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 Abstract 
 

The Poisson distribution is commonly applied in statistical 
modeling to represent the count of events, assuming that the events 
are independent and occur at a constant rate. This assumption, 
however, may not always hold true in real-life situations. The 
Poisson distribution may be inadequate if the underlying rate of 
occurrence is not constant. The mixed Poisson distribution is 
proposed to solve this limitation because it permits the rate 
parameter of the Poisson distribution to be random rather than 
fixed. The Poisson-Pranav distribution, which is classified as a 
type of mixed Poisson distribution, has been commonly utilized to 
analyze count data that exhibits over-dispersion over many 
domains. However, no research has been done into building 
confidence intervals for the parameter of the Poisson-Pranav 
distribution using the bootstrap method. Using Monte Carlo 
simulation, the coverage probabilities and average lengths of the 
percentile bootstrap (PB), basic bootstrap (BB), and biased-
corrected and accelerated (BCa) bootstrap’s interval-estimation 
performances were compared. The bootstrap method was not 
appropriate for achieving the desired nominal confidence level 
with small sample sizes. In addition, the performance of the 
bootstrap confidence intervals did not differ significantly when the 
sample size was increased considerably. In each case studied, the 
BCa bootstrap confidence intervals performed better than the 
others. The effectiveness of bootstrap confidence intervals was 
demonstrated by applying them to the number of COVID-19 
deaths in Belgium. The computations substantially supported the 
proposed bootstrap confidence intervals. 
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1. Introduction 
 
The Poisson distribution is a discrete distribution that measures the probability of a given number 
of events occurring in specific regions of time or space [1, 2]. This distribution is used to describe 
data such as the number of confirmed COVID-19 cases per day, the number of COVID-19 deaths 
per week, etc. The Poisson distribution is frequently employed to model the number of occurrences 
under the assumption that events are independent and occur at a constant rate. In actual situations, 
however, this assumption may not always hold true. The Poisson distribution may be inadequate if 
the underlying rate of occurrence is not constant. This limitation is overcome by the use of mixed 
Poisson distribution, which permits the rate parameter of the Poisson distribution to be random 
rather than fixed. In a mixed Poisson distribution, the parameter controlling the mean rate of events 
can itself be a random variable, following a certain distribution. This allows for flexibility in 
modeling scenarios where the rate of events varies among different subpopulations or over time. 

Recent work by Shukla and Shanker [3] investigated the mathematical and statistical 
properties of the Poisson-Pranav (PP) distribution, which is a type of mixed Poisson distribution. 
Combining the Poisson distribution and the Pranav distribution [4] yields this distribution. When 
the Poisson parameter λ  follows a Pranav distribution, the Poisson distribution gives rise to the PP 
distribution [3]. When applied to two real-world data sets, the PP distribution was the most 
appropriate choice when compared to the Poisson, Poisson-Lindley [5], Poisson-Akash [6], and 
Poisson-Ishita [7] distributions. The Pranav distribution was first proposed by Shukla [4] as a 
continuous distribution for modeling lifetimes. It is characterized by a probability density function 
(pdf) denoted as 
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It is a composite of an exponential distribution with a scale parameter and a gamma distribution 
with a shape parameter 4 and a scale parameter ,θ  with respective proportions 4 4/ ( 6)θ θ +  and 

46 / ( 6).θ + Data on lifetimes in engineering and medicine have been modeled using this 
distribution. Shukla [4] demonstrated that the Pranav distribution was a more accurate representation 
of reality when compared to other distributions such as the exponential, Lindley [8], Akash [9], 
Ishita [10], Sujatha [11], and Shanker [12] distributions. The key statistical properties of the Pranav 
distribution were also discussed by Shukla [4]. In this paper, Figure 1 depicts plots of the pdf of the 
Pranav distribution for various values of parameter .θ  

A confidence interval (CI) is a range of values that contain the true parameter of population. 
It is the primary output for statistical inferences and plays a crucial role in interpreting parameter 
estimates. In the literature reviews, several studies applied CIs to real-world applications. In 2022, 
Chankham et al. [13] suggested CIs for the coefficient of variation of an inverse Gaussian 
distribution. These CIs were the generalized CI, the adjusted generalized CI, the bootstrap percentile 
CI, the fiducial CI, and the fiducial highest posterior density CI. The efficacy of these CIs was 
demonstrated using PM 2.5 data from Bangkok, Thailand. Ye et al. [14] introduced CIs for variance 
component functions in the skew-normal unbalanced heteroscedastic one-way classification random 
effects model. These CIs were obtained using both the bootstrap technique and the generalized 
approach. The approaches mentioned were illustrated with two real examples of the annual average 
concentrations of fine particulate matter and nitrogen dioxide. 

According to the literature review, no research has been conducted to estimate the CI for 
the PP distribution parameter. Bootstrap methods provide a robust approach to quantifying  
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Figure 1. Plots of the pdf of the Pranav distribution for θ  = 0.5, 1, 1.5 and 2 

 
uncertainty and constructing CIs without relying on stringent distributional assumptions. These  
approaches allow for the quantification of uncertainty in statistical inference by utilizing resampling 
techniques on a given sample of data. Several bootstrap CIs are a powerful and widely used method 
for estimating CIs for the parameter, and it often performs well in practice. The use of the bootstrap 
method, in particular, may not be the best approach for all situations. It depends on the specific 
characteristics of the data and the parameter of interest in each case [15]. Therefore, it is essential 
to propose bootstrap CIs and evaluate their performances when the data follow the PP distribution. 
This study examines three different approaches for constructing bootstrap CIs: the percentile 
bootstrap (PB), the basic bootstrap (BB), and the bias-corrected and accelerated (BCa) bootstrap. 
 
 
2. Materials and Methods 
 
2.1 Point parameter estimation 
 
Let X  be a random variable from the population that has a PP distribution with parameter .θ  The 
probability mass function (pmf) of the PP distribution was identified by Shukla and Shanker [3] as 
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           (2) 

 
Figure 2 displays pmf plots of the PP distribution for a range of θ  values. The expected values such 
as mean, variance, and dispersion index of the random variable X  are as follows: 
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Figure 2. Plots of the pmf of the PP distribution for θ  = 0.5, 1, 1.5 and 2 
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Maximizing the log-likelihood function log ( ; )iL x θ  yields the point estimator of .θ  As a result, the 
following procedures are used to arrive at the ML estimator for :θ  
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We obtain the non-linear equation by solving for θ  in the equation log ( ; ) 0 :iL x θ
θ
∂

=
∂

 

 
3 2

4 3 2 3
1

12 ( 4) 4 9 6 1 0,
1( 6) 6 11 ( 1) 6

n

i i i i

n n x
x x x

θ θ θ
θθ θ θ θ=

+ + + +
− + =

++  + + + + + 
∑  

where 1

1
.−

=

= ∑
n

i
i

x n x  Due to the lack of a closed-form solution provided by the ML estimator for θ, 

numerical iteration techniques can be used to solve the resulting non-linear problem. In order to 
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estimate ML parameters, this study utilized the statistical program R [16] and its maxLik package 
[17] along with the Newton-Raphson technique. 
 
2.2 Bootstrap confidence intervals 
 
Confidence intervals (CIs) are derived using a parametric estimator that estimates the standard errors 
of a quantity of interest, denoted as .φ  The two-sided CI for φ  is derived by subtracting or adding 
the standard error multiplied by a critical value. The assumption made in this calculation is that the 
estimator of φ  follows an approximately normal distribution [18]. Nonetheless, there are a number 
of instances in which the assumption of normality is violated. The consequence is that CIs may be 
wider or narrower than they should be, leading to incorrect levels of confidence in the estimates. 
When faced with these scenarios, or when estimating the standard error presents significant 
difficulties, an alternative approach involves utilizing techniques founded on the bootstrap method 
[19]. The bootstrap methods discussed in this study offer a different method to make approximate 
CIs without making assumptions about the underlying distribution [20]. Furthermore, the score 
function of PP distribution is complicated, and the maximum likelihood has no closed form. 
Therefore, likelihood-based, and  score CIs have no closed forms. In such cases, finding the CIs can 
be challenging; alternative methods, such as numerical techniques or resampling methods like the 
bootstrap, can be utilized. 

This paper focuses on the three bootstrap CIs for the PP distribution parameter. In practice, 
the most prevalent bootstrap CIs are the percentile bootstrap (PB), the basic bootstrap (BB), and the 
bias-corrected and accelerated (BCa) bootstrap CIs [21]. In this investigation, the statistical software 
R’s boot package [22] was used to estimate the bootstrap CIs. 
 
2.2.1 Percentile bootstrap (PB) confidence ınterval 
 
The PB CI is a non-parametric method that estimates the uncertainty surrounding a population 
parameter by resampling the original sample. It is particularly useful when the underlying 
distribution of the data is unknown or complicated [23]. The stages for obtaining a PB CI for θ  are 
as follows: 

1) Collect the sample data: Begin with the initial sample data, which represents a subset of 
the population. Consider that the sample contains n  observations. 

2) Resampling with replacement: The bootstrap method involves resampling from the 
original sample with replacement. The n   observations are selected from the original sample, 
allowing for the possibility that the same observation can be selected multiple times. 

3) Calculate the statistics: For each bootstrap sample, the statistics of interest (e.g., 
parameter, mean, median, etc.) is calculated. A distribution of the statistic under repeated resampling 
is obtained. 

4) Arrange bootstrap statistics: In order to construct a CI, it is necessary to arrange the 
bootstrap statistics in ascending order and afterwards select the relevant percentiles. For example, if 
we wanted a 95% confidence interval, we would select the 2.5th percentile as the lower bound and 
the 97.5th percentile as the upper bound. The (1 )100%α−   two-sided PB CI for θ  is created as 
follows: 

 
 * *

( ) ( )
ˆ ˆ, ,PB r sCI θ θ =                (3) 

 



 
Curr. Appl. Sci. Technol. 2024, Vol. 24 (No. 5), e0260107             Panichkitkosolkul 
   

 

6 

where the notation  *
( )
ˆ

rθ  is the thr  quantile of a collection of the parameter estimate *θ̂  arranged in 

ascending order, while *
( )
ˆ

sθ  is the ths  quantile of the aforementioned collection, ( / 2) ,r Bα=     

(1 ( / 2)) ,s Bα= −     where  x   stands for the ceiling function of ,x  and 1 α−   is the confidence 
level. This study utilized α  = 0.05 and B  = 2,000; the two quantiles related to the lower and upper 
bounds of the PB two-sided CI were * *

( ) (50)
ˆ ˆ

rθ θ=   (the 50th quantile) and * *
( ) (1950)
ˆ ˆ

sθ θ=   (the 1950th 
quantile). 
 
2.2.2 Basic bootstrap (BB) confidence interval 
 
The BB CI is a straightforward approach that does not involve more complex modifications or 
adjustments to the bootstrap process. It is sometimes referred to as the simple bootstrap CI. The BB 
CI focuses on the variability of the statistic itself rather than explicitly considering the distribution’s 
tails. Assume that we consider the parameter θ  and the estimator of θ   is ˆ.θ   When *θ̂  is the 
bootstrap estimate of θ  based on the bootstrap sample, the BB CI implies that the distributions of 
θ̂ θ−  and *ˆ ˆθ θ−  are roughly equivalent [20]. The (1 )100%α−  two-sided BB CI for θ  is 
 
 * *

( ) ( )
ˆ ˆ ˆ ˆ2 , 2 ,BB s rCI θ θ θ θ = − −               (4) 

 
where the quantiles *

( )
ˆ

rθ  and  *
( )
ˆ

sθ   represent the same percentile of the empirical distribution of 

bootstrap estimates *θ̂  that are utilized in Equation (3) to calculate the PB CI. 
 
2.2.3 Bias-corrected and accelerated (BCa) bootstrap confidence ınterval 
 
The BCa bootstrap CI is an advanced technique used to improve the accuracy of PB and BB CI 
estimations when dealing with small sample sizes or when the distribution of the data is skewed. 
With a correction for bias and a correction for skewness, the BCa bootstrap CI corrects for both bias 
and skewness in the distribution of the bootstrap statistics [23]. This reduces several problems that 
come up with the PB and BB CIs, such as bias in the estimate of the population parameter, inaccurate 
coverage, and narrow or unreliable confidence intervals. The calculation of BCa bootstrap CI 
commonly involves the utilization of influence statistics derived from jackknife simulations. 

Davison and Hinkley [24] and Chernick and LaBudde [21] described the mathematical 
particulars of the BCa adjustment. The bias correction factor, denoted 0ẑ , is as follows:

( )1 *
0

1

ˆ ˆˆ / ,
B

i
i

z I Bθ θ−

=

 = Φ < 
 
∑ where 1( )−Φ ⋅   is the inverse function of the cumulative standard 

normal distribution and ( )I ⋅  is the indicator function. The skewness or acceleration adjustment is 
calculated via jackknife resampling, which entails generating n  replicates of the initial set of data, 
where n  is the sample size. The initial jackknife replication is obtained by omitting the first case 
( 1)i =  from the initial sample, the second by omitting the second case ( 2),i =  etc., until a total of 
n  samples, each with a size of 1,n −  are generated. From jackknife replicates, we obtain the value 
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of ( )
ˆ , 1, 2,..., .i i nθ − =  The acceleration factor â  is given by 
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where /2zα   is the / 2α  

quantile of the standard normal distribution. Then, the (1 )100%α−  two-sided BCa bootstrap CI for 
θ  is given in equation (5): 

 
 * *

( ) ( )
ˆ ˆ, ,BCa j kCI θ θ =                (5) 

 
where 1j Bα=     and  2 .k Bα=    The stages of construction for the bootstrap CIs are shown in 
Figure 3. 
 

 
 

Figure 3. Stages of construction for the bootstrap CI 
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3. Results and Discussion 
 
3.1 Simulation study and results 
 
In this study, a two-sided CI estimation for the PP distribution parameter was performed using three 
bootstrapping methods, which were illustrated in equations (3)-(5). By using statistical software R, 
a Monte Carlo simulation was designed to encompass cases for n  = 10, 30, 50, 100, and 500. The 
true parameter ( )θ  was set to 0.1, 0.3, 0.5, 0.8, 1.0, 1.5 and 2.0. The number of bootstrap samples 
( )B  was fixed at 2,000, as per the study of Ukoumunne et al. [25]. The nominal confidence level 
(1 )α−  was 0.95 and the number of replications was set to 1,000. The performances of the bootstrap 
CIs were compared with the estimated coverage probabilities and average lengths. In this study, we 
concluded that a coverage probability was greater than or equal to the nominal confidence level 
when the estimated coverage probability was greater than or equal to 0.939 by using the one-
proportion z-test with a significance level of 0.05. Moreover, the bootstrap CI with the minimum 
average length could be used to estimate the parameter more precisely. The R source code for the 
simulation study is available at https://codeocean.com/capsule/4346018/tree. 

The simulation study’s findings are presented in Table 1. For 10,n =   the estimated 
coverage probabilities of all three bootstrap CIs were found to be below 0.90, suggesting that they 
did not achieve the nominal confidence level of 0.95.  In these circumstances, however, the BCa 
bootstrap CI demonstrated superior performance compared to the other methods. For 30,=n  all 
bootstrap CIs again yielded estimated coverage probabilities lower than 0.95. For 50,≥n   each 
bootstrap CI obtained coverage probabilities near the nominal confidence level of 0.95 and had 
average lengths that were comparable. As a simulation result, the estimated coverage probabilities 
of the bootstrap CIs tended to rise and get closer to 0.95 as the sample size rose. Additionally, as θ  
increased, the average lengths of the bootstrap CIs tended to increase. This can be attributed to the 
relationship between the variance and .θ  As expected, the average lengths of all the bootstrap CIs 
decreased as the sampler size increased, with the BCa bootstrap CI offering the shortest average 
length across all cases. In addition, when the sample size was small (n = 10), there was a significant 
difference in the average length of the BCa bootstrap CI compared to the others. In brief, the BCa 
bootstrap CI demonstrated superior performance when applied to moderate and large sample sizes 
( 50).≥n  
 
3.2 Application to real data 
 
Coronaviruses encompass a vast array of viruses capable of inducing a diverse range of illnesses, 
spanning from mild ailments like the common cold to more severe afflictions. The emergence of a 
novel coronavirus (COVID-19) was seen in the city of Wuhan, China, during the year 2019. This 
was an extremely novel coronavirus that had never been detected in humans. The World Health 
Organization (WHO) declared that the coronavirus disease 2019 (COVID-19) was a pandemic [26]. 
To prevent the virus from proliferating further, a global effort was necessary. The pandemic affected 
a large geographical area and an exceptionally high proportion of the population. The H1N1 flu 
pandemic, which was documented in 2009, was an earlier global pandemic. 

Many scientists have conducted research on the COVID-19 pandemic, and they have 
developed models to analyze data and provide predictions regarding the expected number of cases. 
The aim of using these models is to assist nations in making informed decisions regarding prevention 
strategies. For example, Maleki et al. [27] employed an autoregressive time series model utilizing a  
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Table 1. Estimated coverage probability and average length of the 95% two-sided bootstrap CIs 
for the PP distribution parameter 

n  θ  Coverage Probability  Average Length 
PB BB BCa  PB BB BCa 

10 0.1 0.913 0.903 0.910  0.0656 0.0666 0.0800 
 0.3 0.881 0.882 0.886  0.2170 0.2167 0.2122 
 0.5 0.892 0.856 0.881  0.3666 0.3667 0.3619 
 0.8 0.903 0.866 0.891  0.5488 0.5492 0.5509 
 1.0 0.899 0.902 0.895  0.6779 0.6775 0.6765 
 1.5 0.938 0.923 0.947*  1.4531 1.4244 1.3298 
 2.0 0.931 0.878 0.920  3.2792 3.3833 3.1137 

30 0.1 0.925 0.941* 0.936  0.0378 0.0378 0.0373 
 0.3 0.925 0.923 0.925  0.1229 0.1228 0.1212 
 0.5 0.927 0.907 0.927  0.2162 0.2162 0.2133 
 0.8 0.921 0.922 0.920  0.3308 0.3309 0.3291 
 1.0 0.930 0.925 0.932  0.3902 0.3902 0.3893 
 1.5 0.950* 0.954* 0.958*  0.6034 0.6036 0.5908 
 2.0 0.925 0.914 0.940  1.2785 1.2860 1.1632 

50 0.1 0.945* 0.938 0.946*  0.0291 0.0290 0.0288 
 0.3 0.948* 0.939* 0.949*  0.0947 0.0948 0.0938 
 0.5 0.938 0.914 0.939*  0.1641 0.1642 0.1630 
 0.8 0.951* 0.941* 0.947*  0.2595 0.2587 0.2580 
 1.0 0.941* 0.945* 0.940*  0.3064 0.3065 0.3061 
 1.5 0.950* 0.965* 0.953*  0.4514 0.4518 0.4465 
 2.0 0.939* 0.944* 0.952*  0.8293 0.8276 0.7815 

100 0.1 0.950* 0.953* 0.951*  0.0205 0.0204 0.0204 
 0.3 0.955* 0.953* 0.954*  0.0675 0.0674 0.0671 
 0.5 0.968* 0.951* 0.963*  0.1171 0.1172 0.1166 
 0.8 0.937 0.934 0.937  0.1855 0.1854 0.1854 
 1.0 0.953* 0.946* 0.957*  0.2186 0.2188 0.2186 
 1.5 0.945* 0.940* 0.946*  0.3109 0.3110 0.3093 
 2.0 0.928 0.951* 0.945*  0.5430 0.5432 0.5300 

500 0.1 0.939* 0.946* 0.943*  0.0092 0.0092 0.0092 
 0.3 0.953* 0.961* 0.957*  0.0300 0.0300 0.0300 
 0.5 0.949* 0.952* 0.943*  0.0527 0.0527 0.0527 
 0.8 0.959* 0.956* 0.955*  0.0832 0.0829 0.0831 
 1.0 0.953* 0.953* 0.951*  0.0985 0.0987 0.0985 
 1.5 0.944* 0.945* 0.940*  0.1376 0.1378 0.1374 
 2.0 0.956* 0.953* 0.954*  0.2265 0.2266 0.2259 

* indicates that the empirical coverage probability is greater than or equal to the nominal confidence 
level. 
 
two-piece scale mixture normal distribution to forecast and validate COVID-19 cases. Nesteruk [28]  
examined the daily incidence of COVID-19 cases in China through the application of the 
mathematical model (Susceptible, Infected, and Recovered model). Almongy et al. [29] proposed a 
novel model for analyzing the mortality rates due to COVID-19 in Italy, Mexico, and the 
Netherlands. Iranzo and Pérez-González [30] proposed two kinds of epidemiological models 
invoked during the COVID-19 crisis. Ega and Ngeleja [31] developed a deterministic mathematical 
model that incorporated compartments for both human-to-human transmission and transmission via 
contaminated surfaces. 
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Using an actual data set, the application of bootstrap CIs for the parameter of the PP 
distribution was demonstrated in this study. The data represents the number of COVID-19 daily 
deaths in Belgium from December 1, 2022, to March 31, 2023 
(https://lookerstudio.google.com/embedreporting/c14a5cfc-cab7-4812-848c-0369173148ab/page/ 
ZwmOB). The total number of observations is 90 and they are listed below: 

 
1  3  3  10  9  6  6  5  6  9  10  5  18  10  9  9  9  13  11  15  11  13  13  13  13  11  18  8   
16  17  10  6  12  13  12  10  9  12  5  13  10  8  9  5  9  4  3  5  6  4  5  1  5  3  4  8  4  6   
0  3  2  6  4  2  4  9  9  7  3  6  6  8  3  7  5  10  7  7  9  5  11  12  6  6 12  7  7 10  7  10 

 
Table 2 presents the descriptive statistics for the given data set. 
 
Table 2. Descriptive statistics of the number of COVID-19 daily deaths in Belgium 

Min Mean Median Var Skewness Kurtosis Q1 Q3 Max 
0.0 7.9 7.5 15.37 0.4037 2.8026 5.0 10.0 18.0 

The distribution comparison is made between the fitting performance of the PP distribution 
and the following mixed Poisson distributions: 

• For the Poisson-Adya distribution [32], its pmf is 
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• For the Poisson-Akash distribution [6], Its pmf is 
3 2 2

2 3

3 ( 2 3)( ; ) , 0,1, 2,..., 0.
2 ( 1)x

x xp x xθ θ θθ θ
θ θ +
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• For the Poisson-Aradhana distribution [33], its pmf is 
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• For the Poisson-Garima [34] distribution, its pmf is  
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• For the Poisson-Lindley distribution [5], its pmf is 
2

3
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+ x

xp x xθ θθ θ
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• For the Poisson-Shanker distribution [35], its pmf is  
2 2
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• For the Poisson-Sujatha distribution [36], its pmf is 
3 2 2

2 3

( 4) ( 3 4)( ; ) , 0,1, 2,..., 0.
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x xp x xθ θ θ θθ θ
θ θ θ +

+ + + + +
= = >
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The estimation of the parameters of the mixed Poisson distributions was performed using 

the ML approach. We considered the log-likelihood (log L), Akaike’s information criterion (AIC) 
[37], and Bayesian information criterion (BIC) [38] for model comparison. In Table 3, estimates of 

https://lookerstudio.google.com/embedreporting/c14a5cfc-cab7-4812-848c-0369173148ab/
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the parameters, their standard errors (SE), and measures of goodness of fit are provided for this data 
set. 

The AIC and BIC values in Table 3 illustrate that the Poisson-Pranav (PP) distribution 
provided an adequate fit to the number of COVID-19 daily deaths as compared with other 
distributions. The dispersion index (DI) for this data was 3.6942. The dataset demonstrated the 
phenomenon of over-dispersion because the DI was greater than 1 [39]. Table 4 presents the 95% 
two-sided bootstrap CIs for the PP distribution parameter. We concluded that the PP distribution 
parameter lay between 0.4547 and 0.5522, based on the BCa bootstrap CI. Therefore, it was inferred 
that the interval (7.1608, 8.75033) contained the average or population mean ( )µ  of the number of 
daily deaths due to COVID-19. Additionally, the correspondence between the application to 
COVID-19 data and the simulation results was observed, as the BCa bootstrap CI exhibited the 
shortest length in comparison to other intervals. 

 
Table 3. The ML estimates, SE, and goodness of fit measures for the number of COVID-19 daily 
deaths in Belgium 

Distributions Estimates (SE) Log L AIC BIC 
Poisson-Pranav 0.5013 (0.0317) -251.6858 505.3716 507.8714 
Poisson-Adya 0.3602 (0.0245) -256.1517 514.3034 516.8032 
Poisson-Akash 0.3622 (0.0250) -256.7396 515.4792 517.9790 

Poisson-Aradhana 0.3370 (0.0235) -258.6242 519.2484 521.7482 
Poisson-Garima 0.1906 (0.0186) -275.5591 553.1182 555.6180 
Poisson-Lindley 0.2285 (0.0189) -266.6528 535.3056 537.8054 
Poisson-Shanker 0.2435 (0.0196) -263.3568 528.7136 531.2134 
Poisson-Sujatha 0.3476 (0.0241) -257.8473 517.6946 520.1944 

 
Table 4. The 95% two-sided bootstrap CIs and lengths for the parameter in the number of COVID-
19 daily deaths in Belgium 

Methods Confidence Intervals Lengths 
PB (0.4548, 0.5540) 0.0992 
BB (0.4484, 0.5461) 0.0977 
BCa (0.4547, 0.5522) 0.0975 

 
3.3 Discussion 
 
Based on the simulation results, all three bootstrap CIs functioned well in all scenarios with large 
sample sizes ( 50).n ≥ Average lengths did not significantly change, and coverage probabilities were 
close to or near the nominal confidence level. However, when dealing with small sample sizes 
( 10n = and 30), all three bootstrap CIs displayed coverage probabilities that were below the nominal 
confidence level. For the average length comparison, the BCa bootstrap CI provided the shortest 
average length in almost all cases. Furthermore, when the sample size increased and θ  became 
smaller, the average lengths of all the bootstrap CIs decreased. The results of this study are similar 
to those of previous studies. This is because there are theoretical reasons to preference of BCa 
bootstrap CIs.  Moreover, the BCa bootstrap CIs provided the shortest average lengths, so they can 
be used to estimate CIs for the parameter of the PP distribution in multiple domains with precision 
and effectiveness. Our methodology has the potential to assist physicians and government health 
agencies in tracking the daily mortality rate of COVID-19 in some countries and issuing alerts when 
the daily death toll of COVID-19 reaches defined thresholds. Furthermore, it is important to note 
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that while knowing the number of COVID-19 deaths is crucial, it should be considered in 
conjunction with other data, such as the number of cases, hospitalizations, and vaccination rates in 
order to get a comprehensive understanding of the pandemic’s status. Our findings provide valuable 
insights into estimating the parameters, including the population mean of the number of COVID-19 
daily deaths, which can facilitate more effective pandemic response strategies such as better 
COVID-19 vaccine management and improved ways of dealing with the future outbreaks of 
COVID-19. 

This study was limited by the fact that none of the bootstrap CIs were exact. However, it is 
worth noting that these intervals consistently converged towards a coverage probability of 1−α  as 
the sample sizes increased. With a small sample size, we have limited information about the 
underlying population. This means that resampling from a small dataset may not adequately capture 
the variability present in the population, leading to biased or unreliable estimates. Bootstrap CIs 
may end up too narrow or too wide, leading to incorrect inferences about the parameter. In addition, 
three bootstrap CIs are computationally intensive and difficult to calculate. Nevertheless, there 
exists a variety of R packages that can be utilized for the computation of bootstrap CIs. These 
packages include the boot package [22], the bootstrap package [40], the semEff package [41], and 
the BootES package [42]. Since statistical software R is an open-source programming language, 
users are allowed to download the above-mentioned packages. 
 
 
4. Conclusions 
 
In the previous studies, there was no research that studied the bootstrap CIs for the parameter of the 
Poisson-Pranav (PP) distribution. In this study, we aimed to evaluate the performance of percentile 
bootstrap (PB), basic bootstrap (BB), and bias-corrected and accelerated (BCa) bootstrap 
approaches for the PP distribution parameter. The advantages of bootstrap CIs are their robustness 
and flexibility, and their ability to make inferences without assuming a specific data distribution. 
They work well with non-Gaussian data, and in situations where traditional parametric methods are 
inappropriate. Additionally, they provide a model-free approach to estimate the sampling 
distribution of statistics and are relatively simple to implement. The performance of these 
approaches was evaluated by comparing their estimated coverage probability and average length 
using simulated data. The results show that the sample size ( )n   appeared to have a substantial 
impact on the performances of the bootstrap CIs. The estimated coverage probabilities for three 
bootstrap CIs were significantly less than 0.95 in case of the small sample sizes ( 10n =  and 30). 
When the sample size reached a sufficient magnitude ( 50),n ≥  there were no significant disparities 
observed in the estimated coverage probabilities and average lengths of the three bootstrap CIs. 
Based on our research outcomes, it was observed that the BCa bootstrap CI exhibited superior 
performance across a wide range of scenarios, as evidenced by both the simulation study and the 
application to COVID-19 data. Thus, BCa bootstrap CI can be recommended for constructing CIs 
for the PP distribution parameter in cases of large sample sizes. 

In further studies, it would be beneficial to focus on the comparative analysis of alternative 
CI estimations when compared to the bootstrap CIs presented in this research. The construction of 
CIs for functions of other parameters, such as the population mean and dispersion index, is of 
interest. Additionally, there is a lack of statistical theoretical research regarding hypothesis testing 
for the PP distribution parameter. The bootstrap CIs studied in this paper can be applied to other 
distributions. These topics may be subject to further investigation in subsequent studies. Moreover, 
the number of deaths for other epidemics should be studied by using the bootstrap CIs for the 
parameter of the PP distribution. 
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