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Abstract 
 
Rapid globalization of the COVID-19 virus was observed at the start of 2018. The 
prevention and treatment of this illness are crucial. Imaging techniques such as chest 
computed tomography (CT) scans and RT-PCR can be used to categorize COVID-19 more 
accurately in the epicenter of the outbreak. Hospital reports have indicated that RT-PCR 
assays are not very sensitive when used to diagnose an infection in its early stages. This 
has led to calls for a diagnostic method that can quickly and accurately spot the Covid-19. 
CT has been proven to be an effective diagnostic tool. This study investigates the 
application of convolutional neural networks (CNNs) for the detection of COVID-19 in lung 
images. We propose a bi-channel CNN that combines gray-level entropy and pre-
processed images using unsharp masking. The model was trained on a dataset of lung CT 
scans and evaluated for its accuracy in detecting COVID-19. The outcomes demonstrated 
that the suggested approach aided radiotherapists in making a speedy and exact analysis 
of COVID-19, achieving a prediction accuracy of 93.78%, and a false-negative rate of only 
6.5%. These results indicate the potential of the bi-channel CNN to enhance diagnostic 
accuracy and efficiency in clinical settings. This novel approach addresses the limitations 
of traditional RT-PCR tests and manual CT scan analysis, offering a robust tool for early 
and accurate COVID-19 detection. For additional verification of the quality of the projected 
model, we used the SARS-COV-2-CT-Scan benchmark dataset. The outcomes 
demonstrated that the suggested approach can aid radiotherapists in making a speedy and 
accurate analysis of COVID-19. 
 
Keywords: computerized tomography; convolutional neural network; sparrow search 
algorithm; COVID-19 disease; CT-scan 
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1. Introduction 
 
The COVID-19 pandemic has had a profound global impact, necessitating the development 
of reliable and efficient diagnostic methods. Traditional RT-PCR tests, although widely 
used, suffer from significant limitations including high false-negative rates and dependency 
on sample quality and testing conditions. These limitations highlight the need for alternative 
diagnostic approaches that can provide rapid and accurate results. CT imaging has 
emerged as a valuable tool for detecting COVID-19-related abnormalities in the lungs. 
However, manual analysis of CT scans is time-consuming, subject to inter-observer 
variability, and requires significant expertise. These challenges underscore the importance 
of automated diagnostic systems. This research proposes a bi-channel convolutional 
neural network (CNN) to enhance the detection of COVID-19 in lung images. By leveraging 
gray-level entropy images and pre-processed images using unsharp masking (UM), the bi-
channel CNN aims to capture complementary features, thereby improving diagnostic 
accuracy. The primary aim of this study was to develop a robust and efficient diagnostic 
tool that could assist radiologists and healthcare professionals in making timely and 
accurate diagnoses, ultimately contributing to better patient outcomes and more effective 
management of the pandemic. The corona virus is a member of a family of RNA virus, that 
are found in both mammals and birds and is responsible for a variety of disorders, most 
commonly respiratory or enteric, and in rare cases, neural or hepatic (Rehman et al., 2021; 
Subramanian et al., 2022). The World Health Organization (WHO) proclaimed a global 
pandemic due to the alarming spread of the corona virus (COVID-19), which was believed 
to have originated in the Wuhan district of China (Jain et al., 2021; Swapna et al., 2022). 
Almost 7,961,307 people were infected as of 1st June 2020, and it was directly responsible 
for the deaths of 434,471 people. COVID-19 has spread to 213 different nations and 
territories so far. Only a few nations surpassed one million cases (Hussain et al., 2021). 
Droplets from a person's coughing or sneezing can easily infect others (Sadhana et al., 
2021). Without a vaccine or treatment, it is crucial that infected people isolate themselves 
and are identified quickly to prevent the disease from spreading. RT-PCR tests can be 
used to diagnose the infection (Kasthuri et al., 2018). Due to a worldwide shortage of 
testing kits, there was only so much testing that could be done at the time. Additionally, 
RT-PCR is sensitive to the quality of the samples collected, and it has a high false-negative 
rate (Nayak et. al, 2021). Besides being a lengthy and laborious operation, sample 
collection suffers from a lack of resources and workers. If new cases are not reliably 
detected, not only will the sufferer not get the care they need, but the disease can spread 
to healthy people as well. Nonetheless, patients with COVID-19 can have characteristic 
radiographic features accurately detected using computed tomography (CT) imaging 
(Asnaoui et al., 2021). Hence, patients with symptoms like breathing trouble or shortness 
of breath can soon develop more serious problems (Yang et al., 2021; Venaktesh et al., 
2022). Patients with severe illness often require ventilator assistance due to respiratory 
failure. Hence, even in the initial RT-PCR negative individual, a diagnosis can be obtained 
consistently and swiftly based on radiographic alterations (Kailasam et al., 2022). 

Unfortunately, the number of patients who can benefit from CT imaging is 
constrained by the dearth of board-certified radiologists who can study and report on such 
pictures. Using the proposed automated analysis of CT imaging method, COVID-19 can 
be detected quickly and easily, relieving doctors of some of their duty. Although it was 
noted by Bhattacharyya et al. (2022) that chest X-rays also show promising results in 
COVID-19 detection, and it has been found that CT imaging is the better option. This is 
because CT imaging allows for the simultaneous capture of small bones and soft vessels. 
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Using CT scans as an example, artificial intelligence has the ability to greatly improve 
health care delivery by reshaping the standard technique of diagnosis (Diaz-Escobar et al., 
2021; Biradar et al., 2022). Recently, deep learning has proven to be a useful tool for 
automating COVID screening and diagnosis. An efficient deep learning system can 
automatically and accurately diagnose an illness with the same or higher precision than 
human experts. When it comes to medical picture categorization, the CNN (a central 
paradigm of deep learning in computer vision) has shown remarkable predictive and 
diagnostic accuracy. In this work, we employ unsharp masking (UM), a traditional method 
for improving image sharpness, to extract images and boost the finer details. To improve 
the detection of detectable COVID-19, the proposed bi-channel CNN was trained using 
features extracted from gray-level entropy photos as well as those pre-processed by UM. 
COVID-19, caused by the SARS-CoV-2 virus, has resulted in a global pandemic, leading 
to significant challenges in healthcare. While RT-PCR tests are the standard diagnostic 
tool, they have limitations such as high false-negative rates and dependency on sample 
quality. CT imaging has proven to be a reliable alternative for detecting COVID-19, as it 
can identify characteristic features even in early stages. However, the manual analysis of 
CT scans is time-consuming and subject to human error, underscoring the need for 
automated solutions.  

When it comes to patient classification, Motwani et al. (2023) showed that Dense-
CNN worked well. The convergence of the CNN algorithm was also enhanced through the 
implementation of novel entropy. A freshly released massive dataset was used to construct 
and evaluate the projected model. Comparisons to established models showed that the 
projected approach was an improvement above the state of the art. The proposed model 
had a false-negative rate of only 6.5% and a prediction accuracy of 93.78%. The primary 
benefit of this method is the shortened time required for identifying and treating COVID-19. 

For the purpose of detecting COVID-19 using CT scan pictures, Kathamuthu et al. 
(2023) set out to create conceptual transfer learning augmented CNN framework models. 
These methods were shown to be effective despite only being tested on small datasets. 
For the purpose of identifying instances of COVID-19 in chest CT scans, this study was 
proposed to investigate multiple deep transfer learning-based CNN methods. For models 
utilized as a starting point for this project, several performance metrics were used to 
compare and contrast the effectiveness of each model. For this research, the VGG16 
model had the highest accuracy of any of the others tested (98.00%). Experiments that 
validated the suggested methodology for recognizing and monitoring COVID-19 patients 
yielded encouraging results. Thus, a tool can further be developed to assist primary care 
physicians in selecting the most effective treatment options for their patients.  

In order to screen for Covid-19 pneumonia using chest CT images, Kordnoori et 
al. (2023) suggest a multi-task model capable of automatic classification-segmentation. 
Included in this model were a multi-layer perceptron for cataloguing, a single decoder for 
feature segmentation, and a common encoder for feature illustration. In addition to 
assessing the impact of image size on the model's output, the suggested model was also 
used to compare results from three different datasets. Both single-task and multi-task 
learning outcomes were analyzed. The results showed that multitasking had a noticeable 
impact on the enhancement of outcomes, with classification and segmentation outputs both 
improving to 95.40% accuracy as a result of using the technique. In addition, when 
compared to other methodologies, the model produced the best results. As such, the 
projected model was able to be used as a chief screening tool to aid primary service 
professionals to more effectively refer patients to specialists for further evaluation. 

When it comes to automating the findings of COVID-19 in chest CT-scan pictures, 
Gupta & Bajaj (2023) proposed a solid framework based on deep learning-based methods. 
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A ten-fold holdout validation procedure was used to train, validate, and test the deep 
learning methods. The maximum classification accuracy of 98.91% was attained by 
DarkNet19. New CT images can be used to test the suggested framework and the validity 
of the research with simulation results using the publicly available COVID-19 CT can be 
demonstrated.  

In light of the advancements made in transfer learning by Alhares et al. (2023), 
there is the need for higher generalizability across different data sets that are consistent 
across multiple sources. In other words, the domain of a dataset is irrelevant to the 
generality of the extracted representations. We used a convolutional neural network trained 
using the AMTLDC to forecast Covid-19 from medical pictures. We demonstrated that the 
AMTLDC framework was able to achieve higher accuracy than state-of-the-art transfer 
learning methods. In particular, we demonstrated the AMTLDC's efficacy while dealing with 
sparse or varying datasets. The proposed network achieved an improvement in COVID-
19/SARS-CoV-2 classification accuracy of between 4-10% compared to both state-of-the-
art deep learning models and traditional feature extraction methods. The model achieved 
competitive performance on the COVID-19 crowdsourced benchmark dataset. In the 
suggested model, we used a variety of receptive fields and depths to collect contextual 
data that might prove useful throughout the categorization process. Additionally, the model 
demonstrated its categorization prowess when trained and tested on a variety of data 
types. The choice of a bi-channel convolutional neural network (CNN) was based on the 
premise that combining features from different image processing techniques could 
enhance the model's ability to detect subtle patterns associated with COVID-19. Gray-level 
entropy images capture the texture and structural information of lung tissues, which are 
crucial for identifying abnormalities caused by COVID-19. The green component, pre-
processed by unsharp masking, enhances the edges and fine details, aiding in the 
detection of subtle differences in lung images. By integrating these complementary 
features, the bi-channel CNN can more effectively distinguish between healthy and infected 
tissues. In our experiments, the bi-channel CNN demonstrated superior performance 
compared to single-channel networks. The model achieved a prediction accuracy of 
93.78% and a false-negative rate of only 6.5%, outperforming traditional methods and 
single-channel CNNs in the detection of COVID-19 from lung CT scans. Recent studies 
have shown that multi-channel approaches can significantly enhance diagnostic 
performance (Attallah & Samir, 2022). For instance, a multi-channel model by Kathamuthu 
et al. (2023) achieved an accuracy of 98.00%, while our bi-channel CNN also showed 
competitive results, highlighting the effectiveness of combining different image processing 
techniques. This bi-channel approach not only provides a robust tool for current diagnostic 
needs but also opens avenues for further research. Future work can explore the integration 
of additional channels, such as spectral components or other pre-processing techniques, 
to further enhance diagnostic accuracy and robustness. 
 

2. Materials and Methods 
 
2.1 Data set 
 
This research made use of the SARS-CoV-CT dataset, which was available to the public 
and contained CT scan pictures from 1252 SARS-CoV-2 (COVID-19) patients and 1230 
healthy controls (COVID-19). The data used to create the SARS-Cov CT dataset came 
from actual hospital patients in Sao Paulo, Brazil. Due to patient confidentiality, the hospital 
did not record each patient's specific characteristics. The dataset was accessed on Kaggle 
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dataset. There were 60 patients with a positive Covid test, 32 men and 28 women. Also 
considered were 60 patients who tested negative for Covid, 30 of whom were male and 30 
of whom were female. Figure 1 displays some illustrative CT scan pictures taken from the 
dataset. 
 

 
 

Figure 1. Representative chest CT scan images from the used dataset, including those 
of patients who tested positive and negative for COVID-19 

 
2.2 Preprocessing of CT scan Images 
 
We used the UM method to boost the high-frequency components of the grey level in the 
CT picture after downsampling the original photograph to a resolution of 100 by 100. 
(luminance). Unsharp masks are created by deconvolving a Gaussian blurred version of 
the original image. The edge-related high-frequency data can be found in the unsharp 
mask. Finally, an image is improved by adding a scaled mask to the source image. 

The entropy image uses locally computed values from n by n blocks to quantify 
dissimilarity. Intensity distributions at a given location can be used to calculate entropy. 
The input entropy for the proposed bichannel CNN is shown in equation (1). 
 

Egray = −� PgrayUM(i) × log2PgrayUM
i

(i) (1) 

 
where PgrayUM(i) represents, after UM processing, the frequency distribution of the i-th 
intensity inside a n × n block of the grey level component of the COVID image. For this 
reason, we use n = 9 to compute the entropy pictures of the grey level, as this yields the best 
accuracy compared to the other block sizes shown. The entropy pictures offer the local 
structural information of the CT scans using the statistical properties of the local locations.  
 
2.3 Deep learning by bichannel CNN 
 
The proposed bi-channel CNN architecture combined gray-level entropy and green 
channel (UM) images to enhance COVID-19 detection in lung CT scans. The architecture 
featured separate convolutional pipelines for each image type, followed by concatenation 
and dense layers for classification. The detailed design includes specific numbers of filters 
and activation functions to optimize feature extraction and classification performance. This 
comprehensive description provides a clear understanding of the model’s structure and the 
rationale behind its design choices. 
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In this research, we employed a CNN to learn the features of referable CT. As 
shown in Figure 2, following UM processing, we built a grey level and green component 
entropy pictures simultaneously. In each of the four convolutional layers dedicated to a 
single channel, the number of filters increased from 32 to 64 to 128. Python and the 
TensorFlow library were used to implement the proposed approach of referable Covid 
detection. The model was trained using the Adam algorithm with a learning rate of 0.0001, 
and the cross-entropy loss function. Next is an explanation of how SSA was able to tune 
these hyper-parameters to their ideal values. 
 

 
 

Figure 2. The diagram of the proposed bi-channel CNN model 
 
2.4 Sparrow search algorithm (SSA) 
 
There exists a well-defined mathematical model from which the sparrow search algorithm 
can be derived and constructed.  

(1) The plenty of stamina show everyone where to scavenge and how to get there. 
Individual fitness levels are evaluated to determine the amount of energy available. 

(2) When a predator is spotted, the sparrows sing to warn each other. When the 
alarm value exceeds the critical value, the producers must direct all survivors to a secure 
zone. 

(3) Each sparrow has the potential to become a producer if it diligently seeks out 
the best food sources, but the ratio of creators to scavengers remains constant across the 
board.  Many famished scavengers are more prone to travel great distances in search of 
food. 

(4) In their quest to eat, the scavengers travel in the direction of the producer who 
can supply the best food.  

(5) When danger is detected, the sparrows at the group's periphery make a beeline 
for the safe zone to improve their position, whereas the sparrows in the group's center 
simply stroll around at random to stay in close proximity to one another. 

The experiment requires us to utilize digital sparrows to scavenge for virtual grubs. 
Matrices like as the one below can be used to depict sparrow locations. 

 

X =

⎣
⎢
⎢
⎡X1,1 X1,2 ⋯ ⋯ X1,d

X2,1 X2,2 ⋯ ⋯ X2,d
⋮

Xn,1

⋮
Xn,2

⋮
⋯

⋮
⋯

⋮
Xn,d⎦

⎥
⎥
⎤
 

(2) 

 
where n is the total population of sparrows and d represents the depth of the optimization 
space. Thus, the following vector represents all sparrows' fitness values: 
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FX =

⎣
⎢
⎢
⎡f([X1,1 X1,2 ⋯ ⋯ X1,d])
f([X2,1 X2,2 ⋯ ⋯ X2,d])
⋮

f([Xn,1

⋮
Xn,2

⋮ ⋮ ⋮
⋯ ⋯ Xn,d])⎦

⎥
⎥
⎤
 

(3) 

 
When the number of sparrows is represented by n and each sparrow's fitness is indicated 
by a row's value in FX. Those SSA producers with higher fitness ratings are given 
preference during the food-finding procedure. In addition, producers are the ones who have 
to find food and direct the population's movements. Hence, unlike scavengers, producers 
have more options regarding where to look for food.  
 

Xi,jt+1 = �
Xt,jt . exp �

−i
α. itermax

�    if R2 < ST

Xi,jt + Q. L                        if Rw ≥ ST
 

(4) 

 
Where t = current iteration, j = 1, 2,..., d. For each iteration, the value of the jth dimension 
of the ith sparrow is represented by X (i,j)t, where t is the iteration number. The maximum 
sum of iterations is denoted by the constant itermax. Numbers between zero and one are 
completely arbitrary. The alert value, represented by R 2, ranges from [0,1], while the safety 
threshold, ST, ranges from [0.5,1.0]. It is assumed that L represents a 1 by d matrix where 
all the cells contain the value 1. 

Some freeloaders keep closer tabs on the manufacturers, as was described 
before. As soon as they learn the producer has discovered tasty food, they abandon their 
current location to go in search of sustenance. If they win, they can instantly obtain the 
producer's food; otherwise, rule enforcement will continue as planned in equation (5). The 
following is a description of the formula used to update the scrounger's position: 

 

Xi,jt+1 = �
Q. exp �

Xworst
t −Xi,j

t

i2
�           if i > n/2

XPt+1 + �Xi,jt − XPt+1�.  A+. L   otherwise
  

(5) 

 
where XP is the best possible location for the manufacturer. The current worst place on 
Earth is denoted by Xworst. The matrix A has a size of 1 by d, and its elements are each 
either 1 or -1.  

We suppose that between 10 and 20% of the sparrow population is alert to the 
threat in our simulation. A random number is used to determine where in the population 
each sparrow will start out.  

Xi,jt+1 = �
Xbestt + β. �Xi,jt − Xbestt �    if fi > fg

Xi,jt + K�
�Xi,j
t −Xworst

t �

(fi−fw)+ε
�     if fi = fg

  
(6) 

 
where X best is the best possible point in the world right now. The step size regulation K is 
a random number in the range [-1,1]. The top and worst fitness levels are denoted by fg 
and fw. To avoid the zero-division-error case, the smallest constant is x is added. 

To put it simply, if fi >fg, then the sparrow is on the periphery of the group. Sparrows 
can feel secure in and around the population center, which is denote by Xbest. The sparrows 
in the population's center are aware of the threat and need to congregate with the others, 
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as demonstrated by the equation fi=fg. The sparrow's movement direction is denoted by the 
letter K, which is also the step size control coefficient. 
 

3. Results and Discussion 
 
Accuracy in classification is measured as the ratio of right predictions to total data points. 
To determine precision, the equation (7) is used. 
 

Acc =
TP +  TN

TP +  FP +  TN +  FN
 

 

(7) 

Where TP refers to the estimated accurate amount of data, FP refers to information that is 
harmful but misinterpreted as positive, TN refers to information that is actually damaging 
but misinterpreted as negative, and FN refers to information that is positive but 
misinterpreted as being unfavorable. The percentage of optimistic predictions that fall into 
the all-positive class is the degree of precision (positive predicted values in equation (8)). 
 

prec =
TP

TP +  FP
 

 

(8) 

 
Recall is calculated by taking the fraction of positive class elements that yield genuine 
positive (TP) results and dividing by the total number of such elements. Equation (9) 
provides the formula for determining the recall value: 
 

Recall =
TP

TP +  FN
 (9) 

 
As a result of averaging the scores for accuracy and recall, we get the F1 score. Equation 
(10) demonstrates how to determine the F1 score: 
 

F1 −  measure = 2 ∗ prec ∗ recall
prec ∗ recall

  (10) 

 
In the accuracy analysis, the proposed model achieved 99.67%, the DBN and the 

LSTM achieved nearly 97%. Other models, including the CNN, RNN and GAN models, 
achieved nearly 98% accuracy. When the models were tested for precision, the existing 
replicas achieved around 97% to 98% and proposed model achieved 99.6%. In the 
analysis of F1-score, the existing models achieved around 97% to 98% and proposed 
model achieved 99.66%. Table 1, Figures 3 and 4 presents the graphical analysis of 
projected model in terms of numerous metrics. 

Table 2 shows the analysis of various model for training and testing time. In this 
comparative analysis, we used different models. In Deep Belief Network (DBN), the training 
and the valid of 98.45±0.45% and 95.14±0.70% were achieved. Further, testing time was 
94.67±1.28% where the training time was 00:14:30. In addition, the test time was 00:00:03. 
In CNN, training was achieved at 99.56±0.41% and the valid at 94.87±1.01%. In addition, 
the values for testing time, the training time, and the test time were 96.36±1.02%, 00:08:47 
and 00:00:01, respectively. In RNN, the values of training, the valid, and testing time were  
95.09±1.11%, 94.40±0.60%, and 94.80±1.68%, respectively, whereas the training time  
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Table 1. Comparative analysis of projected model for different metrics 

Model Accuracy Precision Recall F1-Score 

DBN 97.8 97.6 97.66 97.66 
CNN 98.26 98 98.66 98.33 
RNN 98.37 98.33 98.66 98.33 
LSTM 97.91 97.66 98 97.66 
GAN 98.60 98.33 98.66 98.33 

Proposed 
Model 

99.67 99.6 100 99.66 

 

 
 

Figure 3. Analysis of proposed model 
 

 
 

Figure 4. Performance analysis of proposed model 
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Table 2. Analysis of various models for training and testing time 

Model Train Valid Test Train 
Time 

Test 
Time 

DBN 98.45±0.45% 95.14±0.70% 94.67±1.28% 00:14:30 00:00:03 

CNN 99.56±0.41% 94.87±1.01% 96.36±1.02% 00:08:47 00:00:01 

RNN 95.09±1.11% 94.40±0.60% 94.80±1.68% 00:16:14 00:00:02 

LSTM 99.75±0.14% 97.13±0.87% 94.81±0.58% 00:21:32 00:00:03 

GAN 99.75±0.11% 98.10±0.66% 97.72±0.38% 00:12:23 00:00:03 

Proposed 
Model 

99.88±0.07% 97.62±0.64% 97.13±0.86% 00:09:20 00:00:02 

 
was achieved at 00:16:14 and the test time was 00:00:02. In LSTM, the testing time was 
94.81±0.58%, the training time was 00:21:32, and the test time was 00:00:03. In GAN 
(generative adversarial network), the values of training, the valid, and testing time were 
99.75±0.11%, 98.10±0.66%, and 97.72±0.38%, respectively, whereas the values of the 
training time and the test time were 00:12:23 and 00:00:03, respectively. As per proposed 
model, training was achieved at 99.88±0.07% where the valid and testing time were at 
97.62±0.64% and 97.13±0.86%. The values of training time and the test time were 
00:09:20 and 00:00:02, respectively. The results in this analysis showed that the proposed 
model gave better results when compared to other models. 

In this study, a novel approach for detecting lung infections on CT scans in COVID-
19 patients utilizing the Sparrow Search Based Deep Learning model was introduced. The 
method demonstrated promising results in terms of accuracy and sensitivity, as evidenced 
by the findings presented in Table 1 and Figures 3 and 4. However, a deeper study of the 
model's interpretability and generalizability is needed to fully assess its robustness across 
diverse patient populations and imaging settings. Furthermore, while these initial 
experiments show encouraging outcomes, additional validation through larger-scale trials 
and comparative studies with established diagnostic methods is essential to establish its 
clinical utility. Addressing these aspects will not only enhance confidence in the proposed 
approach but also pave the way for its potential integration into clinical practice, thereby 
improving early detection and treatment outcomes for COVID-19-related lung infections. 
 

4. Conclusions 
 
The proposed method relieves radiologists' workload by facilitating cross-verification of 
testing kit results. As a result of this proposed work, countries will be able to conduct more 
tests than have previously been possible. Future research in other areas where CT scans 
or other frequency-oriented data plays an important role will be motivated to adopt this 
unique approach. When it comes to identifying and diagnosing COVID in patients, a deep 
learning system can improve detection and diagnosis accuracy. In order to improve the 
precision, sensitivity, and specificity of a detection system, UM pre-processing is often 
employed. UM's grey level entropy images and a second independent CNN input were 
both used to improve the detection of recognizable COVID-19. The CNN's classification 
accuracy was superior to those of competing models thanks to the SSA optimization of the 
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learning rate of CNN. Our results demonstrate that our proposed method was successful 
in enhancing the model's performance using the same deep learning methods. To 
summarize, the proposed bi-channel CNN for detecting COVID-19 lung images 
demonstrated significant potential for aiding radiologists in diagnosis. The model's high 
accuracy and low false-negative rate indicated its efficacy in clinical settings. However, 
there are several avenues for future work. First, expanding the dataset to include more 
diverse samples could further enhance model robustness and generalizability. Additionally, 
integrating other image processing techniques and exploring multi-channel approaches 
could potentially improve performance. Finally, implementing the model in real-time clinical 
settings and conducting prospective studies would validate its practical applicability and 
impact on patient outcomes. 
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