step 1: Estimate *
1

ˆ( | )Rq p RV E V Y ′= .  

Let 1̂V  be the estimator of *
1

ˆ( | )Rq p RV E V Y ′= . To estimate 1V , we use the procedure from 
Ponkaew and Lawson [14] defined by 
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 *
1

2

1ˆˆ ˆ ˆ( | )R Ri
p R p

i s i

ZV V Y V
T π∈

 ′′= ≅  
 

∑


,             (28) 

where  and ( )(2) ′
′= −′−




i i ii r
RZ r xy Y N . 

The term 
2

1 i

i s i

Z
T π∈

′
∑


 is in the form of Horvitz and Thompson’s [6] estimator, and then 

 

 
2

1 2 \{ }2 2

11 ˆ ˆ ˆ ˆ ˆˆ ˆ
ˆ

i i i ij i jp i s i s j i si s i

Z F Z J Z ZV V
T Tπ ∈ ∈ ∈∈

 ′  ′ ′ ′+≅ =     
∑ ∑ ∑∑


R  

                            
2

2 \{ }

1 ˆ ˆ ˆ ˆ ˆ
i i ij i j

i s i s j i s
i

i s i

F Z J Z Z
r
π

∈ ∈ ∈

∈

 ′ ′ ′+=    
 
 

∑ ∑ ∑

∑
.  

 
Therefore,  
 

 

2
1 2 \{ }

1 ˆ ˆ ˆ ˆ ˆˆ i i ij i j
i s i s j i s

i

i s i

F Z J Z ZV
r
π

∈ ∈ ∈

∈

 ′ ′ ′+≅    
 
 

∑ ∑ ∑

∑
. (29) 

 

Step 2: Estimate ( )*
2

ˆ Rq p RV V E Y ′= . 

 

From equation (25),  2
2 2 2

1 ( )i i
i U

V E y Y
N p ∈

′≅ −∑ .  Considering i

i s i

r
π∈

∑  under the reverse framework   

Ri
q p

i s i

rE E Np
π∈

 
= 

 
∑ , then i

i s i

r
π∈

∑
 
is the estimator of .Np  Furthermore, (2) 2ˆˆ ( )i

i i R
i s

r E y Y
p∈

′ ′−∑  is 

the approximately unbiased estimator of 2( )i i
i U

E y Y
∈

′ −∑ . Then, the estimator of 2V  is  

 

 
* 2

2 2
1 ˆˆ ˆ ( )i

i i R
i si

i s i

rV E y Y
pr

π
∈

∈

′ ′≅ −
 
 
 

∑
∑

. (30) 

 

Substituting equations (29) and (30) in equation (27), *ˆ( )RV Y′ ′  can be approximated by 
 

2 i
i U

T r
∈

=∑
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       ( ) 2 (2) 2*
2

\{ }

1 ˆˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ( )i
i i ij i j i i RR i s i s j i s i si

i s i

rF Z J Z Z E y YV Y pr
π

∈ ∈ ∈ ∈

∈

 ′ ′ ′ ′ ′+ + −=′    
 
 

∑ ∑ ∑ ∑
∑

. 

 
(3) Assuming that p  is unknown, then under the reverse framework it can be approximated by 

ˆ = rp
n

 or 
11

ˆ .i
ii i si s

rp
−

∈∈

 
=  

 
∑∑ ππ

 Therefore, the variance of *ˆ
RY ′  can be approximated by 

 

       ( ) 2 (2) 2*
2

\{ }

1 ˆˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ( )ˆ
i

i i ij i j i i RR i s i s j i s i si

i s i

rF Z J Z Z E y YV Y pr
π

∈ ∈ ∈ ∈

∈

 ′ ′ ′ ′ ′+ + −=′    
 
 

∑ ∑ ∑ ∑
∑

,  

 

where p̂  is the estimator of p  and 
(1 )ˆ i

i i

E p pE
π π
′ −′= = . 

 
Theorem  4. Under  a reverse framework with nonresponse mechanism MAR.   
(1) The variance of *ˆ

RY ′′  is  
 

 ( ) 2 2
*

2 \{ }

1 ( )ˆ i i ij i j i i
R i U i U j i U i U

F Z J Z Z E y YV Y N ∈ ∈ ∈ ∈
′′ ′′ ′′ ′′ + + −=′′   

∑ ∑ ∑ ∑ ,  
  

where ( )i i i
RZ y Y x
N

′′= − −
(1 )i

i
i

pE
p
−′′= , and =

YR
X

.  

 
(2) The estimator of ( )*ˆ

R
V Y ′′  is  

 

       ( ) 2 * 2*
2

\{ }

1 ˆˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ( )i
i i ij i j i i RR i s i s j i s i s ii

i s i i

rF Z J Z Z E y YV Y pr
pπ

∈ ∈ ∈ ∈

∈

 ′′ ′′ ′′ ′′ ′′+ + −=′′    
 
 

∑ ∑ ∑ ∑
∑

, 

 

where  
(2)

*
ˆˆˆ ( )i

i i R i
i

r RZ y Y x
p N

′′
′′ ′′= − −  , 

(2)
(2)

ˆ
ˆ

ˆ
r

HT

YR
X

′′
′′ = , 

1
(2)ˆ ii i

r
i si s i ii i

rr yY
pp ππ

−

∈∈

 ′′ =  
 
∑∑ ,    

and 
(1 )ˆ i

i
i i

pE
pπ

−′′= .  

(3) If ip  is unknown for some i s∈ , then the estimator of ( )*ˆ
R

V Y ′′  is 
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∈

 ′′ ′′ ′′ ′′ ′′+ + −=′′    
 
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∑ ∑ ∑ ∑
∑

, 

 

where  
(2)

*
ˆˆˆ ( )ˆ

i
i i R i

i

r RZ y Y x
p N

′′
′′ ′′= − −  , 

(2)
(2)

ˆ
ˆ

ˆ
r

HT

YR
X

′′
′′ = , 

1
(2)ˆ

ˆˆ
ii i

r
i si s i ii i

rr yY
pp ππ

−

∈∈

 ′′ =  
 
∑∑ ,  

ˆ(1 )ˆ
ˆ

i
i

i i

pE
pπ

−′′=

and ˆ ip is the estimator of ip  estimated  by the probit or logistic regression models. 
 
Proof. The proof is similar to Theorem 3.   
 
The existing estimators and proposed estimators are shown in Table 1. 
 
3.3  Simulation studies 
 
The efficiency of the proposed estimators are compared with the existing estimators through 
simulation studies. The data are generated following the idea of the package  ‘sampling’ in R 
program (R Core Team [21]) in a case where iπ are weakly correlated with iy  which support the 
results found in  Särndal et al. [5] that the Hájek  estimator [4] is better than Horvitz and Thompson 
[3]  in some situations including situations where iπ  are  not strong or are negatively correlated with 

iy .   Since the existing estimators are developed from the Horvitz and Thompson estimator [3] and 
the proposed estimators are derived from the Hájek estimator [4] under the same situations when 
nonresponse occurs in the study variable, generating the model shown below to see the performance 

of the proposed estimators. The model is defined by 2 2120 8 6i i i
i

y x w
π

=− + + +  where 2,000,N =  

(65,5),ix N∼  (30,5),iw N∼  ( ) ( 1) ,
1 1i i

N n nP
N N
− −

= +
− −

π   i i i
i U

P k k
∈

= ∑  ,
 

and 1,2,.., .i N=  The 

UPWOR is used to select six levels of sample sizes  that are 50, 100, 200, 300, 400 and 500. In the 
presence of nonresponse, we consider three levels of response probabilities; 60%, 75% and 90%, 
and we assume the response probabilities are unknown because it is what occurs in real life. Then, 
we define the notation of the estimators of response probabilities for both MCAR and MAR as 
follows.  

Let 1p̂ r n=  and 2
1ˆ i

i s i si i

rp
π π∈ ∈

=∑ ∑  be the estimators of response probabilities under MCAR 

while 1ˆip   and 2ˆip  are the estimators of probability of responses using the logistic regression or 
probit models under MAR.  The mean square error ( MSE ) is used to compare the efficiency of the 
proposed variance estimators and the formula of MSE  

 
 
Table 1. The existing estimators and proposed estimators 
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Type of 
Estimator 

Author Nonresponse 
Mechanism 

The estimator formula 

Existing 
estimators 

Ponkaew and 
Lawson [16] 

MCAR (1) 1ˆ i i
r

i s i

r yY
N pπ∈

′ = ∑  

  MAR (1) 1ˆ i i
r

i s i i

r yY
N pπ∈

′′ = ∑  

  MCAR 

(2)ˆ π π

π π

∈ ∈

∈ ∈

′ = =
∑ ∑

∑ ∑

i i i i

i s i si i
r

i i

i s i si i

r y r y
pY r p r  

 Lawson [13] MAR 

(2)ˆ π

π

∈

∈

′′ =
∑

∑

i i

i s i i
r

i

i s i i

r y
pY r
p

 

 Ponkaew and 
Lawson [14] 
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(1)

1
ˆ

1

i i

i s i
R

i

i s i

r y
N pY Xx
N

π

π

∈

∈

′ =
∑

∑
 

 Ponkaew and 
Lawson [20] 
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(1)

1
ˆ

1

i i

i s i i
R

i

i s i

r y
N pY Xx
N

π

π

∈

∈

′′ =
∑

∑
 

Proposed 
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1
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i si s ii
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i
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∈
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  MAR 1
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1

ii i

i si s i ii i
R

i

i s i

rr y
ppY Xx

N

ππ

π

−

∈∈

∈

 
 
 ′′ =
∑∑

∑
 

 
 
 

 
 

 

( ) 2

1

1ˆ ˆ( )
1

M

m
m

MSE Y Y Y
M =

= −
− ∑ , 

 



 
Curr. Appl. Sci. Technol. 2024, Vol. 24 (No. 3), e0258414       Ponkaew and Lawson 
   

 

20 

where ˆ
mY  is the estimator of population mean and  Y is population mean.  The simulation is 

repeated 10,000 times ( 10,000M = ).  The results are shown in Tables 2-4.   

The results from Table 2 show that the proposed estimators *ˆ
RY ′′ under MAR for both 1ˆip

and  2ˆip  gave similar results and gave smaller MSEs compared to all other estimators for all sample 

sizes when the response rate was equal to 60%. The proposed estimator *ˆ
RY ′ under MCAR performed 

better than all existing estimators under MCAR and better than some existing estimators with MAR.  
The proposed estimators gave a lot smaller MSEs especially for small sample sizes. 

Tables 3 and 4 show similar results for the response rates equal to 75% and 90%, 

respectively. The proposed estimators *ˆ
RY ′′ performed the best in terms of minimum MSEs. Both 

*ˆ
RY ′′ with different values of 1ˆip and  2ˆip  gave similar results under MAR. As expected, the bigger 

response rate the smaller the MSEs seen in the study. The proposed estimators performed a lot better 
than the existing estimators under both MCAR and MAR, especially for small sample sizes. 

 
3.4 An application to air pollution data 
 
The air pollution data  in Suan Luang District, Bangkok, Thailand from the Air Quality and Noise 
Management Division Bangkok [22] collected hourly in August 2022 are applied in this study to 
assess the performances of the estimators. The study variable y  is PM2.5 (mg/m3), the temperature 
(oC), and particulate matter 10 μm or less in diameter (pm 10: mg/m3), are auxiliary variables x
and w , respectively.  The average PM2.5 is 11.41 mg/m3. The variable x  is used to construct a 
proposed ratio estimator while variable w  is used to estimate response probability using logistic 
regression under the MAR nonresponse mechanism. The size variable k is relative humidity (%). 
The correlation coefficient between y and x  is 0.12 and between y and k  is -0.067. The 
nonresponse rate is 1.95%  in this study. The Midzuno scheme [23] is used to select a sample size 

150n=  records from a population of size 718 records.   The results in Table 5 show that the 

proposed estimators *ˆ
RY ′′  under MAR for both 1ˆip and 2ˆip  gave similar results to  the results found 

in the simulation studies and gave a smaller estimated variance of the mean of PM2.5 compared to 
all other estimators. The proposed estimators under MAR  gave a closer estimated mean of PM2.5 
compared to the others. The proposed estimators under MCAR gave smaller variances with respect 
to all other existing estimators under MCAR and some existing estimators under MAR.  
 
 
4. Conclusions 
 
New ratio estimators are developed in this study under two nonresponse mechanisms: MCAR and 
MAR when the population mean of the auxiliary variable is known. The sampling plan is studied 
under PPSWOR and the variance estimators are considered under a reverse framework, both under 
MCAR where nonresponse occurs in the study variable under uniform nonresponse and under MAR  



 

 

Table 2. The mean square error of the existing estimators and proposed estimators with 60% response rate 
 

Estimator Nonresponse 
Mechanism 

p̂  Mean Square Error 
n  

50 100 200 300 400 500 

(1)ˆ
rY ′  MCAR 1p̂  7.35×105 3.63×105 1.72×105 1.16×105 7.65×104 5.87×104 

2p̂  7.31×105 3.62×105 1.72×105 1.15×105 7.65×104 5.87×104 
(1)ˆ

rY ′′  MAR 1ˆip  7.35×105 3.65×105 1.72×105 1.10×105 7.44×104 5.65×104 

2ˆip  7.29×105 3.63×105 1.72×105 1.10×105 7.43×104 5.65×104 
(2)ˆ

rY ′  MCAR - 7.22×105 3.61×105 1.72×105 1.15×105 7.65×104 5.87×104 

(2)ˆ
rY ′′  MAR 1ˆip  7.08×105 3.54×105 1.71×105 1.09×105 7.43×104 5.65×104 

2ˆip  7.09×105 3.54×105 1.71×105 1.09×105 7.43×104 5.65×104 
(1)ˆ

RY ′  MCAR 1p̂  3.07×105 1.49×105 7.01×104 5.08×104 3×104 2.39×104 

2p̂  3.04×105 1.49×105 7×104 5.07×104 3×104 2.39×104 
(1)ˆ

RY ′′  MAR 1ˆip  3.12×105 1.52×105 6.92×104 4.49×104 2.83×104 2.24×104 

2ˆip  3.05×105 1.49×105 6.92×104 4.49×104 2.83×104 2.25×104 
*ˆ

RY ′  
MCAR - 3.05×105 1.49×105 6.99×104 4.47×104 3×104 2.39×104 

*ˆ
RY ′′  MAR 1ˆip  2.93×105 1.43×105 6.86×104 4.46×104 2.82×104 2.24×104 

2ˆip  2.93×105 1.43×105 6.87×104 4.46×104 2.82×104 2.24×104 
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Table 3. The mean square error of the existing estimators and proposed estimators with 75% response rate 
 

Estimator Nonresponse 
Mechanism 

p̂  Mean Square Error 
n  

50 100 200 300 400 500 

(1)ˆ
rY ′  

MCAR 
1p̂  7.15×105 3.46×105 1.64×105 1.08×105 7.86×104 6.37×104 

2p̂  7.17×105 3.46×105 1.64×105 1.08×105 7.86×104 6.37×104 

(1)ˆ
rY ′′  

MAR 
1ˆip  7.06×105 3.38×105 1.58×105 1.07×105 7.76×104 6.07×104 

2ˆip  6.99×105 3.37×105 1.58×105 1.07×105 7.76×104 6.07×104 

(2)ˆ
rY ′  

MCAR - 7.10×105 3.45×105 1.64×105 1.08×105 7.86×104 6.37×104 

(2)ˆ
rY ′′  

MAR 
1ˆip  6.86×105 3.35×105 1.58×105 1.07×105 7.74×104 6.06×104 

2ˆip  6.86×105 3.35×105 1.58×105 1.07×105 7.74×104 6.06×104 

(1)ˆ
RY ′  

MCAR 
1p̂  2.76×105 1.53×105 7.88×104 4.51×104 3.22×104 2.67×104 

2p̂  2.76×105 1.53×105 7.85×104 4.52×104 3.22×104 2.67×104 

(1)ˆ
RY ′′  

MAR 
1ˆip  2.75×105 1.45×105 7.27×104 4.30×104 3.15×104 2.42×104 

2ˆip  2.66×105 1.45×105 7.27×104 4.30×104 3.15×104 2.42×104 

*ˆ
RY ′  

MCAR - 2.80×105 1.53×105 7.56×104 4.51×104 3.23×104 2.67×104 

*ˆ
RY ′′  

MAR 
1ˆip  2.59×105 1.43×105 7.26×104 4.29×104 3.13×104 2.42×104 

2ˆip  2.59×105 1.43×105 7.26×104 4.29×104 3.13×104 2.42×104 
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Table 4. The mean square error of the existing estimators and proposed estimators with 90% response rate  
 

Estimator Nonresponse 
Mechanism 

p̂  Mean Square Error 
n  

50 100 200 300 400 500 

(1)ˆ
rY ′  MCAR 1p̂  4.02×105 3.73×105 1.63×105 1.01×105 8.71×104 5.66×104 

2p̂  4.02×105 3.72×105 1.63×105 1.01×105 8.71×104 5.66×104 

(1)ˆ
rY ′′  MAR 1ˆip  3.94×105 3.65×105 1.54×105 9.75×104 7.91×104 5.49×104 

2ˆip  3.94×105 3.64×105 1.54×105 9.74×104 7.91×104 5.49×104 

(2)ˆ
rY ′  MCAR - 4.02×105 3.71×105 1.62×105 1.01×105 8.71×104 5.65×104 

(2)ˆ
rY ′′  MAR 1ˆip  3.89×105 3.62×105 1.53×105 9.71×104 7.85×104 5.48×104 

2ˆip  3.89×105 3.62×105 1.53×105 9.71×104 7.86×104 5.48×104 

(1)ˆ
RY ′  MCAR 1p̂  1.77×105 1.52×105 6.72×104 4.35×104 4.27×104 2.30×104 

2p̂  1.77×105 1.51×105 6.72×104 4.35×104 4.27×104 2.29×104 

(1)ˆ
RY ′′  MAR 1ˆip  1.72×105 1.45×105 6.30×104 3.88×104 3.44×104 2.15×104 

2ˆip  1.72×105 1.45×105 6.29×104 3.88×104 3.43×104 2.15×104 

*ˆ
RY ′  

MCAR - 1.77×105 1.51×105 6.30×104 4.35×104 4.27×104 2.29×104 

*ˆ
RY ′′  MAR 1ˆip  1.68×105 1.43×105 6.26×104 3.85×104 3.36×104 2.14×104 

2ˆip  1.68×105 1.43×105 6.26×104 3.85×104 3.37×104 2.14×104 
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Table 5. The estimated mean and variance of  PM2.5 in  Suan Luang District  
 

Estimator Nonresponse 
Mechanism 

p̂  Estimated Mean of PM2.5 Estimated Variance 
of Mean of PM2.5 

(1)ˆ
rY ′  MCAR 1p̂  12.16 0.17881 

2p̂  12.16 0.17882 

(1)ˆ
rY ′′  MAR 1ˆip  12.14 0.17721 

2ˆip  12.14 0.17757 

(2)ˆ
rY ′  MCAR 1p̂  

12.16 

0.17438 

2p̂  0.17436 

(2)ˆ
rY ′′  MAR 1ˆip  12.14 0.17384 

2ˆip  12.14 0.17379 

(1)ˆ
RY ′  MCAR 1p̂  12.00 0.17674 

2p̂  12.00 0.17672 

(1)ˆ
RY ′′  MAR 1ˆip  11.98 0.17621 

2ˆip  11.98 0.17615 

*ˆ
RY ′  

MCAR 1p̂  

11.58 
0.17437 

2p̂  0.17438 

*ˆ
RY ′′  MAR 1ˆip  11.41 0.17373 

2ˆip  11.41 0.17369 

 
which enhances versatility, and where the nonresponse is not uniform which is more likely to 
happen in the real world. The proposed estimators are shown in theory to be approximately unbiased 
estimators. The results showed in both simulation studies and in the case of an application to air 
pollution data that the proposed estimators under MAR performed the best with respect to all 
estimators for all levels of nonresponse rates and sample sizes, and the proposed estimator under 
MCAR also performed well when compared to other existing estimators, especially for small 
sampling fractions. Although the new estimators offer more flexibility when missing values occur 
in the study variable under MAR, the population mean of the auxiliary variable is required.  In 
future, we can extend our work to cases where the population mean of the auxiliary variable is 
unknown and also to situations where nonresponse can occur in both the study and auxiliary 
variables under different sampling plans. Nevertheless, the new estimators work well especially for  
small sample sizes which can help in saving money and time for researchers in collecting data from 
surveys and can be applied to real world problems with more accuracy in the estimation process. 
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