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Abstract

The Poisson distribution is commonly applied in statistical
modeling to represent the count of events, assuming that the events
are independent and occur at a constant rate. This assumption,
however, may not always hold true in real-life situations. The
discrete distribution; Poisson distribution may be inadequate if the underlying rate of
occurrence is not constant. The mixed Poisson distribution is
proposed to solve this limitation because it permits the rate
mixture distribution; parameter of the Poisson distribution to be random rather than
fixed. The Poisson-Pranav distribution, which is classified as a
type of mixed Poisson distribution, has been commonly utilized to
analyze count data that exhibits over-dispersion over many
domains. However, no research has been done into building
confidence intervals for the parameter of the Poisson-Pranav
distribution using the bootstrap method. Using Monte Carlo
simulation, the coverage probabilities and average lengths of the
percentile bootstrap (PB), basic bootstrap (BB), and biased-
corrected and accelerated (BCa) bootstrap’s interval-estimation
performances were compared. The bootstrap method was not
appropriate for achieving the desired nominal confidence level
with small sample sizes. In addition, the performance of the
bootstrap confidence intervals did not differ significantly when the
sample size was increased considerably. In each case studied, the
BCa bootstrap confidence intervals performed better than the
others. The effectiveness of bootstrap confidence intervals was
demonstrated by applying them to the number of COVID-19
deaths in Belgium. The computations substantially supported the
proposed bootstrap confidence intervals.
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1. Introduction

The Poisson distribution is a discrete distribution that measures the probability of a given number
of events occurring in specific regions of time or space [1, 2]. This distribution is used to describe
data such as the number of confirmed COVID-19 cases per day, the number of COVID-19 deaths
per week, etc. The Poisson distribution is frequently employed to model the number of occurrences
under the assumption that events are independent and occur at a constant rate. In actual situations,
however, this assumption may not always hold true. The Poisson distribution may be inadequate if
the underlying rate of occurrence is not constant. This limitation is overcome by the use of mixed
Poisson distribution, which permits the rate parameter of the Poisson distribution to be random
rather than fixed. In a mixed Poisson distribution, the parameter controlling the mean rate of events
can itself be a random variable, following a certain distribution. This allows for flexibility in
modeling scenarios where the rate of events varies among different subpopulations or over time.

Recent work by Shukla and Shanker [3] investigated the mathematical and statistical
properties of the Poisson-Pranav (PP) distribution, which is a type of mixed Poisson distribution.
Combining the Poisson distribution and the Pranav distribution [4] yields this distribution. When
the Poisson parameter A follows a Pranav distribution, the Poisson distribution gives rise to the PP
distribution [3]. When applied to two real-world data sets, the PP distribution was the most
appropriate choice when compared to the Poisson, Poisson-Lindley [5], Poisson-Akash [6], and
Poisson-Ishita [7] distributions. The Pranav distribution was first proposed by Shukla [4] as a
continuous distribution for modeling lifetimes. It is characterized by a probability density function
(pdf) denoted as

4

f(x;9)=ﬁ(9+x3)e-a*, x>0,0>0. (1)

It is a composite of an exponential distribution with a scale parameter and a gamma distribution
with a shape parameter 4 and a scale parameter 6, with respective proportions 8* /(6* +6) and

6/(0" +6). Data on lifetimes in engineering and medicine have been modeled using this

distribution. Shukla [4] demonstrated that the Pranav distribution was a more accurate representation
of reality when compared to other distributions such as the exponential, Lindley [8], Akash [9],
Ishita [10], Sujatha [11], and Shanker [12] distributions. The key statistical properties of the Pranav
distribution were also discussed by Shukla [4]. In this paper, Figure 1 depicts plots of the pdf of the
Pranav distribution for various values of parameter 6.

A confidence interval (CI) is a range of values that contain the true parameter of population.
It is the primary output for statistical inferences and plays a crucial role in interpreting parameter
estimates. In the literature reviews, several studies applied CIs to real-world applications. In 2022,
Chankham et al. [13] suggested Cls for the coefficient of variation of an inverse Gaussian
distribution. These Cls were the generalized CI, the adjusted generalized CI, the bootstrap percentile
ClI, the fiducial CI, and the fiducial highest posterior density CI. The efficacy of these Cls was
demonstrated using PM 2.5 data from Bangkok, Thailand. Ye ef al. [14] introduced Cls for variance
component functions in the skew-normal unbalanced heteroscedastic one-way classification random
effects model. These Cls were obtained using both the bootstrap technique and the generalized
approach. The approaches mentioned were illustrated with two real examples of the annual average
concentrations of fine particulate matter and nitrogen dioxide.

According to the literature review, no research has been conducted to estimate the CI for
the PP distribution parameter. Bootstrap methods provide a robust approach to quantifying
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Figure 1. Plots of the pdf of the Pranav distribution for ¢ =0.5, 1, 1.5 and 2

uncertainty and constructing Cls without relying on stringent distributional assumptions. These
approaches allow for the quantification of uncertainty in statistical inference by utilizing resampling
techniques on a given sample of data. Several bootstrap Cls are a powerful and widely used method
for estimating ClIs for the parameter, and it often performs well in practice. The use of the bootstrap
method, in particular, may not be the best approach for all situations. It depends on the specific
characteristics of the data and the parameter of interest in each case [15]. Therefore, it is essential
to propose bootstrap Cls and evaluate their performances when the data follow the PP distribution.
This study examines three different approaches for constructing bootstrap Cls: the percentile
bootstrap (PB), the basic bootstrap (BB), and the bias-corrected and accelerated (BCa) bootstrap.

2. Materials and Methods
2.1 Point parameter estimation

Let X be a random variable from the population that has a PP distribution with parameter 6. The
probability mass function (pmf) of the PP distribution was identified by Shukla and Shanker [3] as

¢ TP 468 +11x+0(0+1) +6
px:0)=—2 [+ 6" 410+ O+ + 1 vc012.. 050 2)
o' 16 @+

Figure 2 displays pmf plots of the PP distribution for a range of @ values. The expected values such
as mean, variance, and dispersion index of the random variable X are as follows:
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Figure 2. Plots of the pmf of the PP distribution for 9 = 0.5, 1, 1.5 and 2
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Maximizing the log-likelihood function log L(x,;6) yields the point estimator of 6. As a result, the
following procedures are used to arrive at the ML estimator for 4:

4 n n
%logL(x,,H) ag{nlog( 0 6) Z(x,.+4)1og(9+1)+21og(xf+6xf+11x,.+9(9+1)3+6)}
+

i=1 i=l1
_12n _n()?+4) Z 6’ +960* +60 +1
00 +6)  O0+1 F[x+6x7+11x, +0(0+1) +6]

We obtain the non-linear equation by solving for ¢ in the equation %log L(x;;0)=0:

12n _n(f+4) Z 6’ +90* + 60 +1
00 +6) O0+1  S[x+6x2+11x, +0(0+1) +6]

where X =n""' in. Due to the lack of a closed-form solution provided by the ML estimator for 6,
i=1

numerical iteration techniques can be used to solve the resulting non-linear problem. In order to
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estimate ML parameters, this study utilized the statistical program R [16] and its maxLik package
[17] along with the Newton-Raphson technique.

2.2 Bootstrap confidence intervals

Confidence intervals (Cls) are derived using a parametric estimator that estimates the standard errors
of a quantity of interest, denoted as @. The two-sided CI for ¢ is derived by subtracting or adding

the standard error multiplied by a critical value. The assumption made in this calculation is that the
estimator of ¢ follows an approximately normal distribution [18]. Nonetheless, there are a number

of instances in which the assumption of normality is violated. The consequence is that CIs may be
wider or narrower than they should be, leading to incorrect levels of confidence in the estimates.
When faced with these scenarios, or when estimating the standard error presents significant
difficulties, an alternative approach involves utilizing techniques founded on the bootstrap method
[19]. The bootstrap methods discussed in this study offer a different method to make approximate
CIs without making assumptions about the underlying distribution [20]. Furthermore, the score
function of PP distribution is complicated, and the maximum likelihood has no closed form.
Therefore, likelihood-based, and score CIs have no closed forms. In such cases, finding the Cls can
be challenging; alternative methods, such as numerical techniques or resampling methods like the
bootstrap, can be utilized.

This paper focuses on the three bootstrap Cls for the PP distribution parameter. In practice,
the most prevalent bootstrap Cls are the percentile bootstrap (PB), the basic bootstrap (BB), and the
bias-corrected and accelerated (BCa) bootstrap ClIs [21]. In this investigation, the statistical software
R’s boot package [22] was used to estimate the bootstrap ClIs.

2.2.1 Percentile bootstrap (PB) confidence interval

The PB CI is a non-parametric method that estimates the uncertainty surrounding a population
parameter by resampling the original sample. It is particularly useful when the underlying
distribution of the data is unknown or complicated [23]. The stages for obtaining a PB CI for @ are
as follows:

1) Collect the sample data: Begin with the initial sample data, which represents a subset of
the population. Consider that the sample contains » observations.

2) Resampling with replacement: The bootstrap method involves resampling from the
original sample with replacement. The n observations are selected from the original sample,
allowing for the possibility that the same observation can be selected multiple times.

3) Calculate the statistics: For each bootstrap sample, the statistics of interest (e.g.,
parameter, mean, median, etc.) is calculated. A distribution of the statistic under repeated resampling
is obtained.

4) Arrange bootstrap statistics: In order to construct a CI, it is necessary to arrange the
bootstrap statistics in ascending order and afterwards select the relevant percentiles. For example, if
we wanted a 95% confidence interval, we would select the 2.5" percentile as the lower bound and
the 97.5" percentile as the upper bound. The (1-a)100% two-sided PB CI for ¢ is created as

follows:

Clyy = I:é(t)’é(i):la 3)
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where the notation é(*r) is the »™ quantile of a collection of the parameter estimate 6 arranged in
ascending order, while HA(*S) is the s™ quantile of the aforementioned collection, r =[(a/2)B],

s :[(1—(a/ 2))B—|, where [ x| stands for the ceiling function of x, and 1— ¢« is the confidence
level. This study utilized ¢ =0.05 and B = 2,000; the two quantiles related to the lower and upper

bounds of the PB two-sided CI were &, =4, (the 50" quantile) and ) =&, (the 1950%

quantile).
2.2.2 Basic bootstrap (BB) confidence interval

The BB CI is a straightforward approach that does not involve more complex modifications or
adjustments to the bootstrap process. It is sometimes referred to as the simple bootstrap CI. The BB
CI focuses on the variability of the statistic itself rather than explicitly considering the distribution’s

tails. Assume that we consider the parameter @ and the estimator of @ is 6. When 6" is the
bootstrap estimate of & based on the bootstrap sample, the BB CI implies that the distributions of

-6 and 0" -0 are roughly equivalent [20]. The (1-«)100% two-sided BB CI for @ is

A A

Cl,, =[20-4,,,

A

20-4, ], 4

where the quantiles é(*,_) and 6 represent the same percentile of the empirical distribution of

()
bootstrap estimates 6" that are utilized in Equation (3) to calculate the PB CI.

2.2.3 Bias-corrected and accelerated (BCa) bootstrap confidence interval

The BCa bootstrap CI is an advanced technique used to improve the accuracy of PB and BB CI
estimations when dealing with small sample sizes or when the distribution of the data is skewed.
With a correction for bias and a correction for skewness, the BCa bootstrap CI corrects for both bias
and skewness in the distribution of the bootstrap statistics [23]. This reduces several problems that
come up with the PB and BB CIs, such as bias in the estimate of the population parameter, inaccurate
coverage, and narrow or unreliable confidence intervals. The calculation of BCa bootstrap CI
commonly involves the utilization of influence statistics derived from jackknife simulations.
Davison and Hinkley [24] and Chernick and LaBudde [21] described the mathematical
particulars of the BCa adjustment. The bias correction factor, denoted Z,, is as follows:

B
2, =" (Z[ (9,,* <¢9)/Bj, where ®7'()) is the inverse function of the cumulative standard
i=l1

normal distribution and /() is the indicator function. The skewness or acceleration adjustment is

calculated via jackknife resampling, which entails generating n replicates of the initial set of data,
where n is the sample size. The initial jackknife replication is obtained by omitting the first case
(i =1) from the initial sample, the second by omitting the second case (i = 2), etc., until a total of
n samples, each with a size of » —1, are generated. From jackknife replicates, we obtain the value
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of §_,,i=12,..,n. The acceleration factor 4 is given by a= =l <> Where
6{

S(0,-4.)}

i=1

) :n’lzé(ﬂ.). The values of ¢ and «, are calculated with the values of Z, and a,

9(-)

i=1
. Z,+z R Z +z_ .
o =02 +— 2L and @, =®JZ +— "2\, where z,, is the a/2
l—a(zo+za/2) 1_"(20"‘217,1/2)

quantile of the standard normal distribution. Then, the (1-a)100% two-sided BCa bootstrap CI for

@ is given in equation (5):

Clye, = [é'(?)’é(*m}’ ©)

where j=[a B and k =[a,B|. The stages of construction for the bootstrap Cls are shown in

Figure 3.

Stage 1: Collect the Sample Data
#Begin with the initial sample, which represents
a subset of the population

.

Stage 2: Resampling with Replacement
» Take a sample of size n with replacement

.

Stage 3: Calculate the Statistics

sFor each bootstrap sample, the statistics of
interest is calculated. A distribution of the
statistics under repeated sampling is obtained.

h

Stage 4: Arrange Bootstrap Statistics
s Arrange bootstrap statistics in ascending order
and afterwards select the relevant percentiles.

Figure 3. Stages of construction for the bootstrap CI
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3. Results and Discussion
3.1 Simulation study and results

In this study, a two-sided CI estimation for the PP distribution parameter was performed using three
bootstrapping methods, which were illustrated in equations (3)-(5). By using statistical software R,
a Monte Carlo simulation was designed to encompass cases for » = 10, 30, 50, 100, and 500. The
true parameter (¢) was set to 0.1, 0.3, 0.5, 0.8, 1.0, 1.5 and 2.0. The number of bootstrap samples

(B) was fixed at 2,000, as per the study of Ukoumunne ef al. [25]. The nominal confidence level
(1-a) was 0.95 and the number of replications was set to 1,000. The performances of the bootstrap

ClIs were compared with the estimated coverage probabilities and average lengths. In this study, we
concluded that a coverage probability was greater than or equal to the nominal confidence level
when the estimated coverage probability was greater than or equal to 0.939 by using the one-
proportion z-test with a significance level of 0.05. Moreover, the bootstrap CI with the minimum
average length could be used to estimate the parameter more precisely. The R source code for the
simulation study is available at https://codeocean.com/capsule/4346018/tree.

The simulation study’s findings are presented in Table 1. For » =10, the estimated
coverage probabilities of all three bootstrap Cls were found to be below 0.90, suggesting that they
did not achieve the nominal confidence level of 0.95. In these circumstances, however, the BCa
bootstrap CI demonstrated superior performance compared to the other methods. For n =30, all
bootstrap Cls again yielded estimated coverage probabilities lower than 0.95. For » > 50, each
bootstrap CI obtained coverage probabilities near the nominal confidence level of 0.95 and had
average lengths that were comparable. As a simulation result, the estimated coverage probabilities
of the bootstrap CIs tended to rise and get closer to 0.95 as the sample size rose. Additionally, as
increased, the average lengths of the bootstrap Cls tended to increase. This can be attributed to the
relationship between the variance and 6. As expected, the average lengths of all the bootstrap Cls
decreased as the sampler size increased, with the BCa bootstrap CI offering the shortest average
length across all cases. In addition, when the sample size was small (n = 10), there was a significant
difference in the average length of the BCa bootstrap CI compared to the others. In brief, the BCa
bootstrap CI demonstrated superior performance when applied to moderate and large sample sizes
(n>50).

3.2 Application to real data

Coronaviruses encompass a vast array of viruses capable of inducing a diverse range of illnesses,
spanning from mild ailments like the common cold to more severe afflictions. The emergence of a
novel coronavirus (COVID-19) was seen in the city of Wuhan, China, during the year 2019. This
was an extremely novel coronavirus that had never been detected in humans. The World Health
Organization (WHO) declared that the coronavirus disease 2019 (COVID-19) was a pandemic [26].
To prevent the virus from proliferating further, a global effort was necessary. The pandemic affected
a large geographical area and an exceptionally high proportion of the population. The HIN1 flu
pandemic, which was documented in 2009, was an earlier global pandemic.

Many scientists have conducted research on the COVID-19 pandemic, and they have
developed models to analyze data and provide predictions regarding the expected number of cases.
The aim of using these models is to assist nations in making informed decisions regarding prevention
strategies. For example, Maleki et al. [27] employed an autoregressive time series model utilizing a
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Table 1. Estimated coverage probability and average length of the 95% two-sided bootstrap Cls
for the PP distribution parameter

n 0 Coverage Probability Average Length

PB BB BCa PB BB BCa

10 0.1 0.913 0.903 0.910 0.0656 0.0666 0.0800
0.3 0.881 0.882 0.886 0.2170 0.2167 0.2122

0.5 0.892 0.856 0.881 0.3666 0.3667 0.3619

0.8 0.903 0.866 0.891 0.5488 0.5492 0.5509

1.0 0.899 0.902 0.895 0.6779 0.6775 0.6765

1.5 0.938 0.923 0.947* 1.4531 1.4244 1.3298

2.0 0.931 0.878 0.920 3.2792 3.3833 3.1137

30 0.1 0.925 0.941* 0.936 0.0378 0.0378 0.0373
0.3 0.925 0.923 0.925 0.1229 0.1228 0.1212

0.5 0.927 0.907 0.927 0.2162 0.2162 0.2133

0.8 0.921 0.922 0.920 0.3308 0.3309 0.3291

1.0 0.930 0.925 0.932 0.3902 0.3902 0.3893

1.5 0.950* 0.954* 0.958* 0.6034 0.6036 0.5908

2.0 0.925 0914 0.940 1.2785 1.2860 1.1632

50 0.1 0.945* 0.938 0.946* 0.0291 0.0290 0.0288
0.3 0.948* 0.939* 0.949* 0.0947 0.0948 0.0938

0.5 0.938 0914 0.939* 0.1641 0.1642 0.1630

0.8 0.951* 0.941* 0.947* 0.2595 0.2587 0.2580

1.0 0.941* 0.945* 0.940* 0.3064 0.3065 0.3061

1.5 0.950* 0.965* 0.953* 0.4514 0.4518 0.4465

2.0 0.939* 0.944* 0.952% 0.8293 0.8276 0.7815

100 0.1 0.950* 0.953* 0.951* 0.0205 0.0204 0.0204
0.3 0.955* 0.953* 0.954* 0.0675 0.0674 0.0671

0.5 0.968* 0.951* 0.963* 0.1171 0.1172 0.1166

0.8 0.937 0.934 0.937 0.1855 0.1854 0.1854

1.0 0.953* 0.946* 0.957* 0.2186 0.2188 0.2186

1.5 0.945* 0.940* 0.946* 0.3109 0.3110 0.3093

2.0 0.928 0.951* 0.945* 0.5430 0.5432 0.5300

500 0.1 0.939* 0.946* 0.943* 0.0092 0.0092 0.0092
0.3 0.953* 0.961* 0.957* 0.0300 0.0300 0.0300

0.5 0.949* 0.952% 0.943* 0.0527 0.0527 0.0527

0.8 0.959* 0.956* 0.955% 0.0832 0.0829 0.0831

1.0 0.953* 0.953* 0.951*% 0.0985 0.0987 0.0985

1.5 0.944* 0.945* 0.940% 0.1376 0.1378 0.1374

2.0 0.956* 0.953* 0.954* 0.2265 0.2266 0.2259

* indicates that the empirical coverage probability is greater than or equal to the nominal confidence
level.

two-piece scale mixture normal distribution to forecast and validate COVID-19 cases. Nesteruk [28]
examined the daily incidence of COVID-19 cases in China through the application of the
mathematical model (Susceptible, Infected, and Recovered model). Almongy et al. [29] proposed a
novel model for analyzing the mortality rates due to COVID-19 in Italy, Mexico, and the
Netherlands. Iranzo and Pérez-Gonzalez [30] proposed two kinds of epidemiological models
invoked during the COVID-19 crisis. Ega and Ngeleja [31] developed a deterministic mathematical
model that incorporated compartments for both human-to-human transmission and transmission via
contaminated surfaces.
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Using an actual data set, the application of bootstrap Cls for the parameter of the PP
distribution was demonstrated in this study. The data represents the number of COVID-19 daily
deaths in Belgium from December 1, 2022, to March 31, 2023
(https://lookerstudio.google.com/embedreporting/c14aScfc-cab7-4812-848c-0369173 148ab/page/
ZwmOB). The total number of observations is 90 and they are listed below:

133109665691051810999 1311 1511 13 13 13 13 11 188
16 1710 6 12 13 12109 1251310895943 56451534846
03264249973668375107795111266127 7107 10

Table 2 presents the descriptive statistics for the given data set.

Table 2. Descriptive statistics of the number of COVID-19 daily deaths in Belgium

Min Mean  Median Var Skewness Kurtosis Q1 Q3 Max
0.0 7.9 7.5 15.37 0.4037 2.8026 5.0 10.0 18.0

The distribution comparison is made between the fitting performance of the PP distribution
and the following mixed Poisson distributions:
e For the Poisson-Adya distribution [32], its pmf is

& X+ (207 +20+3)x+(0* +26° +30% +20+2)
Y420 +2 @+1"
e For the Poisson-Akash distribution [6], Its pmfis
6 X +3x+(6°+26+3)
> 42 @+
e For the Poisson-Aradhana distribution [33], its pmf is
6’ X+ (20 +5)x+ (0> +46+5)
24+20+2 @+
e For the Poisson-Garima [34] distribution, its pmf is
0 9x+(92 +30+l)
0+2  (O+1)*
e For the Poisson-Lindley distribution [5], its pmf'is
2
px.0)= 2101210
@+
e For the Poisson-Shanker distribution [35], its pmfis
p(x:0) = 292 x+(6 +32+1)
0 +1 (6+)1)
e For the Poisson-Sujatha distribution [36], its pmf is
6 X +(@+Hx+(0°+360+4)
+60+2 @+

p(x;é’)zg ,x=0,1,2,..,0>0

p(x;9)=0 ,x=0,1,2,...,0>0.

P(X;e)ze ,x=0,1,2,..,0>0

p(x;0) = ,x=0,1,2,...,0>0.

,x=0,1,2,...,8>0.

,x=0,1,2,...,6>0.

P(XQQ)ZQ ,x=0,1,2,...,0>0.

The estimation of the parameters of the mixed Poisson distributions was performed using
the ML approach. We considered the log-likelihood (log L), Akaike’s information criterion (AIC)
[37], and Bayesian information criterion (BIC) [38] for model comparison. In Table 3, estimates of

10
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the parameters, their standard errors (SE), and measures of goodness of fit are provided for this data
set.

The AIC and BIC values in Table 3 illustrate that the Poisson-Pranav (PP) distribution
provided an adequate fit to the number of COVID-19 daily deaths as compared with other
distributions. The dispersion index (DI) for this data was 3.6942. The dataset demonstrated the
phenomenon of over-dispersion because the DI was greater than 1 [39]. Table 4 presents the 95%
two-sided bootstrap CIs for the PP distribution parameter. We concluded that the PP distribution
parameter lay between 0.4547 and 0.5522, based on the BCa bootstrap CI. Therefore, it was inferred
that the interval (7.1608, 8.75033) contained the average or population mean () of the number of

daily deaths due to COVID-19. Additionally, the correspondence between the application to
COVID-19 data and the simulation results was observed, as the BCa bootstrap CI exhibited the
shortest length in comparison to other intervals.

Table 3. The ML estimates, SE, and goodness of fit measures for the number of COVID-19 daily
deaths in Belgium

Distributions Estimates (SE) Log L AIC BIC
Poisson-Pranav 0.5013 (0.0317) -251.6858 505.3716 507.8714
Poisson-Adya 0.3602 (0.0245) -256.1517 514.3034 516.8032
Poisson-Akash 0.3622 (0.0250) -256.7396 515.4792 517.9790
Poisson-Aradhana 0.3370 (0.0235) -258.6242 519.2484 521.7482
Poisson-Garima 0.1906 (0.0186) -275.5591 553.1182 555.6180
Poisson-Lindley 0.2285 (0.0189) -266.6528 535.3056 537.8054
Poisson-Shanker 0.2435 (0.0196) -263.3568 528.7136 531.2134
Poisson-Sujatha 0.3476 (0.0241) -257.8473 517.6946 520.1944

Table 4. The 95% two-sided bootstrap CIs and lengths for the parameter in the number of COVID-
19 daily deaths in Belgium

Methods Confidence Intervals Lengths
PB (0.4548, 0.5540) 0.0992
BB (0.4484, 0.5461) 0.0977
BCa (0.4547, 0.5522) 0.0975

3.3 Discussion

Based on the simulation results, all three bootstrap Cls functioned well in all scenarios with large
sample sizes (n > 50). Average lengths did not significantly change, and coverage probabilities were

close to or near the nominal confidence level. However, when dealing with small sample sizes
(n =10 and 30), all three bootstrap CIs displayed coverage probabilities that were below the nominal

confidence level. For the average length comparison, the BCa bootstrap CI provided the shortest
average length in almost all cases. Furthermore, when the sample size increased and # became
smaller, the average lengths of all the bootstrap Cls decreased. The results of this study are similar
to those of previous studies. This is because there are theoretical reasons to preference of BCa
bootstrap ClIs. Moreover, the BCa bootstrap Cls provided the shortest average lengths, so they can
be used to estimate Cls for the parameter of the PP distribution in multiple domains with precision
and effectiveness. Our methodology has the potential to assist physicians and government health
agencies in tracking the daily mortality rate of COVID-19 in some countries and issuing alerts when
the daily death toll of COVID-19 reaches defined thresholds. Furthermore, it is important to note
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that while knowing the number of COVID-19 deaths is crucial, it should be considered in
conjunction with other data, such as the number of cases, hospitalizations, and vaccination rates in
order to get a comprehensive understanding of the pandemic’s status. Our findings provide valuable
insights into estimating the parameters, including the population mean of the number of COVID-19
daily deaths, which can facilitate more effective pandemic response strategies such as better
COVID-19 vaccine management and improved ways of dealing with the future outbreaks of
COVID-19.

This study was limited by the fact that none of the bootstrap CIs were exact. However, it is
worth noting that these intervals consistently converged towards a coverage probability of 1—« as
the sample sizes increased. With a small sample size, we have limited information about the
underlying population. This means that resampling from a small dataset may not adequately capture
the variability present in the population, leading to biased or unreliable estimates. Bootstrap Cls
may end up too narrow or too wide, leading to incorrect inferences about the parameter. In addition,
three bootstrap Cls are computationally intensive and difficult to calculate. Nevertheless, there
exists a variety of R packages that can be utilized for the computation of bootstrap Cls. These
packages include the boot package [22], the bootstrap package [40], the semEff package [41], and
the BootES package [42]. Since statistical software R is an open-source programming language,
users are allowed to download the above-mentioned packages.

4. Conclusions

In the previous studies, there was no research that studied the bootstrap CIs for the parameter of the
Poisson-Pranav (PP) distribution. In this study, we aimed to evaluate the performance of percentile
bootstrap (PB), basic bootstrap (BB), and bias-corrected and accelerated (BCa) bootstrap
approaches for the PP distribution parameter. The advantages of bootstrap Cls are their robustness
and flexibility, and their ability to make inferences without assuming a specific data distribution.
They work well with non-Gaussian data, and in situations where traditional parametric methods are
inappropriate. Additionally, they provide a model-free approach to estimate the sampling
distribution of statistics and are relatively simple to implement. The performance of these
approaches was evaluated by comparing their estimated coverage probability and average length
using simulated data. The results show that the sample size (n) appeared to have a substantial

impact on the performances of the bootstrap CIs. The estimated coverage probabilities for three
bootstrap Cls were significantly less than 0.95 in case of the small sample sizes (n=10 and 30).

When the sample size reached a sufficient magnitude (n > 50), there were no significant disparities

observed in the estimated coverage probabilities and average lengths of the three bootstrap Cls.
Based on our research outcomes, it was observed that the BCa bootstrap CI exhibited superior
performance across a wide range of scenarios, as evidenced by both the simulation study and the
application to COVID-19 data. Thus, BCa bootstrap CI can be recommended for constructing Cls
for the PP distribution parameter in cases of large sample sizes.

In further studies, it would be beneficial to focus on the comparative analysis of alternative
CI estimations when compared to the bootstrap CIs presented in this research. The construction of
CIs for functions of other parameters, such as the population mean and dispersion index, is of
interest. Additionally, there is a lack of statistical theoretical research regarding hypothesis testing
for the PP distribution parameter. The bootstrap Cls studied in this paper can be applied to other
distributions. These topics may be subject to further investigation in subsequent studies. Moreover,
the number of deaths for other epidemics should be studied by using the bootstrap Cls for the
parameter of the PP distribution.
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