

Research article

Potential Estimation of Secondary Pollutant Formation of BVOC from *Peltophorum pterocarpum* in Urban Area

Suteekan Maneejantra, Thanyaporn Charoenpun, Surat Bualert*, Parkpoom Choomanee, Suthee Janyasuthiwong and Waraporn Chommon

Department of Environmental Science, Faculty of Environment, Kasetsart University, Bangkok, Thailand

Curr. Appl. Sci. Technol. 2024, Vol. 24 (No. 5), e0260120; <https://doi.org/10.55003/cast.2024.260120>

Received: 13 September 2023, Revised: 26 January 2024, Accepted: 21 March 2024, Published: 1 May 2024

Abstract

Keywords

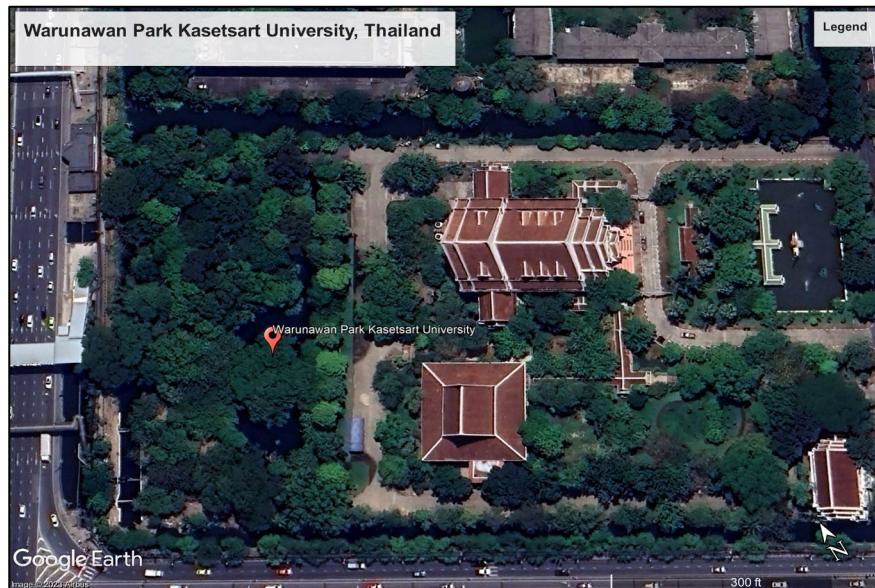
Biogenic volatile organic compound (BVOC);
Secondary organic aerosol potential (SOAP);
Ozone formation potential (OFP);
Peltophorum pterocarpum; urban area

Climate change affects the emission of biogenic volatile organic compounds (BVOCs) from plants, especially isoprene, α -pinene, and β -pinene. These compounds play vital role in the secondary organic aerosol potential (SOAP) and ozone formation potential (OFP) through photochemical reactions. In Thailand, daytime temperatures typically reach up to 40°C resulting in potential plant stress. The considered plant *Peltophorum pterocarpum*, emits high levels of BVOCs and is widely cultivated in the urban areas of Bangkok. Consequently, this research aimed to study the variations in BVOC concentration, SOAP, and OFP associated with *Peltophorum pterocarpum*, during the daytime. The BVOCs (isoprene, α -pinene, and β -pinene) were sampled using a dynamic enclosure system from 9:00 to 11:00 local time and analyzed using gas chromatography with a flame ionization detector. SOAP and OFP were estimated using fractional aerosol coefficient and maximum incremental reactivity. The results revealed an average BVOC concentration of $4.68 \mu\text{g}/\text{m}^3$, which depended on temperature and light intensity. The highest SOAP and OFP were $1,367.10$ and $188.58 \mu\text{g}/\text{m}^3$, respectively, which were largely influenced by β -piene. This study aids in understanding the role of secondary pollutant formation involving BVOCs emitted from trees in urban areas, which can lead to the selection of low BVOC-emitting tree species and improvement of guidelines for planning urban forest areas.

*Corresponding author: Tel.: (+66) 982745741
E-mail: surat.b@ku.ac.th

1. Introduction

Air pollution has become an important environmental issue in Thailand, affecting human health, economy, and society. Bangkok is Thailand's capital and it includes urban areas in which high levels of polluted volatile organic compounds (VOCs), nitrogen oxides ($\text{NO} + \text{NO}_2$), particulate matter less than 2.5 micron ($\text{PM}_{2.5}$), and sulfur oxides (SO_x) regularly occur. Moreover, emerging secondary pollutions such as ground level ozone (O_3) have become a serious issue especially [1, 2]. Secondary organic aerosols (SOAs) also play a role in the atmospheric reactions in urban areas. These derived pollutants have a stronger impact on the Earth's radiative balance, air quality, and human health than that of primary pollutants [3-5]. The Thai government has developed urban green areas to reduce urban air pollution. O_3 and SOA can be produced from both BVOC and anthropogenic volatile organic compounds (AVOCs), which were oxidized by hydroxyl radicals ($\cdot\text{OH}$) [6 - 9], O_3 , or nitrate radicals ($\text{NO}_3\cdot$) in the ambient air [10-12]. The primary sources of VOCs are biogenic with plants contributing about approximately 65%, while anthropogenic sources contribute 25%, and wildfires contribute only 10%. Plants generally emit BVOCs such as isoprene, α - pinene, and β - pinene which play a role in growth regulation, plant reproduction, and signal and protective mechanism against stress [13, 14]. However, plants in urban areas are often stressed by the diurnal impact of temperature, heat [15] and light intensity from the urban heat island (UHI) effect. BVOC was not only the highest emission source of VOCs, but its chemical reactivity with $\cdot\text{OH}$, O_3 , and $\text{NO}_3\cdot$ was also higher than that of AVOCs [16]. Isoprene, α - pinene, and β - pinene are the dominant gases emitted from plants which react with $\cdot\text{OH}$, $\cdot\text{NO}_3$, and are transformed to O_3 and SOA during the daytime [17, 18]. The transformations are shown in equations (1)-(4):



In summer, temperatures in Thailand can reach up to 40°C during the daytime. The higher temperature induces plant stress, resulting in higher emission of isoprene, α -pinene, and β -pinene. *Peltophorum pterocarpum* is a tree species widely grown in Bangkok. This species emits high BVOCs, especially isoprene and monoterpenes (α - pinene and β - pinene) [19]. Thus, *Peltophorum pterocarpum* in urban areas are unavoidably affected by stressful conditions. Many studies have reported experiments on O_3 and SOA formation, but there are still some gaps in the exploration of O_3 and SOA formation. Therefore, ozone formation potential (OFP) and secondary organic aerosol potential (SOAP) were used to estimate the transformation to secondary pollutants [20, 21]. This study aimed to estimate the O_3 and SOA formation potential of *Peltophorum pterocarpum* in urban areas. These results contribute to understanding the role of secondary pollutant formation in urban areas, leading to the selection of low BVOC emission tree species, and the development of improved guidelines for planting urban forests.

2. Materials and Methods

2.1 Study area and plant selection

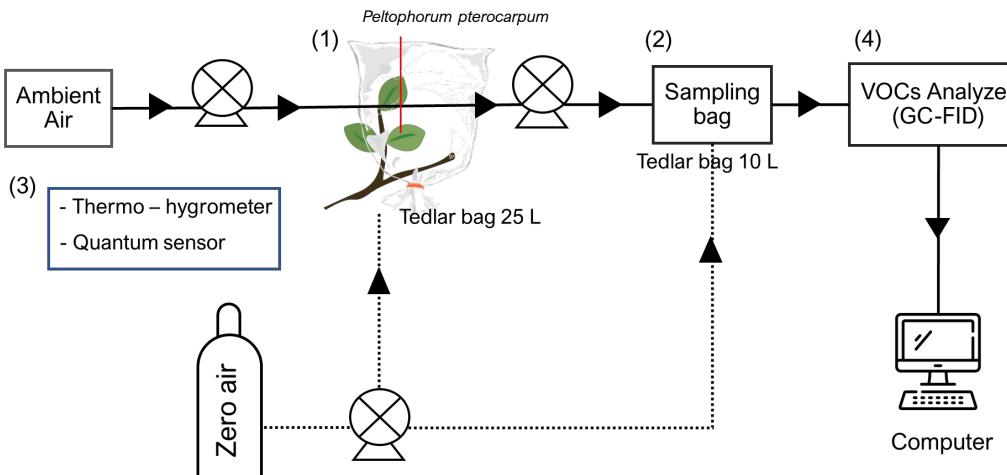

Kasetsart University is situated in an urban area in Bangkok (13°50'54.95"N 100°34'04.98"E). *Peltophorum pterocarpum* is one of the most abundant plant species in this area, with approximately 310 trees per 1.36×10^6 square meter. These trees are typically planted along the streets and within Warunawan Park University (Figure 1). Thailand's average annual temperature in 2020 was 26°C but in summer the highest temperature was 40°C. *Peltophorum pterocarpum* is the most common cultivated species in Southeast Asia and ranks high among plants for BVOC emission. *Peltophorum pterocarpum* has a rounded canopy and can reach a height of 15 m with a 30-50 ft spread; its leaves are bipinnate and 9-18 cm long. Samples of BVOCs were collected from *Peltophorum pterocarpum* on selected dates in summer (April and May 2022) during the daytime (9:00-11:00 local time). The sampling branch was the healthiest one that complied with the following criteria: it needed to receive full sunlight, be free from diseases, be well-developed, and have no other biotic and abiotic stress sources [22].

Figure 1. Study area: Warunawan Park, Kasetsart University, Thailand

2.2 BVOC sampling and analytic methods

This study used a dynamic enclosure system [23], as shown in Figure 2. The dynamic system included four major parts namely, 1) BVOC enclosure bag (HEDETECH, Tedlar bag, 25 L, DuPont, USA), 2) BVOC sampling bag (HEDETECH, Teflon bag, 10 L, DuPont, USA), 3) temperature and light intensity measurement system with Thermo-Hygrometer (EAE Technology, Oria Thermostat PM R1.0, Istanbul, Turkey), and a quantum sensor (Apogee Instruments, models SQ-100 series quantum sensors, Utah, USA), respectively, and 4) VOCs analyzer with a gas chromatography flame ionization detector (GC-FID). The average leaf area of samples was 0.16 m², which was determined

Figure 2. Schematic diagram of BVOC sampling from the *Peltophorum pterocarpum*

by Image J program version 1.53e. The leaves were later covered by BVOC enclosure bag and sealed with a cable tie. Ambient air was added to the BVOC enclosure bag using a vacuum pump at a flow rate of 5.0 L/min. The samples were collected from three positions on the same branch that had the same environmental conditions for shade, light intensity, temperature, and relative humidity (total samples were 21 samples). After 2 h (09:00-11:00 LT), each sample was collected into a sampling bag using a pump at a flow rate of 5.0 L/min. BVOCs were analyzed using a VOCs analyzer with a gas chromatography flame ionization detector (GC-FID). The BVOC enclosure bag was cleaned with zero air to remove the previous volatile organic compound before the next analysis, and the background was collected into an empty enclosure bag without the branch, as shown in Figure 2. BVOCs were continuously measured every 30 min using the VOCs analyzer, as shown in Figure 2. A thermoelectric cooling system was used to maintain temperatures below the evaporation point. The VOCs analyzer was calibrated prior to use using mixed VOC standard gases ($R^2 = 0.99$). Isoprene was measured using an A11000 airmoVOCs C2–C6 analyzer, while α -pinene and β -pinene were measured using an A21022 airmoVOCs C6–C12 analyzer. The VOC measurements were reported using Vistachrom software (version 1.4.6 b.).

2.3 Environmental conditions

Environmental parameters, particularly light intensity, temperature, and relative humidity affect BVOC concentration. Therefore, during the sampling period, these parameters were also measured. The light intensity of photosynthetically active radiation (PAR) was measured using a quantum sensor (Model SQ-100) and expressed as photosynthetic photon flux density (PPFD). Temperature was measured using a thermo-hygrometer located beside the sampling area, as shown in Figure 2.

2.4 SOAP and OFP estimation

The estimate of SOAs from isoprene, α – piene, and β – piene was calculated as secondary organic aerosol potential (SOAP) based on the fractional aerosol coefficient (aerosol formation coefficient (FACi) for isoprene, α -pinene, and β -pinene, which were 2, 30, and 30, respectively [24]. Equation (5) showed the SOAP estimates.

$$SOAP_i = [VOC]_i \times FAC_i \quad (5)$$

$SOAP_i$ = Amount of SOA generated by VOC for species i ($\mu\text{g}/\text{m}^3$)

$[VOC]_i$ = Initial mass concentration of VOC for species i ($\mu\text{g}/\text{m}^3$)

FAC_i = aerosol formation coefficient of the VOC species i

Ozone formation from VOCs was studied using different methods; however, the ozone formation potential (OFP) was usually used to estimate the contribution of O_3 from VOCs [25-27]. The estimated O_3 formation was calculated from the maximum incremental reactivity (MIR). The MIR values of isoprene, α -piene, and β -piene were 10.61, 4.51, and 3.52 gVOC/g O_3 , respectively [28], which were derived in scenarios where the NO_x had been adjusted to yield the highest incremental reactivities of VOCs, and OFP was calculated using equation (6):

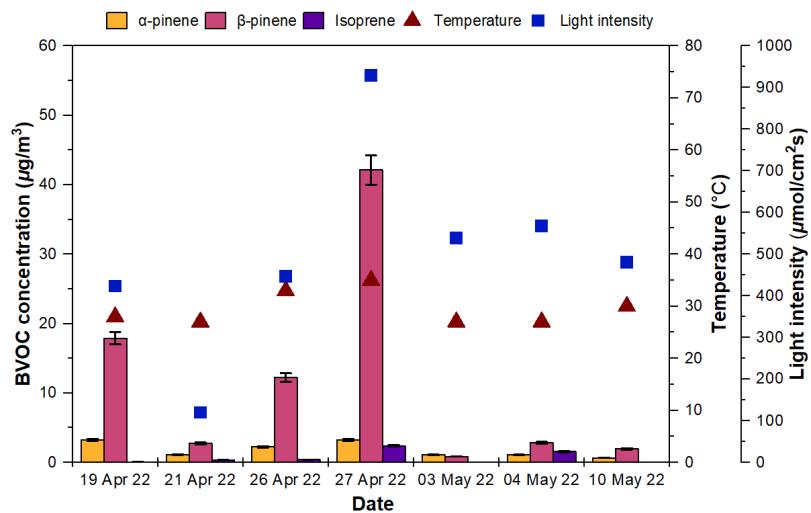
$$OFP_i = [VOC]_i \times MIR_i \quad (6)$$

OFP_i = Ozone formation potential for species i ($\mu\text{g}/\text{m}^3$)

$[VOC]_i$ = Concentration of VOC_i for species i ($\mu\text{g}/\text{m}^3$)

MIR_i = Maximum incremental reactivity of species i (g VOC/g O_3)

3. Results and Discussion


3.1 Biogenic volatiles organic compound concentration

BVOCs included isoprene, α -pinene, and β -pinene concentrations from *Peltophorum pterocarpum* with corresponding temperatures and light intensities, as shown in Figure 3. These results indicated that TBVOC concentrations increased with temperature and light intensity. The average concentrations of isoprene, α -pinene, and β -pinene were 0.70, 1.82, and 11.52 $\mu\text{g}/\text{m}^3$, respectively. The averaged light intensity, temperature, and relative humidity were 127.06 $\mu\text{mol}/\text{m}^2\text{s}$, 29°C, and 74.21%, respectively. The highest isoprene, α -pinene, and β -pinene emissions of 2.40 ± 0.12 , 3.27 ± 0.16 , and $42.14 \pm 2.11 \mu\text{g}/\text{m}^3$ were observed on 27th April. Light intensity affects photosynthesis in *Peltophorum pterocarpum*, influencing activity in the secondary metabolic process to respond to abiotic stress, resulting in the production and emission of more BVOC [28]. According to Zervoudakis *et al.* [29], plants which were exposed to 25% of full sunlight on a sunny day exhibited photosynthetic activity levels less than those exposed to 50%, 75%, and 100% of full sunlight (1,400 $\mu\text{mol}/\text{m}^2\text{s}$), resulting in less BVOC production. Temperature is another significant factor affecting the release of isoprene, α -pinene, and β -pinene [30]. Increased temperature affects stomatal opening resulted in releasing more VOCs [31, 32]. Furthermore, *Peltophorum pterocarpum* possesses glandular trichomes capable of synthesizing and accumulating BVOC on the leaf surface, which are promptly emitted in response to abiotic stress conditions such as variations in light intensity and temperature [33].

3.2 SOAP and OFP estimations

3.2.1 SOAP estimation

The SOAP of isoprene, β -piene, and α -piene emission from *Peltophorum pterocarpum* in urban areas are shown in Table 1. The average of SOAP of isoprene, α -piene, and β -piene were 1.40,

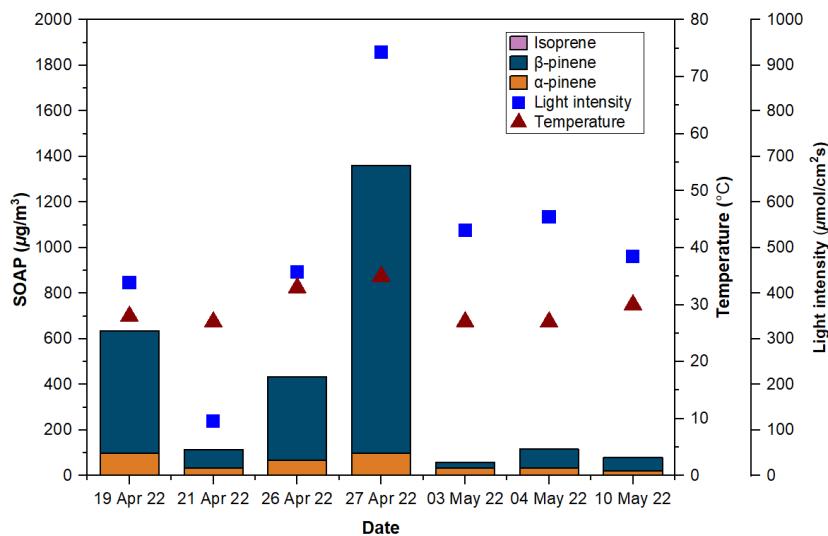

Figure 3. BVOC concentrations from *Peltophorum pterocarpum* in Warunawan Park, Kasetsart University

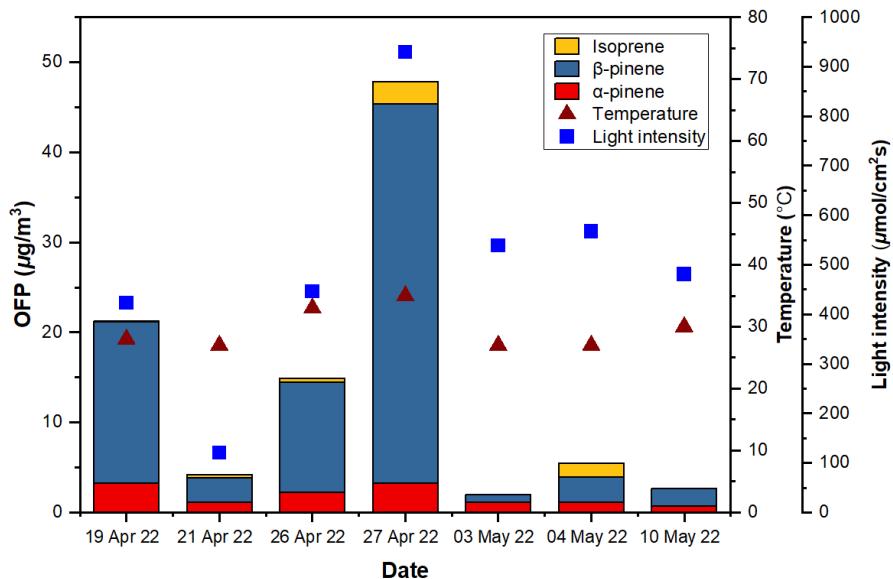
Table 1. Secondary organic aerosol potential (SOAP) in Warunawan Park, Kasetsart University

Day	Isoprene		α – piene		β – piene		Total SOAP
	VOCi	SOAP	VOCi	SOAP	VOCi	SOAP	
19 April 2022	0.10±0.01	0.20	3.25±0.16	97.60	17.90±0.90	537.00	634.80
21 April 2022	0.37±0.02	0.74	1.13±0.05	33.90	2.73±0.14	81.90	116.54
26 April 2022	0.42±0.02	0.83	2.25±0.11	67.40	12.24±0.61	367.10	435.33
27 April 2022	2.40±0.12	4.81	3.27±0.16	98.10	42.14±2.11	1,264.20	1,367.11
03 May 2022	0.03±0.001	0.05	1.09±0.05	32.70	0.87±0.04	26.20	58.95
04 May 2022	1.57±0.08	3.15	1.10±0.06	32.90	2.82±0.14	84.50	120.55
10 May 2022	0.00	0.00	0.67±0.03	20.00	1.96±0.10	58.80	78.80
Average	0.70	1.40	1.82	54.66	11.52	345.67	401.73

Unit = $\mu\text{g}/\text{m}^3$

54.66, and, 345.67 $\mu\text{g}/\text{m}^3$, respectively. The highest total SOAP was 1,367.10 $\mu\text{g}/\text{m}^3$. This was primarily due to the dominance of the β -pinene concentration and β -pinene's FACi compared to isoprene and α -pinene. If β -pinene concentration varied, SOAP also changed. *Peltophorum pterocarpum*'s SOAP derived primarily from β – Pinene, α – piene and isoprene, respectively. SOA formation from monoterpenes and isoprene was dominated by $\cdot\text{OH}$, which was confirmed by an increase in SOA yield and decrease in NO_x . The results demonstrated that the estimated SOA formation was related to temperature and light intensity, as shown in Figure 4. On April 27th 2022, the SOA reached its highest level. On this day, the temperature and light intensity were notably the highest, at 35°C and 929.21 $\mu\text{mol}/\text{m}^2\text{s}$, compared to other days in the summer. These conditions likely induced heat stress in *Peltophorum pterocarpum*, causing the plants to produce and emit BVOCs as a stress-reduction mechanism. In urban areas, it was found that the concentrations of monoterpene and isoprene SOA tracers correlated with temperature [34].

Figure 4. Total secondary organic aerosol potential (SOAP) and environmental conditions


3.2.2 Ozone formation potential (OFP)

The OFPs of isoprene, α – piene, and β – piene emission from *Peltophorum pterocarpum* are shown in Table 2. The average OFP of isoprene, α – piene, and β – piene were 7.41, 8.22, and, 40.56 $\mu\text{g}/\text{m}^3$, respectively. The OFPs varied with the BVOC concentration emitted by *Peltophorum pterocarpum*, temperature, and light intensity. On April 27th, the highest OFP recorded was 188.58 $\mu\text{g}/\text{m}^3$, coinciding with the peak light intensity of 929.21 $\mu\text{mol}/\text{m}^2\text{s}$, as shown in Figure 5. Moreover, β -pinene and α -pinene have a higher potential to form O_3 than isoprene because they were high reactivity with ambient oxidants such as $\cdot\text{OH}$ and transform into O_3 , according to Fu and Liao [35] and Berezina *et al.* [36]. In this study, O_3 could be formed by a photochemical reaction between BVOC, and oxidants under high NO_x conditions by photochemical reaction in the daytime. BVOC reacted with $\cdot\text{OH}$ and generated Peroxy radicals (BVOC + $\cdot\text{OH} \rightarrow \text{RO}_2\cdot$), and further reacted with NO and oxidized to NO₂ ($\text{RO}_2\cdot + \text{NO} \rightarrow \text{NO}_2 + \text{RO}$) which is then photolyzed by ultraviolet radiation ($\text{NO}_2 + \text{hv} (<420 \text{ nm}) \rightarrow \text{NO} + \text{O}$). These reactions led to the formation of ground-state oxygen atoms ($\text{O}(3\text{P})$), which combine with oxygen (O_2) to produce O_3 ($\text{O}_2 + \text{O} \rightarrow \text{O}_3$) [37], according to the Chapman reaction [38].

Table 2. Ozone formation potential (OFP) in Warunawan Park, Kasetsart University

Day	Isoprene		α – piene		β – piene		Total OFP
	VOCi	OFP	VOCi	OFP	VOCi	OFP	
19 April 2022	0.10 \pm 0.01	1.06	3.25 \pm 0.16	14.67	17.90 \pm 0.90	63.01	78.74
21 April 2022	0.37 \pm 0.02	3.93	1.13 \pm 0.05	5.10	2.73 \pm 0.14	9.61	18.63
26 April 2022	0.42 \pm 0.02	4.42	2.25 \pm 0.11	10.13	12.24 \pm 0.61	43.07	57.63
27 April 2022	2.40 \pm 0.12	25.50	3.27 \pm 0.16	14.75	42.14 \pm 2.11	148.33	188.58
03 May 2022	0.03 \pm 0.001	0.28	1.09 \pm 0.05	4.92	0.87 \pm 0.04	3.07	8.27
04 May 2022	1.57 \pm 0.08	16.69	1.10 \pm 0.06	4.95	2.82 \pm 0.14	9.91	31.55
10 May 2022	0.00	0.00	0.67 \pm 0.03	3.01	1.96 \pm 0.10	6.90	9.91
Average	0.70	7.41	1.82	8.22	11.52	40.56	56.19

Unit = $\mu\text{g}/\text{m}^3$

Figure 5. Ozone formation potential (OFP) in Warunawan Park, Kasetsart University

4. Conclusions

Urban air pollutants, especially SOAs and O₃, affect the environment and human health. The estimated potential secondary pollutant formation from BVOCs released from *Peltophorum pterocarpum* in urban areas, especially the formation of O₃ and SOA, can be determined using the maximum incremental reactivity (MIR) and fractional aerosol coefficient. The results demonstrated that the formation of O₃ and SOAs in the urban area was related to the BVOC concentration, temperature, and light intensity. The highest light intensity and temperature of 929.21 µmol/m²s and 34.55 °C, respectively, resulted in BVOC emissions such as isoprene, α – piene, and β – piene at 2.40, 3.27 and, 42.14 µg/m³, respectively, while O₃ was 188.58 µg/m³ and SOA was 1,367.10 µg/m³. The results showed that temperature and light intensity can affect BVOC emissions. However, the relationship of BVOC from plants and secondary pollutants in Thailand have not been widely investigated, and the role of secondary pollutants from BVOCs emitted by plants in urban areas should be considered in climate change adaptation plans.

5. Acknowledgements

This study was funded by the “Atmospheric Science Research Group” and the Faculty of Environment, Kasetsart University, Bangkok, Thailand.

References

- [1] Seinfeld, J.H. and Pandis, S.N., 2016. *Atmospheric chemistry and physics: from air pollution to climate change*. Hoboken: John Wiley and Sons.
- [2] Zhu, H., Wang, H., Jing, S., Wang, Y., Cheng, T., Tao, S., Lou, S., Qiao, L., Li, L. and Chen, J., 2018. Characteristics and sources of atmospheric volatile organic compounds (VOCs) along the mid-lower Yangtze River in China. *Atmospheric Environment*, 190, 232-240.
- [3] Twomey, S., 1974. Pollution and the planetary albedo. *Atmospheric Environment (1967)*, 8(12), [https://doi.org/10.1016/0004-6981\(74\)90004-3](https://doi.org/10.1016/0004-6981(74)90004-3).
- [4] Albrecht, B.A., 1989. Aerosols, cloud microphysics, and fractional cloudiness. *Science*, 245(4923), <https://doi.org/10.1126/science.245.4923.1227>.
- [5] Atkinson, R., 2000. Atmospheric chemistry of VOCs and NOx. *Atmospheric Environment*, 34(12-14), [https://doi.org/10.1016/S1352-2310\(99\)00460-4](https://doi.org/10.1016/S1352-2310(99)00460-4).
- [6] Kanaya, Y., Hofzumahaus, A., Dorn, H.P., Brauers, T., Fuchs, H., Holland, F., Rohrer, F., Bohn, B., Tillmann, R., Wegener, R., Wahner, A., Kajii, Y., Miyamoto, K., Nishida, S., Watanabe, K., Yoshino, A., Kubistin, D., Martinez, M., Rudolf, M., Harder, H., Berresheim, H., Elste, T., Plass-Dülmer, C., Stage, G., Kleffman, J., Elshorbany, Y. and Sehrath, U., 2012. Comparisons of observed and modeled OH and HO₂ concentrations during the ambient measurement period of the HOx Comp field campaign. *Atmospheric Chemistry and Physics*, 12(5), <https://doi.org/10.5194/acp-12-2567-2012>.
- [7] Taraborrelli, D., Lawrence, M.G., Crowley, J., Dillon, T., Gromov, S., Groß, C., Vereecken, L. and Lelieveld, J., 2012. Hydroxyl radical buffered by isoprene oxidation over tropical forests. *Nature Geoscience*, 5(3), 190-193.
- [8] Zannoni, N., Gros, V., Sarda Esteve, R., Kalogridis, C., Michoud, V., Dusanter, S., Sauvage, S., Locoge, N., Colomb, A. and Bonsang, B., 2017. Summertime OH reactivity from a receptor coastal site in the Mediterranean Basin. *Atmospheric Chemistry and Physics*, 17(20), <https://doi.org/10.5194/acp-17-12645-2017>.
- [9] Boyd, C.M., Nah, T., Xu, L., Berkemeier, T. and Ng, N.L., 2017. Secondary organic aerosol (SOA) from nitrate radical oxidation of monoterpenes: effects of temperature, dilution, and humidity on aerosol formation, mixing, and evaporation. *Environmental Science and Technology*, 51(14), <https://doi.org/10.1021/acs.est.7b01460>.
- [10] Han, S. and Jang, M., 2023. Modeling daytime and nighttime secondary organic aerosol formation via multiphase reactions of biogenic hydrocarbons. *Atmospheric Chemistry and Physics*, 23(2), 1209-1226, <https://doi.org/10.5194/acp-23-1209-2023>.
- [11] Laothawornkitkul, J., Taylor, J.E., Paul, N.D. and Hewitt, C.N., 2009. Biogenic volatile organic compounds in the Earth system. *New Phytologist*, 183(1), <https://doi.org/10.1111/j.1469-8137.2009.02859.x>.
- [12] Holopainen, J.K. and Gershenzon, J., 2010. Multiple stress factors and the emission of plant VOCs. *Trends in Plant Science*, 15(3), <https://doi.org/10.1016/j.tplants.2010.01.006>.
- [13] Peron, A., Kaser, L., Fitzky, A.C., Graus, M., Halbwirth, H., Greiner, J., Wohlfahrt, G., Rewald, B., Sandén, H. and Karl, T., 2021. Combined effects of ozone and drought stress on the emission of biogenic volatile organic compounds from *Quercus robur* L. *Biogeosciences*, 18(2), <https://doi.org/10.5194/bg-18-535-2021>.
- [14] Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M. and Miller, H.L., 2007. *Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007*. Cambridge: Cambridge University Press.
- [15] Kim, S.-Y., Jiang, X., Lee, M., Turnipseed, A., Guenther, A., Kim, J.-C., Lee, S.-J. and Kim, S., 2013. Impact of biogenic volatile organic compounds on ozone production at the Taehwa

Research Forest near Seoul, South Korea. *Atmospheric Environment*, 70, <https://doi.org/10.1016/j.atmosenv.2012.11.005>.

[16] Calfapietra, C., Fares, S., Manes, F., Morani, A., Sgrigna, G. and Loreto, F., 2013. Role of Biogenic Volatile Organic Compounds (BVOC) emitted by urban trees on ozone concentration in cities: A review. *Environmental Pollution*, 183, <https://doi.org/10.1016/j.envpol.2013.03.012>.

[17] Fuentes, J.D., Lerdau, M., Atkinson, R., Baldocchi, D., Bottenheim, J., Ciccioli, P., Lamb, B., Geron, C., Gu, L., Guenther, A., Sharkey, T.D. and Stocwell, W., 2000. Biogenic hydrocarbons in the atmospheric boundary layer: a review. *Bulletin of the American Meteorological Society*, 81(7), 1537-1575.

[18] Malik, T.G., Gajbhiye, T. and Pandey, S.K., 2018. Plant specific emission pattern of biogenic volatile organic compounds (BVOCs) from common plant species of Central India. *Environmental monitoring and assessment*, 190(11), <https://doi.org/10.1007/s10661-018-7015-6>.

[19] Liu, L., Seyler, B. C., Liu, H., Zhou, L., Chen, D., Liu, S., Yan, C., Yang, F., Song, D., Tan, Q., Jia, F., Feng, C., Wang, Q. and Li, Y., 2022. Biogenic volatile organic compound emission patterns and secondary pollutant formation potentials of dominant greening trees in Chengdu, southwest China. *Journal of Environmental Sciences*, 114, <https://doi.org/10.1016/j.jes.2021.08.033>.

[20] Ma, J and Li, L., 2023. VOC emitted by biopharmaceutical industries: Source profiles, health risks, and secondary pollution. *Journal of Environmental Sciences*, 135, <https://doi.org/10.1016/j.jes.2022.10.022>.

[21] Jing, X., Lun, X., Fan, C. and Ma, W., 2020. Emission patterns of biogenic volatile organic compounds from dominant forest species in Beijing, China. *Journal of Environmental Sciences*, 95, <https://doi.org/10.1016/j.jes.2020.03.049>.

[22] Aydin, Y.M., Yaman, B., Koca, H., Dasdemir, O., Kara, M., Altıok, H., Dumanoglu, Y., Bayram, A., Tolunay, D., Odabasi, M. and Elbir, T., 2014. Biogenic volatile organic compound (BVOC) emissions from forested areas in Turkey: Determination of specific emission rates for thirty-one tree species. *Science of The Total Environment*, 490, <https://doi.org/10.1016/j.scitotenv.2014.04.132>.

[23] Xiao, Y., Meng-xuan, H., Yi, G., Yun, W., Jing-jing, H. and Quan-zhou, L., 2021. Study on volatile organic compounds of tree species and the influence on ozone and secondary organic aerosol. *IOP Conference Series: Earth and Environmental Science*, 791, <https://doi.org/10.1088/1755-1315/791/1/012199>.

[24] Tan, Q., Liu, H., Xie, S., Zhou, L., Song, T., Shi, G., Jiang, W., Yang, F. and Wei, F., 2020. Temporal and spatial distribution characteristics and source origins of volatile organic compounds in a megacity of Sichuan Basin, China. *Environmental research*, 185, <https://doi.org/10.1016/j.envres.2020.109478>.

[25] Deng, Y., Li, J., Li, Y., Wu, R. and Xie, S., 2019. Characteristics of volatile organic compounds, NO₂, and effects on ozone formation at a site with high ozone level in Chengdu. *Journal of Environmental Sciences*, 75, <https://doi.org/10.1016/j.jes.2018.05.004>.

[26] Hu, B., Xu, H., Deng, J., Yi, Z., Chen, J., Xu, L., Hong, Z., Chen, X. and Hong, Y., 2018. Characteristics and source apportionment of volatile organic compounds for different functional zones in a coastal city of southeast China. *Aerosol and Air Quality Research*, 18(11), 2840-2852, <https://doi.org/10.4209/aaqr.2018.04.0122>.

[27] Carter, W.P.L., 2010. *Updated Maximum Incremental Reactivity Scale and Hydrocarbon Bin Reactivities for Regulatory Applications*. [online] Available at: <https://ww2.arb.ca.gov/sites/default/files/barcu/regact/2009/mir2009/mir10.pdf>.

[28] Mahajan, M.R., Kuiry and Pal, P.K., 2020. Understanding the consequence of environmental stress for accumulation of secondary metabolites in medicinal and aromatic plants. *Journal of Applied Research on Medicinal and Aromatic Plants*, 18, <https://doi.org/10.1016/j.jarmap.2020.100255>.

[29] Zervoudakis, G., Salahas, G., Kaspiris, G. and Konstantopoulou, E., 2012. Influence of light intensity on growth and physiological characteristics of common sage (*Salvia officinalis L.*). *Brazilian Archives of Biology and Technology*, 55(1), 89-95.

[30] Lun, X., Lin, Y., Chai, F., Fan, C., Li, H. and Liu, J., 2020. Reviews of emission of biogenic volatile organic compounds (BVOCs) in Asia. *Journal of Environmental Sciences*, 95, <https://doi.org/10.1016/j.jes.2020.04.043>.

[31] Bamberger, I., Ruehr, N.K., Schmitt, M., Gast, A., Wohlfahrt, G. and Arneth, A., 2017. Isoprene emission and photosynthesis during heatwaves and drought in black locust. *Biogeosciences*, 14(15), <https://doi.org/10.5194/bg-14-3649-2017>.

[32] Kadam, V., Famila, S., Tambe, S. and Momin, R.K., 2013. Histochemical investigation of different organs of two medical plants in Maharashtra. *International Journal of Pharmaceutical Research and Bioscience*, 2(4), 194-201.

[33] Ayogu, V.O., Njoku, E.U., Nwafor, F.I. and Ezeh, C.P., 2020. Comparative ecological and functional anatomy of the foliar variables of some tree species in the Southern Nigeria. *International Journal of Biology, Pharmacy and Allied Sciences*, 9(12), 3492-3505.

[34] Ren, Y., Wang, G., Tao, J., Zhang, Z., Wu, C., Wang, J., Li, J., Wei, J., Li, H. and Meng, F., 2019. Seasonal characteristics of biogenic secondary organic aerosols at Mt. Wuyi in Southeastern China: Influence of anthropogenic pollutants. *Environmental Pollution*, 252, <https://doi.org/10.1016/j.envpol.2019.05.077>.

[35] Fu, Y. and Liao, H., 2012. Simulation of the interannual variations of biogenic emissions of volatile organic compounds in China: Impacts on tropospheric ozone and secondary organic aerosol. *Atmospheric Environment*, 59, 170-185, <https://doi.org/10.1016/j.atmosenv.2012.05.053>.

[36] Berezina, E., Moiseenko, K., Skorokhod, A., Elansky, N., Belikov, I. and Pankratova, N., 2019. Isoprene and monoterpenes over Russia and their impacts in tropospheric ozone formation. *Geography, Environment, Sustainability*, 12(1), <https://doi.org/10.24057/2071-9388-2017-24>.

[37] Tan, Z., Lu, K., Hofzumahaus, A., Fuchs, H., Bohn, B., Holland, F., Liu, Y., Rohrer, F., Shao, M., Sun, K., Wu, Y., Zeng, L., Zhang, Y., Zou, Q., Kiendler-Scharr, A., Wahner, A. and Zhang, Y., 2019. Experimental budgets of OH, HO₂, and RO₂ radicals and implications for ozone formation in the Pearl River Delta in China 2014. *Atmospheric Chemistry and Physics*, 19, 7129-7150, <https://doi.org/10.5194/acp-19-7129-2019>.

[38] Chapman, S.F.R.S, 1930. On ozone and atomic oxygen in the upper atmosphere. *The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science*, 10(64), <https://doi.org/10.1080/14786443009461588>.