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Abstract

Indonesia still faces challenges in meeting its national soybean demand.
Genetic diversity can provide new resources to improve soybean
production and quality. Genetic diversity of 53 soybean accessions
introduced from China, based on morphological characteristics and 17 SSR
markers, was analyzed in this study. Principal component analysis (PCA)
conducted on morphological characters produced a total diversity value of
64.67% and identified four main components. Based on phylogenetic
analysis and principal coordinate analysis (PCoA) two accessions showed
low genetic similarity of 78% (China cult-55 and Mi yang niu mao huang),
which indicated that they could be selected as parents for plant breeding
programs. In addition, 772 SSR alleles at an average of 45 alleles per locus
were detected. The average heterozygosity was 0.83, and the average
polymorphic information content (PIC) value was 0.96. All SSR markers
showed a PIC value > 0.8, indicating their informativeness in analyzing
genetic diversity of soybean. The phylogenetic analysis indicated a genetic
similarity of 82% and the accessions were grouped into two main clusters.
The phylogenetic analysis depicted that several accessions could be
grouped based on the growth type and origin. The results of morphological
characterization and molecular markers in the analysis of genetic diversity
are beneficial for selecting parental crosses when developing new varieties.
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1. Introduction

Soybean is one of the three main food commodities in Indonesia, after rice and corn. Soybean
protein content ranged from 35.1-42% [1]. Soybeans with high protein content can be used to meet
the nutrition requirements of the population [2]. In Indonesia, soybeans are often consumed in
processed forms such as tofu, tempeh, soy sauce, soy milk, etc. [3, 4]. Soybean is a plant with a
taproot system, two types of stem growth (determinate and indeterminate), and a trifoliate leaf.
Soybean is a self-pollinating plant and has two flower colors (white and purple). The number of
seeds per pod produced in soybean ranges from 1-5 seeds and the color of the pods when young is
light green and changes to dark brown when pods are mature [5-8]. In 2018, Indonesia's soybean
production was 982,598 tons with a productivity of 1.44 tons/ha [9]. However, this production was
unable to meet the national soybean demand, which averaged at 2.3 million tons/year. Therefore,
Indonesia's dependency on soybean imports increased from 69.7% of domestic consumption in
2013 to 88.1% in 2019 [10]. To achieve soybean self-sufficiency, soybean productivity needs to
be increased through plant breeding to develop new superior varieties [11]. The development of
new superior varieties can be achieved through various methods including artificial crossing [12,
13], mutation induction [14-17], local variety purification [18], and utilization of introduced
varieties [19].

Introduced genotypes with high adaptability such as agronomic performance and higher
productivity than local varieties, have the potential to become new superior varieties and can be
used as parents in soybean breeding programs [20]. There are several methods that can be used in
plant breeding programs, such as hybridization, mutation, genetic transformation, and molecular
breeding through the use of marker-assisted selection techniques [21-23]. In previous studies,
several plant breeding programs for soybeans were reported. These included soybean breeding for
resistance to whitefly [24], molecular breeding to overcome biotic stresses [25], molecular
breeding of long juvenile (LJ) trait to improve soybean yield in low latitude tropical regions[12],
and mutation breeding methods to develop drought tolerant soybean [22]. Plant introduction (PI) is
one of the important sources of targeted traits in soybean breeding programs. For example, LJ trait
was obtained by introducing soybean genotypes having LJ character from the USA [12]. The PIs
obtained from other countries were intensively tested for their phenotypic performances in the
environmental conditions where the soybean variety would be developed. Therefore, for breeding
purposes, it is highly necessary to characterize the introduced soybean genotypes to determine
their properties both at morphological and molecular levels [26].

Plant morphological characteristics can be used as a reference for identification, mapping
of relationships, and taxonomy of plants [27]. However, morphological characters are highly
influenced by environmental factors [28], and thus supporting analysis of genetic diversity using
molecular markers is needed. Analysis of genetic diversity using molecular markers has
advantages because it can be done at early stages of plant growth [29]. In addition, molecular
markers are stable, can distinguish between closely related individuals, and are not influenced by
environmental factors [30]. Morphological characterization still needs to be done despite its
limitations, because an individual selected using molecular markers may not necessarily have the
desired morphological character [31, 32]. Therefore, molecular characterization can be used as
supporting data for morphological characterization results to obtain comprehensive and complete
information on the genetic information of the accession or variety being analyzed.

Molecular markers are parts of DNA sequences scattered throughout the genome that are
used to identify genetic differences between organisms or species [33]. In addition to being used
for genetic diversity analysis [12], molecular markers can also be used in gene mapping analysis
[34, 35], fingerprinting analysis [36], and mutant gene detection [37]. The use of molecular
markers in soybean genetic diversity analysis was carried out in previous studies including Rani et
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al. [38] on 96 soybean accessions with 96 SSR and EST-SSR markers, Jain et al. [39] on 24
soybean genotypes with 18 RAPD markers, Sulistyo et al. [40] on 40 soybean accessions with 13
SSR markers, Slamet ef al. [41] on 40 soybean genotypes using 20 SSR markers, and Agam et al.
[42] on 11 mutant soybean genotypes with 12 RAPD markers.

Simple Sequence Repeat (SSR) is a type of molecular marker with modern techniques
that are widely used by researchers. SSR markers are efficient in differentiating soybean
accessions that are closely related [43]. SSR markers are widely used in genetic diversity analysis
of plants including soybean [12]. SSR markers are codominant, highly reproducible, distributed
well throughout the plant genome, highly polymorphic, and easily amplified through regular PCR
techniques [44, 45]. All those advantages make SSR markers very popular with researchers.

The use of SSR markers for genetic diversity analyses has been widely carried out in
various plant species including oil palm [46], rice [47, 48], mung bean [49], and orchids [50]. SSR
markers have also been used for genetic diversity analysis of introduced soybean genotypes. These
included reports by Lestari et al. [51] on 27 introduced soybean accessions analyzed with 15 SSR
markers, Terryana ef al. [52] on 48 introduced soybean accessions analyzed with 15 SSR markers,
and Nugroho et al. [19] on 35 introduced soybean genotypes originated from various countries and
were analyzed with 15 SSR markers.

Some of the introduced soybean accessions used in this study previously underwent
molecular characterization using SSR markers and morphological characterization using
secondary data from the United States Department of Agriculture (USDA) database [19, 52].
However, the use of SSR marker types was not described in previous studies [19, 52], and such
data, along with morphological data derived from planting outcomes in Indonesia, is an important
and new source of information for soybean breeding programs. Thus, the aim of this study was to
analyze the genetic diversity of 53 Chinese introduced soybean accessions through morphological
and molecular characterization approaches.

2. Materials and Methods
2.1 Study location

The morphological characterization research was conducted at the Cibalagung Experimental Field,
Bogor, West Java, Indonesia (250 m above sea level) in 2015. SSR marker analysis was conducted
at the Molecular Biology Laboratory, Indonesian Center for Agricultural Biotechnology and
Genetic Resources Research and Development (ICABIOGRAD), Bogor, West Java, Indonesia,
from July to September 2021.

2.2 Genetic materials and SSR markers

The genetic material in this study consisted of 53 introduced soybean accessions from China
(Table 1). The 53 introduced soybean accessions from China were selected to initiate new genetic
variations that could be used to develop new soybean varieties that were more resistant to biotic
stresses such as common diseases and insect pests and were tolerant to abiotic stresses such as
drought and salinity, and which offered higher yields under tropical short-day conditions.
Genomic DNA of each accession was used for SSR markers analysis. The characteristics of the
SSR markers used in this study are presented in Table 2.
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Table 1. Characteristics of the 53 introduction soybean accessions from GenBank collection,
ICABIOGRAD (www.ars-grin.gov)

No Accession Code Name of Accession Origin Type of Growth  Maturity Group*
1 - China cult-39 China - -

2 - China cult-38 China - -

3 - China cult-34 China - -

4 - China cult-31 China - -

5 - China cult-32 China - -

6 - China cult-28 China - -

7 - China cult-25 China - -

8 PI1 092573 7768 Jilin Indeterminate Group II
9 PI 079737 N2A Heilongjiang Determinate Group II
10 - China cult-52 China - -

11 - China cult-60 China - -

12 - China cult-41 China - -

13 - China cult-40 China - -

14 P1088302-2 5691 Liaoning Indeterminate Group IV
15 PI 602502 Xiong T huang China Determinate Group 11
16 PI 567589 Wan dou li da dou Shandong Indeterminate Group III
17 PI1 072232 Wong tau Jiangxi Determinate Group III
18 PI 578499 Lu yue bai China Determinate Group 11
19 P1407721 Muim bao jing Heilongjiang Indeterminate Group 11
20 PI291272 Unknown 2 Heilongjiang Indeterminate Group I
21 PI 430620 Hou tzu mao China Indeterminate Group IV
22 PI 587991 Liu yue huang Sichuan Determinate Group 111
23 PI1 587977 Xiao huang dou Sichuan Semi-determinate Group 111
24 PI 567361 Lu fang huang dou Ningxia Indeterminate Group III
25 PI 567359 Hua mei dou Ningxia Indeterminate Group III
26 - China cult-53 China - -

27 - China cult-55 China - -

28 - China cult-60 China - -

29 PI291312 Unknown 3 Heilongjiang Indeterminate Group 0
30 P1 070241 8079 Jilin Determinate Group 1
31 PI1 069501 6946 Jilin Indeterminate Group 11
32 PI 069992 6790 Jilin Indeterminate Group II
33 PI1 072341 8969 Liaoning Determinate Group II
34 P1 092734 7929 Jilin Determinate Group 11
35 PI1 567302 He se huang dou Gansu Indeterminate Group 11
36 PI 567525 Cao qing huang dou Shandong Semi-determinate Group II
37 PI 567537 Gu li hun Shandong Semi-determinate Group II
38 PI 567504 Tu er dun Hebei Determinate Group 111
39 PI 171429 An yang black Henan Determinate Group IV
40 PI 430595 58-161 China Indeterminate Group IV
41 PI 567318 Hua lai dou Gansu Determinate Group IV
42 PI 567368 Xi hi huang dou Ningxia Indeterminate Group IV
43 P1 567476 Yu ci huang Shanxi Indeterminate Group IV
44 PI 567488 A Di liu huang dou No.2 Hebei Indeterminate Group IV
45 PI 567490 Er huang dou Hebei Indeterminate Group IV
46 PI 567571 Ping ding huang Shandong Semi-determinate Group IV
47 P1 567636 Min quan ba yue zha Henan Indeterminate Group IV
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Table 1. Characteristics of the 53 introduction soybean accessions from GenBank collection, ICABIOGRAD
(www.ars-grin.gov) (continued)

No Accession Code Name of Accession Origin Type of Growth  Maturity Group*
48 PI 567769 Tong shan da mian tao Jiangsu Indeterminate Group IV
49 PI 602991 Ni jiao qi do hei dou Shandong Determinate Group IV
50 PI 567343 Ma huang dou Gansu Indeterminate Group V
51 PI 567402 Shi yue han Shaanxi Determinate Group V
52 PI1 567634 Mi yang niu mao huang Henan Determinate Group V
53 PI 567657 Tang he huang dou Henan Determinate Group V

Remarks: *Maturity group: 0 = early; X = late

Table 2. Characteristics of the SSR markers used in this study [53, 54]

SSR Primer sequence PCR
markers Chrom Type of repetition 5> 3) p.roduct
size (bp)
Sati002 - (TA)Stgtacgattt  F: TGTGGGTAAAATAGATAAAAAT e
aaaaataaaata(AT)S R: TCATTTTGAATCGTTGAA
F: CCAACTTGAAATTACTAGAGAAA
Satt009 3 (ATT)14 R: CTTACTAGCGTATTAACCCTT 162
F: AAMMAAGTGAACCAAGCC
Satt030 13 (ATA)1 R: TCTTAAATCTTATGTTGATGC 164
F: GGGAATCTTTTTTTCTTTCTATTAAGTT
Satt038 18 (ATDI7 R: GGGCATTGAAATGGTTTTAGTCA 176
F: TGGTTTCTACTTTCTATAATTATTT
Satt045 15 (AAT)I8 . ATeteTeTOeCTCCT 139
F: AAMATGATTAACAATGTTTATGAT
Satt063 14 (TAA)20 R: ACTTGCATCAGTTAATAACAA 144
F: GGGTTATCCTCCCCAATA
Satt114 13 (AATII7 R: ATATGGGATGATAAGGTGAA 108
F: CCATCCCTTCCTCCAAATAGAT
Satt147 ! (ATA)IS R: CTTCCACACCCTAGTTTAGTGACAA 172
F: CGCGATCATGTCTCTG
Sat191 18 (TAT)I9 R: GGGAGTTGGTGTTTTCTTGTG 226
Satt194 A (ATT)dgag F: GGGCCCAACTGATATTTAATTGTAA »
tasatag(TA)S ~ R: GCGCTTTGTGTTCCGATTTTGAT
F: CACTGCTTTTTCCCCTCTCT
Satt197 1 (ATT)20 R: AAGATACCCCCAACATTATTTGTAA 173
F: GCGTTAAGGTTGGCAGGGTGGAAGT
Sau308 7 (TTA)22 R: GCGCAGCTTTATACAAAAATCAACAA 170
F: GCGTGGCACCCTTGATAAATAA
Sau431 16 (AAT)21 R: GCGCACGAAAGTTTTTCTGTAACA 230
Satid63 ; (AAT)I3(GAT)  F: TTGGATCTATATTCAAACTTTCAAG o1
17 (AAT)19 R: CTGCAAATTTGATGCACATGTGTCTA
F: GCGGTTTCATCTGCAGTGTATTATTAT
Sa607 4 (AADIS R: GCGCCACTTAATTATTTCAGATTAATT 225
F: GCGGGGTATGAATTAATTAATGTAGAAT
Sait646 4 (TTA R: GCGCCTTCAAAAACTAATGACATATCAT 199
F: GCGCCATGAAATTATTTGGCAAGTATT

Sat_140 4 (AT)28 : GCGGTTGAAGAATGGAAACTAAAAATG 205

=

Remarks: SSR: Simple Sequence Repeats; Chrom: Chromosom; PCR: Polymerase Chain
Reaction; bp = base pair; F: forward; R: reverse
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2.3 Procedures
2.3.1 Experimental field

The research was designed using a randomized block design with three replications. Each
accession was planted in a small plot of 3 m x 2 m. The planting distance used was 40 cm x 15 cm
with 2 plants per hole. The soil was cultivated precisely following the soil processing protocol for
soybean adaptation tests [55]. Before land mapping, the soil was fertilized with manure (3
tons/ha). Fertilization was carried out at 12 days after planting with 50 kg urea, 100 kg SP-36, and
100 kg KCI per hectare. Pest and disease control were carried out once a week. Weed control was
intensively carried out as needed in the field [55].

2.3.2 Identifying plant morphology

Observation of flower color was carried out during the R1 phase while the flowering time was
observed when 50% of the population had flowered. Determination of the maturity time was
carried out in the R8 phase when 95% of pods had reached maturity which was indicated by the
color of the pods having changed to yellow-brown and the leaves falling. Observation of seed
color, hilum color, hair color, plant height, pod number, branch number was carried out after the
R8 phase when the plants were harvested. Observation of 100-seed weight was carried out by
counting 100 seeds for each sample and then weighing the dry seeds with 12% moisture content.
Determination yield/plant was done by weighing the number of seeds from each plant when the
seeds were dry with 12% moisture content [56, 57].

2.3.3 Isolation, qualitative and quantitative test of genomic DNA

Genomic DNA was isolated from 0.5 g of young leaf samples of each accession using the Doyle
and Doyle method [58], modified by adding 2% (w/v) PVP. The resulting DNA pellet was
dissolved in 100 pL of TE buffer (10 mM Tris [pH 8.0], ] mM EDTA) and 2 pL of 10 mg/mL
RNAse (Invitrogen, USA) and incubated at 37°C for 1 h.

The qualitative test of genomic DNA was performed by electrophoresis on a 1% agarose
gel. The electrophoresis results were then observed under UV light using a UV Transilluminator
(UVP, UK). The quantitative test of genomic DNA for each accession was performed using a
NanoDrop 2000 Spectrophotometer (Thermo Scientific™, USA).

2.3.4 PCR analysis and electrophoresis

PCR analysis using 17 SSR markers was carried out on the genomic DNA of each accession tested
(Table 2). The genomic DNA of each accession was amplified in a total reaction volume of 10 uL,
consisting of 2 uL of 20 ng DNA template, 5 pL of Kapa2G Fast Ready Mix (KAPA Biosystem,
USA), 0.5 pL of each 10 pM forward and reverse primer, and 2 pL of sterile ddH20. The PCR
protocol, based on a studied conducted by Tasma ef al. [12, 35], included initial denaturation at
95°C for 5 min, DNA amplification for 35 cycles with denaturation at 94°C for 30 s, annealing of
primers at 55°C for 1 min, extension of DNA at 72°C for 1 min, post-extension of DNA at 60°C
for 15 min, and DNA incubation at 10°C for 4 min.

The PCR results were then subjected to electrophoresis using an 8% polyacrylamide gel in a
vertical electrophoresis tank that had been filled with 1x Tris Borate EDTA (TBE) buffer for 115 min at
90 volts. Visualization of DNA bands was performed using ethidium bromide staining on a UV
Transilluminator Gel Doc (Bio Rad, California, USA).
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2.4 Data analysis
2.4.1 Morphological data analysis

The morphological characteristics observed were flowering time, maturity time, flower color, seed
color, hilum color, pubescent color, plant height, branch number/plant, pod number/plant, 100-seed
weight, and seed yield/plant. Before analysis, qualitative morphological data were converted into
quantitative data. Pearson correlation is the most widely used correlation statistic to measure the degree
of the relationship between linearly related variables, and Pearson correlation was conducted in this
study using R Studio software. PCA and PCoA were performed on all morphological data, and the
analysis was conducted using R Studio software [59].

2.4.2 Molecular data analysis

Scoring of DNA band patterns was performed using GelAnalyzer software v.2010a [60]. The scoring
data were analyzed using the sequential agglomerative hierarchical and nested (SAHN) - unweighted
pair group method with arithmetic (UPGMA) program on NTSYS-pc software version 2.1 [61] to
obtain a dendrogram of relationships among accessions. Other data analysis was carried out using
PowerMarker V3.25 software [62] to obtain statistics on polymorphism information content (PIC),
major allele frequency, genetic diversity, and heterozygosity of each SSR marker.

3. Results and Discussion
3.1 Morphological analysis

Diversity plays a crucial role in plant breeding programs [15]. The assessment of the diversity of a
particular crop species creates a foundational data source for selecting parental lines in a plant breeding
program. Crossing genotypes from the same cluster is not favorable because it does not result in
desirable segregates. When genotypes with similar genetic characteristics are grouped together in the
same cluster, it indicates limited diversity [63]. Conversely, genotypes with greater genetic distance,
represented by diverged clusters, signify higher diversity between the clusters. The approach to
determine diversity within a population can be observed through morphological and molecular
characteristics.

The morphological characteristics of soybean accessions introduced from China are presented
in Table 3. The flowering time of introduced accessions ranged from 26-34 days after planting (DAP)
and maturity time ranged from 67-80 DAP. There were 22 introduced accessions with purple flowers
and 31 accessions with white flowers. There were 44 accessions with yellow seed color, yellowish
green (1 accession), green (1 accession), brown (3 accessions), dark brown (1 accession), and black (3
accessions). The variation in hilum color included gray, yellow, light brown, dark brown, black, and
brown. The variation in pubescent color included gray and brown in balanced proportions. Plant height
ranged from 24-74 cm, branch number/plant ranged from 0-4, pod number/plant ranged from 16-58.
The weight of 100 seeds ranged from 6.75-23.38 g and seed yield/plant ranged from 2.86-13.26 g.



Table 3. Morphological characteristics of 53 Chinese soybean introduction accessions at the Cibalagung Experimental Station, Bogor, West Java

No Name of Accession FT (dap) (I(;/g;) FC SC HC PC (lc)lln-l) NBP NPP 100W (g) SYP (g)
1 China cult-39 28 76 W Y Y GY 53.0 2 29 16.37 9.79
2 China cult-38 28 80 w Y DB GY 45.0 1 32 16.41 6.34
3 China cult-34 28 80 w Y LB BR 49.0 1 36 17.62 10.08
4  China cult-31 26 75 w Y Y GY 52.0 1 28 15.47 8.00
5  China cult-32 26 75 P Y Y BR 39.0 1 23 15.96 6.33
6  China cult-28 26 80 P Y Y BR 43.0 0 25 18.24 8.56
7  China cult-25 28 80 P Y Y GY 62.5 0 37 17.91 6.92
8 7768 28 70 P Y Y GY 43.0 2 32 12.44 6.60
9 N2A 28 76 P Y BL BR 475 2 30 14.65 6.98
10 China cult-52 28 75 W Y Y BR 475 1 26 16.76 9.68
11 China cult-60 28 76 W Y Y BR 45.0 1 25 16.97 6.19
12 China cult-41 28 76 w Y Y GY 45.5 1 24 15.14 6.62
13 China cult-40 28 76 w Y BR GY 48.0 1 28 13.80 8.75
14 5691 34 80 P Y GY GY 55.0 3 28 16.92 2.86
15  Xiong yue xiao huang dou 34 76 w Y BL GY 56.0 3 58 12.30 11.32
16  Wan dou li da dou 34 70 W Y BR GY 41.0 3 18 17.59 6.88
17  Wong tau 32 70 P Y BL BR 50.0 4 27 11.47 6.35
18  Lu yue bai 30 76 P GR BL BR 37.5 3 27 17.79 8.59
19  Muim bao jing 30 76 w Y BR BR 53.0 2 24 18.81 7.31

20  Unknown 2 32 76 P BL BL BR 60.0 3 49 9.99 7.33

21  Hou tzu mao 32 76 P YG BR GY 425 2 34 15.31 9.10

22 Liu yue huang 32 67 w Y DB BR 50.5 3 32 11.73 7.59

23 Xiao huang dou 32 67 w Y BR BR 59.5 3 28 11.66 7.59

24 Lu fang huang dou 28 77 \% Y DB BR 51.5 4 31 9.03 3.21

25  Hua mei dou 28 79 w DB BR BR 57.0 4 26 17.67 4.49

26  China cult-53 28 75 P Y Y BR 37.0 1 25 20.95 6.43

27  China cult-55 28 75 w Y Y GY 47.0 1 24 18.70 6.54

28  China cult-60 28 75 W Y Y GY 43.0 0 20 18.25 7.08

Remarks: dap = days after planting, FT = flowering time, MT = maturity time, = FC = flower color, SC = seed color, HC = hilum color, PC =
pubescent color, PH = plant height, NBP = branch number/plant, NPP = pod number/plant, 100W = 100-seed weight, SYP = seed yield/plant,
W = white, P = purple, Y = yellow, GR = green, BL = black, YG = yellowish-green, BR = brown, DB = dark brown, LB = light brown, GY =
Gray
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Table 3. Morphological characteristics of 53 Chinese soybean introduction accessions at the Cibalagung Experimental Station, Bogor, West Java
(continued)

No Name of Accession (::;)) (I(;/;Tp) FC SC HC PC (l;l;ll) NBP NPP 100W (g) SYP (g)
29  Unknown 3 28 75 P Y Y BR 455 1 28 19.52 7.08
30 8079 28 75 P Y BR GY 42.0 2 34 14.00 10.58
31 6946 28 75 W Y BR GY 62.0 2 28 15.55 7.69
32 6790 28 75 W Y BR BR 535 3 38 16.82 9.75
33 8969 28 75 w Y LB GY 36.0 1 27 14.19 8.01
34 7929 28 75 P Y BR GY 61.0 2 30 15.97 7.63
35 He se huang dou 28 70 P BR BR BR 44.5 2 34 11.43 6.30
36  Cao qing huang dou 30 70 P Y BL BR 67.5 3 31 12.56 9.29
37  Gulihun 30 74 P Y BR GY 52.5 3 40 14.47 10.29
38 Tuerdun 28 78 W Y LB GY 27.0 3 28 20.68 6.37
39  Anyang black 28 78 W BL BL BR 39.0 1 20 11.20 4.90
40 58-161 28 74 W Y LB BR 39.0 3 29 23.38 12.36
41  Hualai dou 30 74 w BR BR BR 24.0 2 28 8.57 6.08
42 Xi hi huang dou 30 80 P Y BL BR 64.5 4 35 10.50 5.33
43 Yuci huang 30 74 P Y BR BR 70.0 2 34 9.98 5.53
44 Di liu huang dou No.2 30 80 w Y DB BR 58.0 2 32 14.26 7.82
45  Er huang dou 30 80 P Y DB BR 74.0 3 42 8.30 5.90
46  Ping ding huang 26 80 W Y BL GY 325 2 21 20.10 8.13
47  Min quan ba yue zha 30 79 w Y DB GY 71.5 2 38 9.38 6.31
48  Tong shan da mian tao 30 79 W Y DB GY 71.0 2 36 17.96 10.06
49  Nijiao qi do hei dou 30 80 w BL BL BR 39.0 1 16 17.29 6.21
50  Ma huang dou 30 74 P BR BR GY 70.5 3 56 6.75 6.34
51  Shiyue han 30 70 P Y LB GY 47.0 4 39 11.50 8.07
52 Mi yang niu mao huang 30 70 A\ Y DB BR 52.5 3 34 13.49 10.60
53 Tang he huang dou 30 78 W Y DB BR 45.0 2 34 14.75 13.26
Average 29.17 7551 49.99 1.84 30.66 14.87 7.61

Remarks: dap = days after planting, FT = flowering time, MT = maturity time, = FC = flower color, SC = seed color, HC = hilum color, PC =
pubescent color, PH = plant height, NBP = branch number/plant, NPP = pod number/plant, 100W = 100-seed weight, SYP = seed yield/plant,
W = white, P = purple, Y = yellow, GR = green, BL = black, YG = yellowish-green, BR = brown, DB = dark brown, LB = light brown, GY =
Gray
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Based on the morphological characteristics, flowering and maturity time Table 3, all
soybean accessions introduced from China used in this study were able to be classified into the
early-maturing group according to the criteria established by Rahajeng and Adie [64]. The
maturity group was categorized into 4 groups [64]: early-maturing (<79 days), intermediate (80-85
days), medium (86-90 days), and late-maturing (>90 days). However, based on other
morphological characteristics (Table 3), there was diversity observed in qualitative traits such as
flower color, seed color, hilum color, and pubescent color. Quantitative traits, such as yield and
yield components also exhibited diversity.

The diversity observed in qualitative traits is primarily attributed to genetic factors,
whereas the diversity observed in quantitative morphological traits is influenced not only by
genetic factors but also by environmental factors [65]. Therefore, a more in-depth evaluation of
quantitative traits is necessary as environmental factors significantly impact the expressed traits.
Thus, it is important to align the observations of morphological traits with molecular data to
ensure that selected parents in plant breeding programs have a significant genetic distance. This is
expected to promote the emergence of superior genotypes.

Pearson correlation matrix values for the 11 morphological characteristics indicated that
not all characteristics resulted in a significant positive correlation (Table 4). Plant height and pod
number/plant showed a significant positive correlation, with a matrix correlation value of 0.54 at a
= 0.01 and 0.05. Other morphological characteristics that showed significant positive correlations
were branch number/plant and flowering time (0.53), branch number/plant and hilum color (0.43),
pod number/plant and branch number/plant (0.38), hilum color and seed color (0.38), pod
number/plant and flowering time (0.35), hilum color and flowering time (0.32), pod number/plant
and pubescent color (0.29), pubescent color and seed color (0.28), and plant height and flowering
time (0.28).

The interconnections between different morphological characteristics can be examined
through Pearson correlation analysis (Table 4), which assesses the relationships and associations
among observed morphological traits. High and significantly positive values of the Pearson
correlation matrix indicate a strong correlation among morphological characteristics [66]. The
significant positive correlations obtained in this research facilitate the optimization of genetic
improvement of the introduced soybean accessions through crossbreeding with desired target traits
to obtain superior genotypes.

Table 4. Pearson correlation matrix values of 11 morphological characteristics among 53 soybean
accessions introduced from China

Char FT MT FC SC HC PC PH NBP NPP 100W
MT -0.27

FC 0.09 -0.11

SC 0.09 0.09 0.03

HC 0.32° -0.19 0.08 0.38°

PC -0.05 0.02 0.11 0.28° 0.12

PH 0.28° 0.06 0.19 -0.11 0.17 -0.02

NBP 0.53% -0.3° 0.14 0.07 0.43% 0.12 0.27°

NPP 0.35° -0.01  0.29° 0.03 0.20 -0.13 0.542> 0.382

100W  -0.35° 0.26 -0.22 -0.27 -0.37¢ -0.07  -0.43® 038> .52

SYPpP -0.01 -0.14  -0.17  -0.29° 0.05 -0.07 -0.05 -0.05 0.26 0.26

Remarks: Char = characteristics, FT = flowering time, MT = maturity time, = FC = flower color,
SC = seed color, HC = hilum color, PC = pubescent color, PH = plant height, NBP = branch
number/plant, NPP = pod number/plant, 100W = 100-seed weight, SYP = seed yield/plant, * =
significant correlation a = 0.01, ® = significant correlation at o. = 0.05
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PCA in this study enabled the reduction of morphological characteristics into 4 principal
components with eigenvalue >1, which explained a total variance of 64.67% in 53 accessions
(Table 5). The first principal component with an eigenvalue of 3.08 explains 27.98% of the
variance, including flower color, hilum color, plant height, branch number/plant, and pod
number/plant. The second principal component with an eigenvalue of 1.66 explains 15.09% of the
variance, including the seed color and pubescent color. The third principal component with an
eigenvalue of 1.33 accounted for 12.09% of the variance, including maturity time and plant height.
The fourth principal component with an eigenvalue of 1.05 accounted for 9.52% of the variance,
including maturity time.

Table 5. Principal component analysis (PCA) of morphological characteristics of 53 soybean
accessions introduced from China

Characteristics PC1 PC2 PC3 PC4
Flowering time 0.67 -0.12 -0.25 -0.02
Maturity time -0.33 0.14 0.63 0.53
Flower color 0.36 0.05 0.37 -0.52
Seed color 0.25 0.76 -0.01 0.31
Hilum color 0.60 0.28 -0.34 0.32
Pubescent color 0.09 0.57 -0.08 0.06
Plant height 0.59 -0.29 0.50 0.13
Branch number/plant 0.73 -0.01 -0.28 -0.07
Pod number/plant 0.69 -0.40 0.30 0.26
100-seed weight -0.77 -0.15 -0.18 0.09
Seed yield/plant -0.08 -0.60 -0.41 0.43
Eigenvalue 3.08 1.66 1.33 1.05
Variance (%) 27.98 15.09 12.09 9.52
Cumulative (%) 27.98 43.06 55.16 64.67

Remarks: PC = principal components, the bold numbers contribute to the variance.

PCA is a commonly used analysis for reducing variables and genotypes in a population
[67]. The genetic diversity within a population can be assessed through PCA based on observed
morphological characteristics. Table 5 shows that 4 principle components were identified which
accounted for the genetic diversity of the introduced soybean accessions from China based on
eigenvalue scores. The eigenvalue scores are used to determine the number of variables that
should be retained. Eigenvalue > 1 were capable of explaining the genetic diversity [68]. Each
principle component contributes to the morphological characteristics that generate the genetic
diversity. The contribution of each morphological characteristic is determined by the value of the
principle component. Morphological characteristics with a principle component value >0.5 were
considered to have significant contribution [69]. There are slight differences between the findings
of this study and previous studies reported by Terryana ef al. [52], Nugroho et al. [19], and Lestari
et al. [51], which relied on secondary data. In this study, a total genetic diversity value of 64.67%
was observed with 4 principal components, whereas the previous studies reported a total genetic
diversity of 46.92% with 2 principal components. This study provides additional information,
making it more comprehensive due to the planting location being in Indonesia.

The relative positions of the 53 soybean accessions introduced from China based on
morphological characteristics in a two-dimensional space obtained through PCoA can provide
opportunities to enhance plant selection activities (Figure 1). The 53 soybean accessions
introduced from China tended to spread out and overlap in four quadrants, indicating similarities
in morphological characteristics among the accessions. For example, 116 (wan dou li da dou) and
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132 (6790) fall in the same quadrant, indicating similar morphological characteristics based on
observations (Table 3) such as flower color, seed color, and hilum color. Additionally, both
accessions have the same type of growth, which is indeterminate (Table 1). This suggests that
accessions within the same quadrant are not recommended to be used as parents in breeding
programs due to their close genetic diversity. There are several introduced soybean accessions that
do not overlap and are located in different quadrants, i.e., [15 (Xiong yue xiao huang dou), 120
(Unknown 2), and I50 (ma huang dou), indicating morphological differences. These accessions
have a higher chance of being considered as parental candidates in developing new superior
varieties.

Coordinate

Principle components 2 (15.1%)

Principle components 1 (28%)

Figure 1. The relative positions of the 53 soybean accessions introduced from China based on
morphological characteristics through Principal Coordinate Analysis (PCoA). Number 1-53 are
introduced soybean accessions with their characteristics as shown in Table 1.

PCoA is used to assess proximity among individuals based on similarities in traits [70].
The PcoA revealed that a majority of the introduced soybean accessions from China overlapped in
the same quadrants (Figure 1). According to Lestari et al. [S51], the overlapping of soybean
accessions in the same quadrants is attributed to similarities in morphological characteristics such
as flower color, pod, seed, hilum color, growth type, and others. Consequently, accessions that
overlap in the same quadrant cannot be used as parent sources for crossing due to their close
genetic relatedness.
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3.2 Molecular analysis

All SSR markers were able to demonstrate polymorphic band patterns in the 53 soybean
accessions introduced from China (Table 6). A total of 772 alleles were detected, with a range of
29-62 alleles per locus and an average of 45 alleles per locus. The average frequency of the main
allele was 10%, with the lowest value being 4% (Satt191) and the highest value being 26%
(Satt063). The percentage of genetic diversity, indicating the level of genetic variation within a
population, ranged from 90% (Satt063) to 98% (Satt191, Satt194, Satt197, and Satt431), with an
average of 96%. All SSR markers could detect heterozygous alleles, with values ranging from
0.38 (Satt038) to 1.00 (Satt045, Satt191, Satt431, and Satt646). The polymorphic information
content (PIC) ranged from 0.89 (Satt063) to 0.98 (Satt191, Satt194, Satt197, and Satt431), with an
average PIC value of 0.96.

Table 6. The characteristics of 17 SSR markers used to analyze genetic diversity of 53 introduced
soybean accessions from China

Allele Main Gene
Markers Allele Size (bp) Allele . . Heterozigosity PIC
Number Diversity
Frequency

satt002 32 142-186 0.13 0.94 0.98 0.93
satt009 45 151-270 0.10 0.96 0.98 0.96
satt030 46 156-220 0.07 0.97 0.83 0.97
satt038 37 157-231 0.12 0.95 0.38 0.95
satt045 42 138-202 0.09 0.96 1.00 0.96
satt063 29 119-193 0.26 0.90 0.64 0.89
satt114 30 85-134 0.12 0.95 0.75 0.94
satt147 47 163-252 0.08 0.97 0.98 0.97
satt191 62 188-297 0.04 0.98 1.00 0.98
satt194 60 216-315 0.08 0.98 0.96 0.98
satt197 61 143-247 0.05 0.98 0.98 0.98
satt308 46 134-203 0.07 0.97 0.96 0.97
satt431 62 195-294 0.04 0.98 1.00 0.98
satt463 45 135-284 0.15 0.95 0.62 0.95
satt607 43 222-326 0.09 0.96 0.47 0.96
satt646 44 182-251 0.07 0.97 1.00 0.97
sat_140 41 190-264 0.07 0.97 0.58 0.97
Total 772
Average 45 0.10 0.96 0.83 0.96

Remarks: PIC = polymorphism information content

Genetic diversity analysis in this studies revealed the detection of 772 alleles (Table 6).
It was a higher number of alleles than in the study conducted by Terryana ef al. [52], in which 226
alleles in 48 soybean accessions using 15 SSR markers were detected. Additionally, the study by
Tasma et al. [12] reported a lower number of alleles, with 316 alleles detected in 29 soybean
genotypes using 27 SSR markers. The larger number of soybean accessions and molecular
markers used in this study resulted in a higher number of detected alleles. The number of alleles
and the values of genetic diversity derived from SSR marker analysis are interconnected. In this
study, a higher number of alleles led to a higher genetic diversity value. This is supported by
previous research conducted by Asadi et al. [71], who reported that the lowest number of alleles (9
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alleles) resulted in a genetic diversity value of 79%, while the highest number of alleles (28
alleles) resulted in a genetic diversity value of 96%.

The genetic diversity within a population can be assessed through heterozygosity values
[72]. Measurement of heterozygosity can provide a comparison of the number of individual
heterozygous alleles within a population. All SSR markers using in this study indicated
heterozygous alleles with an average value of 0.83 (Table 6). The markers satt045, satt191,
satt431, and satt646 exhibited a heterozygosity value of 1, indicating that the alleles were 100%
heterozygous alleles.

PIC value and genetic diversity were fond to be positively correlated [51, 73, 74]. This is
consistent with the findings of this study, the marker Satt063, with the lowest genetic diversity
value of 90%, has a PIC value of 0.89 (Table 6). On the other hand, the markers Satt191, Satt194,
Satt197, and Satt431, with the highest genetic diversity value of 98%, have PIC values of 0.98
(Table 6). According to Tasma and Arumsari [75], the PIC value and the number of alleles depend
on the characteristics of the SSR markers and the diversity of the tested accessions. A higher PIC
value indicates more informative molecular markers. The PIC value is essential for selecting
markers that can distinguish one accession from another. The level of polymorphism can also be
determined by the number of alleles generated by each marker. Markers that produce fewer alleles
have a lower ability to distinguish the tested samples [76].

Phylogenetic analysis of the 53 soybean accessions introduced from China based on 17
SSR markers in this study resulted in a genetic similarity level of 82% (Figure 2; Table 7). Two
main clusters were identified based on the genetic similarity level. Cluster I consisted of 49
accessions, while Cluster II consisted of 4 accessions (China cult-53, China cult-55, China cult-60,
and Unknown 3). Several accessions clustered together based on growth type (indeterminate)
included Unknown 2, Lu fang huang dou, and He se huang dou in Cluster I. There were also
accessions that clustered in Cluster I based on their origin, such as accessions 8079, 6946, 6790,
and 7929 from Jilin province, as well as Yu ci huang and Shi yue han from Shanxi province.
Additionally, there were soybean accessions that clustered in Cluster I but were of unknown
growth type and maturity group such as China cult-38, China cult-32, China cult-28, China cult-
52, China cult-40, China cult-31, and China cult-41 (Figure 2).

There were two introduced soybean accessions with the highest genetic similarity value
(Table 7), which indicated a very close relationship. These accessions were 6946 and 6790, with a
genetic similarity value of 0.96. This genetic similarity value indicated a 96% genetic similarity
between the two accessions, with a difference of 4%. Additionally, there were soybean accessions
that had a distant relationship, e.g., China cult-55 and Mi yang niu mao huang. The genetic
similarity value between these two accessions was 0.78, which meant there was a 78% genetic
similarity, or a difference of 22% (Table 7).

Clustering in phylogenetic analysis can be used for parent selection in breeding
programs. In this study, the phylogenetic analysis resulted in two main clusters with a genetic
similarity of 82% (Figure 2, Table 7). This was consistent with previous studies that reported
genetic similarities of 75% with two main clusters [51], 82% with two main clusters [19], and 84%
with three main clusters [52]. Accessions within the same cluster show high genetic similarity.

According to Hossain et al. [73], genetic similarity values can be used to determine the
level of relatedness between analyzed genotypes. The grouping of several accessions in Cluster I
was based on growth type, province of origin, and accessions with unknown growth type and
maturity group. The low genetic similarity value in parent accessions can result in high genetic
diversity for the next generation progenies. Accessions with a low genetic similarity value of 78%
(Table 7), such as China cult-55 and Mi yang niu mao huang, can be selected as parents for
crossbreeding in the development of new superior varieties. Selection of two accessions as parents
was carried out to avoid the occurrence of inbreeding depression. Soybean is classified as a self-
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Figure 2. Dendrogram of 53 introduced soybean accessions from China based on 17 SSR markers.
1-53 = number of different soybean accessions introduced from China as listed in Table 1.

pollinating crop. Continuous self-pollination in soybeans will produce homozygous alleles from
parents with high genetic similarity. If a homozygous gene has recessive alleles that carry bad
traits, then inbreeding depression will occur [77].

The results of genetic diversity analysis based on morphological characters using PCoA
and molecular markers using phylogenetic analysis showed consistency in grouping the introduced
soybean accessions from China. This consistency was demonstrated by the clustering of four
introduced soybean accessions (8079, 6946, 6790, and 7929) in the same cluster based on the
phylogenetic analysis (Figure 2). These accessions also clustered in the same quadrant based on
PCoA (Figure 1). Furthermore, based on the phylogenetic analysis, two accessions showed low
genetic similarity of 78% (Figure 2, Table 7), i.e., China cult-55 and Mi yang niu mao huang.
Consistently, according to the PCoA analysis (Figure 1), these two accessions were positioned in
different quadrants. Therefore, genetic diversity analysis should be performed by integrating
analyses based on morphological characters and molecular markers to select parents for
crossbreeding and develop new superior varieties.
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Table 7. Genetic similarity matrix of 53 soybean accessions introduced from China obtained from the analysis using 17 SSR markers
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4. Conclusions

PCA conducted on morphological characters resulted in a total diversity value of 64.67% and
identified four main components. In addition, 772 SSR alleles with an average of 45 alleles per
SSR locus were detected. The average heterozygosity was 0.83, and the average polymorphic
information content (PIC) value was 0.96. All SSR markers showed a PIC value > 0.8, indicating
their informativeness in analyzing genetic diversity of soybean. The phylogenetic analysis
indicated a genetic similarity of 82% and grouped the accessions into two main clusters. The
phylogenetic analysis showed that several accessions were grouped based on the growth type and
origin. Two accessions that showed low genetic similarity of 78% (China cult-55 and Mi yang niu
mao huang) can be selected as parents for plant breeding programs based on phylogenetic analysis
and PCoA.
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