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Abstract

Zn0O nanoparticles with adjustable morphology were synthesized using a variety of basic
solutions. The formation of distinct intermediates during the synthesis process resulted in
variations in the crystal structure, size, shape, and optical characteristics of the ZnO
nanoparticles. In this study, ZnO nanoparticles were prepared via a simple precipitation
method. The various ZnO intermediates formed with different basic solutions were
identified using Fourier transform infrared spectroscopy (FTIR) and X-ray diffractometer
(XRD). After calcination at 600°C, the XRD patterns revealed that all the ZnO nanoparticles
produced were hexagonal wurtzite. However, the morphology of each ZnO synthesized
varied due to the different intermediate formations and hydroxide ion concentrations
present in the various basic solutions. Additionally, the photocatalytic performances of the
synthesized ZnO variants were evaluated by the photodegradation of various organic dyes
under UV irradiation. The results indicated that ZnO nanoparticles prepared with NaHCO3
exhibited the highest photocatalytic efficiency.
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1. Introduction

Water is an important factor for living things such as humans, animals, and plants.
Freshwater supplies are depleting due to increased population, industry, and untreated
wastewater mixing with water resources, which is one of the key concerns confronting the
world today (Tian et al., 2009; Benhebal et al., 2014; Nezamzadeh-Ejhieh & Khorsandi,
2014; Al-Tohamy et al., 2022). Wastewater containing organic pollutants, including dyes
widely used in textiles, paints, leather, cosmetics, and food industries (Gnanaprakasam,
2015; Nguyen & Saleh, 2020), may greatly influence the quality of water and aquatic
organisms. Therefore, complete treatment of wastewater is necessary. Water treatment
procedures such as adsorption on clay, chemical precipitation, pollution separation,
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electrocoagulation, and other chemical and physical processes are employed to eliminate
organic pollutants from wastewater (Nageeb, 2013; Tijani et al., 2014; Karpinska &
Kotowska, 2019; Selvaraj et al., 2019). However, the major issue with these methods is
that pollutants are not completely degraded but only transferred from one phase to another.
Alternatively, the photocatalytic route has been considered an efficient method due to its
eco-friendly properties resulting from the utilization of natural sunlight, its efficiency, and its
cost-effectiveness when used for removing organic pollutants from wastewater
(Rajamanickam & Shanthi, 2016; Razavi-Khosroshahi et al., 2017; Alanazi et al., 2021;
Ferreira et al., 2021; Bao et al., 2021).

According to several studies, ZnO-based materials can be employed as a
photocatalyst for the degradation of organic pollutants (Jiang et al., 2008; Ahmad et al.,
2022; Bashir et al., 2022; Sansenya et al., 2022). ZnO in groups II-VI has a direct band
gap of 3.37 eV and a large binding energy of ~60 meV at room temperature (Wittawat et
al., 2020; Shi et al., 2021; Sharma et al., 2022). Furthermore, ZnO is a nanomaterial with
excellent optical properties, high redox potential, good electron mobility, and is non-toxic.
Due to these characteristic properties, it has been demonstrated to have potential
applications in photocatalysis. As a photocatalyst, zinc oxide (ZnO) has several distinct
advantages over other materials. One of its primary benefits is its wide bandgap, which
allows it to effectively utilize ultraviolet (UV) light for photocatalytic reactions, making it
highly efficient at degrading organic pollutants and disinfecting water. ZnO also has a high
exciton binding energy, which enhances its photocatalytic performance by reducing
recombination rates of electron-hole pairs, thereby improving the generation of reactive
oxygen species essential for catalytic processes. Compared to titanium dioxide (TiO2),
another popular photocatalyst, ZnO offers higher electron mobility, which can lead to faster
and more efficient charge transfer processes. This results in better performance in
applications like environmental remediation and hydrogen production. ZnO nanoparticles
could be synthesized by various methods, such as precipitation, sol-gel,
hydro/solvothermal, combustion, electrochemical deposition, spray pyrolysis, and
ultrasonic radiation (Kotodziejczak-Radzimska & Jesionowski, 2014; Ong et al., 2018;
Weldegebrieal, 2020). After exploring various ZnO nanoparticle synthesis methods, the
precipitation method stood out for its cost-effectiveness and simplicity, making it particularly
advantageous for large-scale industrial applications and routine laboratory procedures
(Shen et al, 1997; Lee et al.,, 2010; Sudha & Rajarajan, 2013). Additionally, its
straightforward nature aligns with green methodologies, minimizing the need for hazardous
chemicals. Overall, the precipitation method has proved to be a versatile, cost-effective,
and environmentally friendly approach for ZnO nanoparticle synthesis. Many studies have
found that the synthesis method of ZnO had a significant impact on its specific properties
and applications (Xu et al., 2000; Hu et al., 2004; Kumar et al., 2013). In fact, several
parameters in the synthesis process, such as aging time, pH, precursor concentration,
reaction temperature, and calcination temperature, can influence the characteristics of the
synthesized ZnO nanoparticles (Ismail et al., 2005; He et al., 2018; Abdulrahman et al.,
2021; Arellano-Cortaza et al., 2021; Dey et al., 2021; Limén-Rocha et al., 2022).

The morphology of photocatalysts including size, shape, surface area, and
crystallinity, plays a significant role in the photodegradation performance of photocatalysts.
Normally, photocatalytic degradation involves several steps, including adsorption-
desorption, electron-hole pair production, electron-hole pair recombination, and chemical
reaction. The efficiency of each step is determined by the properties of the catalyst.
Researchers are devoted to understanding how the photodegradation performance of ZnO
is dependent on its structure. Controlling the size and form of ZnO nanostructures is
essential for water treatment applications. Consequently, many studies have been carried
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out to investigate the effects of size and shape on photodegradation efficiency. Several
studies have focused on the synthesis route and various parameters such as pH,
precursor, or temperature of ZnO synthesis, but only a few articles have addressed the
effect of different bases on the properties of ZnO nanoparticles. The anisotropic growth
habit of ZnO nanoparticles is greatly affected by external conditions such as temperature,
solvent, precursor species, capping agents, and pH solution. It is well known that the
morphology of synthesized ZnO strongly depends on the amount of hydroxide ions in the
solution, which effectively determines particle nucleation, growth, and ripening (Moghri
Moazzen et al., 2013; Tinio et al., 2015). Wahab et al. (2009) reported that the morphology
of ZnO varied markedly from plate-like to rod-like structure when the pH value was
increased from 6 to 12. Therefore, the characteristics and morphology of ZnO
nanostructures could be controlled by fine-tuning the pH values of the reaction.
Interestingly, the morphology of ZnO can be affected by variations in the intermediates that
result from the use of different basic solutions. Specifically, each base has a different
dissociation constant (Kb) that controls the pH of the solution, and the hydroxide precursor
has a direct impact on the formation of intermediates and ZnO nanoparticles. However, the
effects of the types of bases on intermediate formation was rarely discussed.

The aim of this work is to investigate the role of different base types and formation
intermediates on the morphology and optical properties of ZnO nanoparticles. The as-
prepared ZnO nanoparticles were synthesized using different basic solutions, including
NaOH, KOH, NH4+OH, and NaHCOs3, via a simple precipitation method. Furthermore, the
structure of ZnO intermediates before the calcination process was identified using Fourier
transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The ZnO samples after
the calcination process were analyzed using scanning electron microscopy (SEM), X-ray
photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX),
photoluminescence spectroscopy (PL), ultraviolet—visible diffuse reflectance spectroscopy
(UV-vis DRS), and the Brunauer-Emmett-Teller method (BET) to investigate the effects of
different intermediate formations on the morphology, surface defects, elemental chemical
composition, crystallinity, lattice parameters, and optical properties of the produced ZnO
nanostructures. The ZnO nanoparticles synthesized with various basic solutions were
evaluated for the photodegradation of organic dyes to investigate the photocatalytic
performance.

2. Materials and Methods
2.1 Materials

Zinc acetate dihydrate (Zn(CHsCO2)2-2H20) was purchased from Kemaus, Australia.
Polyvinylpyrrolidone (PVP, K30) and p-benzoquinone (PBQ, CsH4O2) were purchased from
Sigma-Aldrich, USA. Ethanol (C2HesO, absolute grade), ammonium hydroxide (NH4OH,
25%) and sodium hydroxide (NaOH), were obtained from Merck, Germany. Sodium oxalate
(SO, NaC:204) was obtained from DAEJUNG, Korea. Isopropanol (IPA, CsHsO) was
purchased from J.T. Baker, USA. Potassium hydroxide (KOH) and sodium bicarbonate
(NaHCOs3) were purchased from Univar, New Zealand, and CARLO ERBA reagents in Italy,
respectively. All chemicals were used without further purification.
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2.2 Synthesis of ZnO nanoparticles with different types of bases

ZnO nanoparticles were prepared via a precipitation method. In a typical synthesis of ZnO,
zinc acetate dihydrate (3.0 g, 0.14 mol) and PVP (0.6 g, 0.17 mmol) were dissolved in 100
mL ethanol and 2 mL deionized water and stirred for 15 min. A 40 mL of 1 M selected basic
solution was added dropwise into the reaction mixture to form the precipitate and was
continuously stirred for 1 h. Then, the solution was heated at 60°C in an oven for 24 h. The
precipitate was washed with deionized water several times and dried in an oven at 120°C
for 1 h. Finally, the crystalline ZnO nanoparticles were obtained by calcination in air at
600°C with a heating rate of 5°C/min for 3 h. The ZnO nanoparticles were prepared from
various bases including NaOH, KOH, NH4OH, and NaHCOs. The corresponding calcined
samples were labeled as zNaOH, zKOH, zNH4+OH, and zNaHCOs, respectively.

2.3 Photocatalytic activity

The photocatalytic degradation of organic dyes was investigated by monitoring the
absorbance change of selected organic dyes including basic blue 41 (BB41), acid orange
7 (AO7), and methylene blue (MB) under UV light (254 nm) for 4 h. Before the
photodegradation, the adsorption process was performed in the dark for 30 min with stirring
condition to achieve homogeneity of the reacting mixture. During the photoreaction, 5 mL
of sample was collected every 30 min, then centrifuged at 3,000 rpm for 10 min to separate
photocatalysts out from the solution. The absorption spectra of all experiments were
determined by double-beam UV-visible spectrometer (UV/VIS Lambda 365, PerkinElmer).
The absorption spectra of dyes were collected in range of 200 to 600 nm with spectral
bandwidth (SBW) of 1 nm and a scan rate of 10 nm s™'. Degradation efficiency was
evaluated as follows:

Ao

%D = X 100%

0

where Ao and A represent the absorbance of dye solution before and after UV irradiation,
respectively.

To study the photocatalytic mechanism, experiments were conducted to trap and
identify the reactive radicals responsible for the degradation of BB41. These trapping
experiments were conducted under conditions identical to those in the photodegradation
experiments, with the introduction of specific scavengers to the suspensions before UV
exposure. Three scavengers, namely, 10 mM isopropanol (IPA, CsHsO) for hydroxyl
radicals ("OH), 10 mM sodium oxalate (SO, NaC204) for photo-induced holes (h*), and 10
mM p-benzoquinone (PBQ, CsH4O2) for superoxide radicals (O2"), were added to the
reaction mixtures to capture and suppress the action of the investigated species during the
photocatalytic reaction.

2.4 Characterization

X-ray diffraction (XRD) patterns were collected from 2 theta of 20 to 70 degree with a scan
rate of 0.02°s'' on D8 Advance Bruker model with Cu Ka (1.5406 A) used as an X-ray
source. A scanning electron microscope or SEM (450 FEI model, Quanta) was used to
determine the morphology and particle size of the catalyst. Before the measurements, all
samples were coated by sputtering a thin layer of gold (Polaron Range SC7620 Sputter
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Coater, Quorum Technology) to improve conductivity. Ultraviolet—visible diffuse reflectance
spectra (UV-Vis DRS) were collected from wavelengths of 200 to 700 nm with spectral
bandwidth (SBW) of 5 nm and a scan rate of 10 nm s-!' on PerkinElmer UV/VIS Lambda
365 spectrophotometer. Photoluminescence spectra (PL) were collected from wavelength
of 200 to 800 nm with excitation and emission slit width of 10 nm and a scan rate of 10 nm
s"on PerkinElmer LS55 with excitation wavelength of 325 nm. Attenuated total reflectance
Fourier transform infrared spectroscopy or ATR-FTIR (Spectrum two, PerkinElmer) was
used for the qualitative observation of molecular changes of the functional groups. The
spectra were collected in the range between 400 and 4000 cm-' with signal averaged over
16 scans at a resolution of 4 cm-'. X-ray photoelectron spectroscopy (XPS) was performed
using Kratos AXIS Ultra DLD spectrometer. The binding energies were calibrated by setting
the C 1s peak at 284.8 eV as a reference. N2 adsorption-desorption isotherm were
collected with Micromeritics 3Flex Surface characterization at 77 K. The specific surface
areas were estimated via the Brunauer-Emmett-Teller method (BET). The pore size and
pore volume distributions were derived from the adsorption branches of the isotherms
using the Barrett-Joyner-Halenda (BJH) model.

3. Results and Discussion

3.1 Synthesis and morphology of ZnO nanoparticles

To explore the impact of intermediate formation originating from diverse basic solutions,
the formation process of ZnO was studied. Fourier transform infrared (FTIR) analysis
emerged as a valuable technique for validating the composition of each ZnO intermediate.
Figure 1 shows the FTIR spectrum of uncalcined ZnO prepared with different basic
solutions. The proposed reactions corresponding to the formation of ZnO synthesized with
different basic solutions are described in equations 1 to 9. Initially, the formation of ZnO
occurs when Zn?* and OH- combine to form the white precipitate of Zn(OH)2. In experiments
with NaOH and KOH, a white precipitate formed immediately after a small amount of basic
solution was added to the solution of Zn?*. This rapid formation was due to the high
dissociation of OH- in strong bases, resulting in the rapid formation of zinc hydroxide
(Zn(OH)2) precipitates (equation 1). Additionally, Zn(OH)2 is amphoteric, meaning it can
react with both acids and bases. In the presence of an excess amount of a strong base,
the initially formed Zn(OH)2 precipitate can dissolve by forming a soluble complex ion,
which is tetrahydroxozincate ion [Zn(OH)4]? (equation 2). This results in the disappearance
of the white precipitate, as the [Zn(OH)4]*complex ion is soluble in water. This behavior
highlights the amphoteric nature of zinc hydroxide and the principles of solubility and
complex ion formation. In this study, the FTIR pattern of zZNaOH was similar to the zKOH
pattern. The characteristic peaks observed at 548 and 888 cm-' were attributed to the
stretching and bending vibration modes of Zn-O and Zn-OH, respectively (Kotodziejczak-
Radzimska et al., 2012; Park et al., 2014; Lamba et al., 2015). The presence of peaks
around 1385, 1470, and 1640 cm' was related to the stretching vibration of the C-O and
C=0 groups of the zinc acetate precursor (Wahab et al., 2007; Lamba et al. 2017;
Thongam et al., 2019). Thus, it was clear that Zn(OH)2 was produced by the reaction of
Zn?* with strong bases (NaOH and KOH).

In the case of NH4OH, the Zn(OH): precipitate was dissolved and turned into a
colorless [Zn(NHz3)4]?* complex after the addition of concentrated NH3 solution (equation 6-
7), leading to the limited appearance of a white precipitate (Droepenu et al., 2020). When
heated to 60°C, the solution exhibited an increase in white precipitate, which resulted from
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the slow reaction between the zinc amine complex and the OH- in the solution. This reaction
led to the formation of [Zn(NHs)s]J(OH)2, which subsequently decomposed to ZnO
(equations 8-9). From the FTIR spectrum, the peaks at 554, 905, 1391 and 1502, and 1645
cm™' were assigned to the vibration of Zn-O, Zn-OH, C-O and C=0 bonding, respectively.
Additionally, the peaks at 835 and 1550 cm' were possibly related to N-H bonding from
zinc amine complex, indicating that zinc amine hydroxide complex ([Zn(NH3)4](OH)2) was
obtained. Furthermore, when NaHCO3 was used in the experiment, the dissociation of a
weak base in water was described by equations 3-4. The rapid formation of insoluble
complex, zinc hydroxy carbonate ([ZnCOs]2¢[Zn(OH)2]3), was observed (equation 5). The
FTIR spectrum of ZnO intermediate synthesized with NaHCO3 was different from the other
ZnO samples, with the peaks at 1045, 1378, and 1508 cm which were related to the
stretching vibration of COs%. There were two sharp peaks at 707 and 834 cm
corresponding to the O-C-O bending mode, and a band at 469 cm-! attributed to the Zn-O
vibration. This result also proved that the intermediate of ZnO nanoparticles prepared with
NaHCOs was zinc hydroxy carbonate (Shamsipur et al., 2013; Lin et al., 2014). The
absorption peak of all ZnO samples in the range of 3200-3400 cm-! was ascribed to the
stretching vibration of hydroxyl group and the peak around 2900 cm-! was attributed to C-
H stretching from acetate group and stabilizing agents.

—&— zNaOH —e— zKOH —&— zNH,OH —¢— zNaHCO,

Transmittance (%)

OH grdup C-H

4000 3500 3000 2500 2000 1500 1000 500
Wavelength (cm™)

Figure 1. FTIR spectra of ZnO prepared with different types of bases before calcination
process
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ZnO synthesized with NaOH and KOH (zNaOH and zKOH)

Zn?%* (aq) + 20H- (aq)

|

Zn(OH): ) (1)

Zn?* (aq) *+ 40H" (aq)

Zn(OH)42_ (aq) (2)

ZnO synthesized with NaHCO3 (zNaHCO3)

NaHCO3 s)——»  Na*aq) + HCO3 (aq) (3)
HCO3 (aq) + H2O ) == OH (aq) + H2CO3 (aq) 4)
27Nn%* (aq) + 20H" (aq) + 2H2CO3 (aq—> [ZnCO3])2°[Zn(OH)2]3 (s) (5)

ZnO synthesized with NH,OH (z NH,OH)

NHs ¢y + H20 () NH4" (aq) + OH" (aq) (6)
ZNn(OH)a ) + 4NHs () [Zn(NH3)* ey 7)
[ZN(NH3)i]2* gy + 20H (ag+ heat—  [Zn(NHs)a](OH)2 aq) 8)
[Zn(NH3)4](OH)2 ay—»  ZnO0 ) (9)

The morphology and particle sizes of ZnO prepared with different basic solutions
were determined by scanning electron microscope (SEM). The average particle sizes of all
synthesized samples from SEM images are listed in Table 1. As shown in Figure 2, the
sizes of zNaOH, zKOH, and zNaHCOs were homogeneous and slightly aggregated,
forming agglomerates with particle sizes of 62, 64, and 165 nm, respectively. Furthermore,
a flower-like morphology appeared in zNH4OH, with particle sizes larger than 1000 nm.
This finding seems to confirm the effect of the intermediate [Zn(NH3)4](OH)2 formation on
the synthesis of ZnO nanoparticles by influencing particle formation and morphological
structure. The formation of the flower-like structure was attributed to the slow
decomposition of the [Zn(NHs)4](OH)2 intermediate. This process involves the gradual
release of Zn?* and OH™ ions upon heating, allowing for a controlled crystallization process.
This controlled release leads to slow crystallization, with growth along the c-axis being
particularly promoted by the influence of the dipole moments of the crystal planes. This
growth in the c-axis direction significantly contributes to the development of flower-like
structures. It was discovered that each base has various basic characteristics after
determining the differences between strong bases, NaOH and KOH, and weak bases,
NH4OH and NaHCOs. The base dissociation constant (Ko) is a parameter that influences
the concentration of hydroxide ions in solution. Furthermore, the Ko value can be used to
determine ZnO growth efficiency. In other words, high K» values act as a strong reaction
driving force, enhancing ZnO growth efficiency and resulting in tiny particle sizes. The
dissociation constant of each base is given in Table 1.
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Table 1. Particles size of ZnO samples and base dissociation constants of base precursors

Samples Particles size Base dissociation Morphology Band gap
(nm) constant (Ky) (eV)
zNaOH 62 0.63 Spherical 2.99
zKOH 64 0.31 Spherical 2.97
zNH,OH >1000 1.8x10% Flower-like 2.98
zNaHCO; 165 2.0x10°8 Spherical 3.13

Figure 2. SEM images of ZnO samples synthesized with different bases: (a, €) zZNaOH,
(b, f) zZKOH, (c, g) zZNH4OH, and (d, h) zZNaHCOs3

The X-ray diffraction (XRD) patterns of all ZnO nanoparticles are shown in Figure
3. The diffraction peaks appeared at 26 = 31.8°, 33.4°, 36.2°, 47.5°, 56.5°, 62.8°, 66.3°,
67.9°, and 69.0° corresponding to (100), (002), (101), (102), (110), (103), (200), (112), and
(201) planes, indicating the formation of hexagonal wurtzite structure of ZnO (Ashraf et al.,
2015; Sulciute et al., 2021). The sharp peaks observed indicate that the synthesized ZnO
nanoparticles exhibited high crystallinity with a single phase of the wurtzite structure. The
average crystallite size of the ZnO crystals were calculated from the Full Width Half
Maximum (FWHM) of the diffraction peaks using the Debye—Scherrer equation (Benhebal
et al., 2014;-Dhir, 2020). The average crystallite sizes of all synthesized ZnO samples from
the calculated XRD pattern were listed (data not shown). The average crystallite sizes of
zNaOH, zKOH, zNH4OH, and zNaHCOs were determined to be 35.54, 33.42, 23.83, and
49.10 nm, respectively. The differences in crystallite size might be attributed to the varying
values of the dissociation constants of the bases (Kb). Specifically, the Ky values of NaOH,
KOH, NH4OH, and NaHCOs; were 0.63, 0.31, 1.8 x 105, and 2.0 x 108, respectively
(Aracena et al. 2020; Eikeland et al., 2021; Remor et al., 2023). The rate of nucleation and
growth of ZnO crystals was affected by the variation in Kb. The high Kv value of a strong
base corresponds to a high concentration of OH- in the basic solution, resulting in rapid
nucleation of ZnO crystals and consequently smaller crystallite sizes.



Limsapapkasiphon et al. Curr. Appl. Sci. Technol. 2025, Vol. 25 (No. 25), e0262911

—&—2zNaOH —e—zKOH
—a—zNH,OH ——zNaHCO,

= (102)
~— (110)
(103)
ggmn
(112)
(201)

L 4

Intensity (a.u.)
E;; E;;;E:: (100)
g- (002)
(101)
S
>
>

20 ' 30 40 50 60 70
2Theta (0)

Figure 3. XRD patterns of all prepared ZnO samples after calcination at 600°C for 3 h

However, zZNH4OH showed the lowest average crystallite size despite the relatively
low Kb value. This outcome can be attributed to the chemical reaction between
Zn(CH3COz2)2 and NH4OH. Upon adding concentrated NHs solution to the mixture, a zinc
amine complex is immediately formed. After heating at 60°C, the zinc amine complex
slowly reacts with OH- in the solution to form zinc amine hydroxide, which eventually
decomposes and ZnO is formed. The increase in grain boundary in the structure might
have led to a decrease in the crystallite size due to particle time-consumption growth.
Based on the recorded XRD pattern, all synthesized ZnO samples exhibited wurtzite
structures, characterized by a hexagonal crystal system (space group P63mc) (Wang et
al., 2012). The XRD patterns were in good agreement with hexagonal wurtzite ZnO from
JCPDS data No. 36-1451 (a = 0.3250 nm and ¢ = 0.5202 nm) (Zegadi et al., 2014). Except
for zZNH4OH, the lattice parameter along the c-axis was higher than that of other samples.
However, the increased lattice parameter along the c-axis observed in zZNH4OH samples
was probably due to distortions within the crystal structure caused by the formation of Zn
metal, as described in the XPS section. In general, ZnO crystal structures are formed on
two major crystal planes: the polar plane and the non-polar plane. The polar plane of the
wurtzite crystal structure of ZnO consists of a positive (001) plane consisting of Zn lattice
sites and a negative (001) plane consisting of oxygen lattice sites. This sequential
arrangement of Zn2* and O? results in the formation of a dipole moment and spontaneous
polarization along the c-axis, as well as a variance in surface energy (Baruah & Dutta,
2009; Zou et al., 2022). Therefore, at lower concentrations, hydroxide ions could potentially
be more stable on positive polar (001) planes than on other planes. The stability of
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hydroxide ions on the (001) planes of ZnO crystals at lower concentrations stems from the
favorable surface energy of these planes compared to others. With fewer hydroxide ions
available in the solution, they preferentially adsorb onto these stable surfaces due to
specific atomic arrangements that facilitate stronger interactions. This preference directs
the crystal growth along the c-axis, perpendicular to the (001) planes, leading to the
formation of the flower-like structures observed in Figure 2c. These structures emerge as
successive layers of ZnO that accumulate outward from the central axis, reflecting the
crystal's growth pattern driven by the stability of hydroxide ions on the (001) planes.

The micro-strain (¢) of the ZnO nanoparticles was calculated and the result are
shown in Table 2. The micro-strain in ZnO structure originates from local distortions within
the crystal lattice structure, which may result from factors such as impurities, defects, and
mechanical stresses. These distortions can cause substantial changes in the properties of
the material, including its mechanical strength, electrical conductivity, and optical behavior
(Chithra et al., 2015). As shown in Table 2, the zZNaHCOs3 showed the lowest value of micro-
strain, which indicated that the defects in the crystal structure decreased in zZNaHCOs3
structure. On the other hand, the increase in micro-strain of other ZnO nanoparticles may
be due to the creation of lattice imperfections, which could be seen in the color appearance
of the samples (McCluskey & Jokela, 2009). Additionally, the volume of the nanoparticles
(v) and the Zn-O bond length (/) were calculated, as shown in Table 2 (Modwi et al., 2019).
The calculated Zn-O bond length was found to be similar for all ZnO nanoparticles.

Table 2. Structure characteristics properties of ZnO prepared with different bases.

Samples V(101 (nm?) v (nmd) £(10%) 1 (R)
zNaOH 13,772 0.0822 1.17 1.8845
zKOH 13,537 0.0822 1.17 1.8846
zNH,OH 4,925 0.0827 1.64 1.8881

zNaHCO:; 48,255 0.0823 0.77 1.8850

Vis the volume of the particle; v is the volume of the unit cell; & is micro-strain; and I is
bond length

The ZnO nanostructures described above were characterized by X-ray
photoelectron spectroscopy (XPS) for the validation of their surface elemental composition.
Figure 4a displays the typical XPS wide scan spectra of zNaOH, zKOH, zNH4OH, and
zNaHCOs. Across all samples, characteristic peaks corresponding to Zn 2p, O 1s, and C
1s were observed throughout the entire region of the XPS spectra. The high resolution
XPS of Zn 2p, O 1s, and C 1s of all ZnO samples are shown in Figure 4b, 4c, and 4d,
respectively. The high-resolution signal of Zn 2p were split into two peaks at binding energy
of about 1022 and 1045 eV, corresponding to spin orbit splitting of 23 eV between Zn 2ps3y2
and Zn 2p+.2 for all samples. The peak positions and peak split were consistent with the
oxidation state of Zn2* in ZnO nanostructure (Rabin et al., 2016). The XPS spectrum of the
O 1s region presented an asymmetric peak, indicating the presence of different oxygen
species. Additionally, the high-resolution C 1s deconvoluted XPS spectra of all ZnO
samples reveal various carbon species within the ZnO structures, originating from the use
of zinc acetate as the Zn precursor.

10
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Figure 4. (a) XPS wide survey, (b) Zn 2p, (c) O 1s, and (d) C 1s spectra of ZnO prepared
with different bases

The deconvolution of Zn 2ps2 spectra of all samples are shown in Figure 5. The
Zn 2p32 spectra of zZNaOH, zKOH, zZNaHCOs could be deconvoluted into two components
at binding energies 1022 and 1023 eV, which were attributed to Zn2* in ZnO and Zn(OH)z,
respectively (Kumar & Ahmad, 2020). Unlike XPS Zn 2ps2 of zZNaOH, zKOH, zNaHCOs,
the Zn 2ps2 of zZNH4OH peak was deconvoluted into three components at binding energies
of 1020, 1022, and 1023 eV which corresponded to Zn metal, ZnO, and Zn(OH),
respectively (Galmiz et al., 2015). It was possible that the phenomenon was caused by
reduction of Zn2* in zinc oxide structure to zinc metal during the calcination process (Auer
et al., 2022). This unique outcome could be attributed to the role of the NH4OH precursor
in the synthesis process. The decomposition of [Zn(NH3)4]?* occurrs at low temperatures
and involves rapid kinetic transformation into ZnO (Park et al., 2014)]. During this
transformation, the release of NHs from the complex is likely trapped within the rapidly
growing crystal lattice of ZnO. Subsequently, in the calcination process, this entrapped NHs
undergoes thermal decomposition into hydrogen (Hz) and nitrogen (N2) (Reli et al., 2015;
Sun et al., 2018; Lucentini et al., 2021). This reaction is facilitated by ZnO, which acts as a
support catalyst in this environment. Additionally, at elevated temperatures, the generated
hydrogen (H2) functions as a reducing agent, engaging in a reaction with ZnO (Lew et al.,
1992; Sasaoka et al., 1994; Qi & Hu, 2020). This reduction process eliminates oxygen from
Zn0O, transforming it into its metallic state.

11



Limsapapkasiphon et al. Curr. Appl. Sci. Technol. 2025, Vol. 25 (No. 25), e0262911

36000 36000
(a) zNaOH : Zn 2p,;, (b) =——2KOH : Zn 2p,,
320004 L. 1022.31 eV 320004 L 1022.31 eV
28000 - - - 1023.86 eV 28000 - --102391eV
5 24000 5 24000
L
220000 220000
2 Zn0 2

0 r “r v v — = r 0 r ey r v v r
1026 1025 1024 1023 1022 1021 1020 1019 1018 1026 1025 1024 1023 1022 1021 1020 1019 1018
Binding Energy (eV, Binding Energy (eV,
26000 g ay (eV) 26000 ] gy (eV)
c) «—2zNH,OH : Zn 2p;, (d) Zn-0—m =——2zNaHCO; : Zn 2p,,
32000 1 ~-=1020.33 eV 32000 kW 1022.30 eV
w00l 000 e 1022.36 eV 28000 - -- 102388 eV
Zn0 - --102384eV
3 24000 1 - 3 24000 1
< 20000 < 20000
> ' oo > 1
g 16000 B g 16000 -
£ 12000 | 3 \Zn metal € 12000 ]
80001 4 Lo 8000
Zn-0H/. Zn-OH
4000 4 s 4000 4
............ L -, 4TI <
0 sy —y —iy — 0 ey e —s g
1026 1025 1024 1023 1022 1021 1020 1019 1018 1026 1025 1024 1023 1022 1021 1020 1019 1018
Binding Energy (eV) Binding Energy (eV)

Figure 5. The high-resolution Zn 2ps2 deconvoluted XPS spectra of (a) zZNaOH, (b)
zKOH, (c) NH4OH, and (d) zNaHCO:s.

Furthermore, the XPS spectrum of O 1s was performed to understand the existence of
different forms of oxygen bonding on their surface. The obtained results are shown in
Figure 6. In all samples, the XPS O 1s exhibits three Gaussian peaks in deconvoluted
spectra. The lattice oxygen was at 531 eV which corresponded to the O% in ZnO wurtzite
structure. The other peaks at 533 and 534 eV were related to the OH- group and C=0
surface bonding absorbed on the surface of ZnO (Chandrappa & Venkatesha, 2012; Al-
Gaashani et al., 2013; Claros et al., 2020). The amount of surface adsorption could be
related to the role of surface defects of metal oxides, which corresponded to the intensity
of the peak at 532 eV (Sahai & Goswami, 2014; Kwoka et al., 2020; Uribe-Lopez et al.,
2021). According to Figure 6, the highest intensity of O 1s at 532 eV was shown in zZNH4OH,
followed by zKOH, zNaOH, and zZNaHCOs. This result indicated that zZNH4OH had more
surface imperfections than zKOH, zNaOH, and zNaHCOg3, respectively. This observation
seemed to be consistent with the crystallinity of ZnO samples, which was discussed in the
previous section. An oxygen vacancy occurs when oxygen sites within the crystal lattice
are left unoccupied during crystal growth, introducing imperfections and distortions in the
crystal lattice structure (Sahu et al., 2022). Consequently, the presence of these defects
leads to the expansion of grain boundaries within the crystal. These grain boundaries act
as interfaces between adjacent crystallites, causing structural discontinuity and resulting in
a reduction in the overall crystallite size (Liu et al., 2018). Furthermore, the presence of
oxygen vacancies in ZnO introduces additional energy states within the band gap of ZnO
(Chen et al., 2020). These energy states trap electrons, which then have the potential to
interact with photons of light. This interaction leads to a phenomenon known as deep-level
emission, which is often observed as a change in the color of ZnO (Sahai & Goswami,
2014).
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Figure 6. The high-resolution O 1s deconvoluted XPS spectra of (a) zNaOH, (b) zKOH,
(c) NH4OH, and (d) zNaHCO:s.

3.2 Optical properties of ZnO nanoparticles

The optical properties of ZnO nanoparticles were highly sensitive to structural defects, as
evidenced by photoluminescence (PL) analysis. To investigate the impact of different
precursors on the optical properties of ZnO, 5 mg of ZnO powder was dispersed in 10 mL
distilled water, and the PL spectrum was recorded at room temperature with an excitation
wavelength of 325 nm. As shown in Figure 7a, all the samples exhibit two distinct emission
zones in the UV range (387-391 nm), referred to as near-band-edge emission (NBE), and
a broad visible emission (DL) ranging from 402 to 590 nm. The PL intensity of a
semiconductor is known to depend on the defect density within the structure (Chithra et al.,
2015; Zhang et al., 2019). Compared to the other samples, zNaHCOs displayed a higher
UV emission intensity due to the higher concentration of free excitons, which could be
attributed to the better crystallinity of its nanoparticles (Wu et al., 2007; Raj & Sadayandi,
2016; Ayoub et al., 2022). In contrast, the lower UV emission intensity of zZNH4OH indicated
a higher degree of structural defects in the nanoparticles, consistent with the micro-strain
calculation findings obtained from the XRD analysis. Therefore, the increase in micro-strain
led to a reduction in the crystallinity and photoluminescence intensity of ZnO nanoparticles.

The position of the emission peak remains consistent across all samples despite
differences in synthesis methods. The only observable difference between the samples
appears to be their color, which might be attributed to crystal defects or the incorporation
of other elements into the crystal structure (Manzoor et al., 2009). However, no observable
emissions related to the color of ZnO were detected in all samples. Figure 7b displays the
UV-Vis DRS spectra of ZnO synthesized using different basic solutions. The band gap
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Figure 7. The PL spectra (a) and UV-vis DRS spectra (b) of ZnO prepared with different
types of bases. Inset: The corresponding plots of (F(R)hv)'"2 versus energy for the band
gap energy of ZnO.

energy (Eg) of each sample was obtained by extrapolating (F(R) hv)"2 to hv, as shown in
the inset. The band gap values obtained from the measurements are listed in Table 1.
Among the samples, zZNaOH, zKOH, and zZNH4+OH had a small amount of absorption in the
visible-light region, indicating that they were effective photocatalysts under visible light.
Conversely, zZNaHCOs only absorbed light in the wavelength region of less than 400 nm.
The differences in color of ZnO samples provided clear indications of the different light
absorption properties of the materials. The band gap energy was measured to be 2.99,
2.97, 2.98, and 3.13 eV for zNaOH, zKOH, zNH4OH, and zNaHCOs3, respectively. This
observation was different from the SEM experiment. Generally, the quantum size effect is
most pronounced for semiconductor nanoparticles, where the band gap increases with
decreasing particle size (Singh et al., 2018; Agarwal et al., 2019; Moussa et al., 2021).
However, the band gap of zZNaOH and zKOH samples, which had similar particle sizes,
was found to be smaller than that of zZNaHCOs, indicating that the quantum confinement
effect was not allowed in this case. In addition, doping of an element was one factor for
tuning the band gap of a semiconductor (Das et al., 2013; Benhebal et al., 2014; Rahman
et al., 2022). It is well known that dopants could introduce impurity levels within the band
gap, which might lead to a reduction in the band gap energy of semiconductors
(Bhattacharyya & Gedanken, 2008; Marinho et al., 2019). EDS analysis was carried out to
detect impurity doping in the crystal structure of ZnO. The findings presented in Table 3
indicate that Na, K, and N impurities were detected in each of the ZnO nanostructures,
suggesting that these impurity ions had been doped during the particle growth and aging
process (Xu et al., 2008; Benhebal et al., 2014; Kumari et al., 2015; Erdogan et al., 2021).
The incorporation of dopant elements into the ZnO structure can potentially reduce its band
gap, leading to greater absorption of light in the visible region and resulting in a color
change in the samples.

3.3 Physical properties of ZnO nanopatrticles

The physical properties of various ZnO samples were determined using the Brunauer-
Emmett-Teller (BET) method, which involved measuring N2 adsorption-desorption
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isotherms. The type-IV adsorption isotherms obtained for all samples, according to IUPAC
classification, suggested that the samples had a mesoporous structure (McLaren et al.,
2009; Kotodziejczak-Radzimska et al., 2012; Pandey et al., 2021). The adsorption-
desorption isotherms for ZnO prepared with different types of bases were recorded. Table
3 summarizes the specific surface area (Sset), pore volume, and average pore diameter of
all samples. The calculated Sget values were 14.10, 15.31, 6.11, and 5.26 m?/g for samples
zNaOH, zKOH, zNH4OH, and zNaHCOs3, respectively. These results were consistent with
the particle size of ZnO samples from the SEM technique, where particle sizes were
typically inversely proportional to surface area. However, the zZNH4OH sample exhibited a
decrease in specific surface area, which could be attributed to its flower-like morphology.
Additionally, the average pore size of all samples increased with increasing Sser and was
less than 50 nm, indicating that the samples were mesoporous materials.

Table 3. Energy dispersive X-ray spectroscopy (EDS) results and specific surface area
(SeeT), pore volume, and average pore diameter of ZnO prepared with different bases

Content of Element by Atomic p Average Total Total
ore .
Samples (%) Sger volume _pore area in _volume
(m?/g) (cm?/g) diameter pores in pores
Zn o Na K N (nm) (m?lg)  (cm3lg)
zNaOH 3750 4137 2113 - - 1410  0.099 28.77 8.80 0.047
ZKOH 4496 5496 - 008 - 1531  0.129 34.17 9.49 0.057
zZNHOH 4585 5381 - - 334 6.1 0.026 14.65 4.85 0.019
ZNaHCOs; 5311 3405 12.84 - - 526  0.015 10.37 3.64 0.010

3.4 Photocatalytic activity

To investigate the photocatalytic efficiency of all prepared ZnO nanoparticles, the
degradation of basic blue41 (BB41), acid orange7 (AO7), and methylene blue (MB) after
exposure to the UV light source was used to estimate the photocatalytic efficiency of ZnO
samples. BB41 and AO7 are two unique azo dyes with distinct chemical structures and
properties. The difference in charge between BB41 (positive dye) and AO7 (negative dye)
was utilized to investigate charge-selective absorption on the surface of the catalyst.
Additionally, the efficiency of the catalyst in the photodegradation of complex dye structures
was evaluated using MB, which was classified as a thiazine dye. The absorption spectra
in the photodegradation of BB41, AO7, and MB exhibited characteristic absorption bands
centered at 609 nm, 485 nm, and 664 nm, respectively. For the removal efficiency of all
synthesized ZnO, the zZNaHCO3 exhibited the highest efficiency for BB41, AO7, and MB in
comparison with other catalysts, as shown in Figure 8. The photocatalytic efficiency of
zNaHCOs3 was found to be 96.90, 48.92, and 74.12% for degradation of BB41, AO7, and
MB, respectively. The photocatalytic efficiency of zZNaOH was 60.43, 28.80, and 28.55%
for degradation of BB41, AO7, and MB, respectively. The zKOH sample presented a
photocatalytic performance of 54.10, 26.82, and 21.73% for degradation of BB41, AO7,
and MB, respectively. Moreover, the lowest performance of zZNH4OH as a photocatalyst for
photodegradation of BB41, AO7, and MB was observed in the experiment, which exhibited
a degradation of 39.48, 7.80, and 12.44%, respectively.

15



Limsapapkasiphon et al. Curr. Appl. Sci. Technol. 2025, Vol. 25 (No. 25), e0262911

(a) [ BB41 N AO7 [ VB
100 1 96.90

[=2] o]
o o
1

% Degradation (%)
H
o

20

zNaOH zKOH zNH,OH zNaHCO,

Figure 8. Removal efficiency of ZnO prepared with different types of bases for
the degradation of BB41, AO7, and MB under UV irradiation time of 3 h.

In analyzing the factors influencing the dye degradation efficiency of ZnO
nanocrystals based on the provided data and experimental results, the relationship
between crystallite size, surface area, band gap, and oxygen vacancies significantly
affected performance outcomes. Larger crystallite sizes, greater surface areas, higher
band gaps, and more oxygen vacancies all correlated positively with dye degradation
efficiency (Dodd et al., 2006; Pardeshi & Patil, 2009; Becker et al., 2011; Wang et al., 2012;
Flores et al., 2014; Klubnuan et al., 2016; Xie et al., 2020; He et al., 2022; Ranjbari et al.,
2024). The experimental findings indicated the following order of dye degradation
efficiency: zZNaHCO3 > zNaOH > zKOH > zNH4OH. This observed order contrasted with
initial predictions based solely on individual parameter analysis, suggesting a more
complex interplay among these factors. ZnO synthesized from NaHCO3 exhibited the
highest photodegradation efficiency, despite having the lowest surface area (5.26 m2/g).
This superior performance is attributed to the largest crystallite size (49.10 nm) and the
highest band gap (3.13 eV). The large crystallite size provides more active sites for
photocatalytic reaction. Generally, the {001} facets of ZnO are polar surfaces or active
surfaces, which exhibit the highest catalytic activity (Chen et al., 2015; Yang et al., 2021).
These polar surfaces readily absorb Oz and H20 molecules, resulting in a higher production
rate of reactive species and promoting photocatalytic reaction (Yang et al., 2012). The
exposure of {001} facets corresponds to the (002) diffraction peak in the XRD data. The
activity of the {001} facet is associated with its higher energy compared to other faces of
ZnO. The charge on the facet potentially attracts H20, which may accelerate the generation
of reactive species ("OH and O2z), leading to higher efficiency in dye degradation during
photocatalysis. Thus, the highest photocatalytic efficiency of zNaHCO3 is due to the largest
crystallite size at the (002) crystal plane, which produces the most reactive species for the
decomposition of organic contaminants. Additionally, a high band gap enhances the ability
of a material to absorb UV light and generate electron-hole pairs, which further reduces the
recombination rate and is essential for the degradation process. This is because the
increased absorption of UV light leads to more efficient generation of charge carriers that
are less likely to recombine due to the higher energy separation (Nazarov et al., 2018).
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ZnO synthesized from NaOH also showed high efficiency due to a combination of
significant crystallite size (35.54 nm), surface area (14.10 m2/g), moderately high band gap
(2.99 eV), and oxygen vacancies. This combination indicates that a relatively large
crystallite size and adequate band gap, along with the presence of oxygen vacancies,
facilitates effective dye degradation. A moderate crystallite size supports the reaction by
providing enough active sites, while oxygen vacancies enhance photocatalytic activity by
creating additional reactive sites and trapping electrons, reducing the recombination of
electron-hole pairs. This increases the availability of charge carriers for redox reactions,
leading to more reactive oxygen species that effectively degrade organic contaminants
(Zhang et al., 2018; Ranjbari et al., 2023).

Additionally, ZnO synthesized from KOH showed moderate efficiency despite
having the highest surface area (15.31 m?/g). The smaller crystallite size (33.42 nm), lower
band gap (2.97 eV), and oxygen vacancies contributed to its overall reduced effectiveness.
Although a higher number of oxygen vacancies provides additional reactive sites for the
photocatalytic reaction, a smaller crystallite size and lower band gap limit the absorption of
UV light and the stability of active sites, thus reducing the overall efficiency. Comparing the
two, zNaOH benefits from a balanced combination of crystallite size, surface area, and
band gap, which collectively enhance its photocatalytic performance. Meanwhile, zKOH,
despite having the highest surface area, suffered from smaller crystallite size and lower
band gap, which hindered its ability to effectively absorb UV light and maintain stable active
sites, resulting in lower overall efficiency. ZnO synthesized from NH4OH had the lowest
efficiency, likely due to its smallest crystallite size (23.83 nm) and lowest surface area (6.11
m?/g). This combination of unfavorable factors resulted in fewer active sites, leading to
reduced photocatalytic activity. The high number of oxygen vacancies in zZNH4OH provided
additional reactive sites, however, these were not sufficient to overcome the limitations
posed by the other factors.

Comparing the bases used for ZnO synthesis, it is evident that the choice of base
significantly influences the material properties and photocatalytic performance. NaOH and
NaHCOs yielded materials with larger crystallite sizes, which were beneficial for
photodegradation. NaHCOs produced ZnO with the highest efficiency due to the optimal
combination of large crystallite size and high band gap. KOH, while producing ZnO with
the highest surface area, did not achieve the highest efficiency due to other limiting factors
such as smaller crystallite size and lower band gap. NH4OH produced ZnO with the lowest
efficiency, indicating that it may not be the most suitable base for synthesizing highly
efficient ZnO photocatalysts. These findings suggest that while surface area is important,
the combined effects of larger crystallite size, optimal band gap, and more oxygen
vacancies are more critical in determining the photocatalytic efficiency of ZnO in dye
degradation. The study highlights the complexity of material properties and their synergistic
effects on photocatalytic performance. It demonstrates that optimizing multiple factors
rather than focusing on a single property is essential for enhancing the efficiency of ZnO
photocatalysts. ZnO synthesized from NaHCOs, despite its lower surface area,
demonstrated the highest dye degradation efficiency due to its favorable crystallite size,
band gap, and oxygen vacancy characteristics. This insight could guide the development
of more effective photocatalysts for environmental remediation and other applications.

To study the mechanism of the photodegradation of organic dyes using the ZnO
nanoparticles, an experiment using scavengers was conducted to elucidate the role of
specific reactive oxygen species (ROS) in the photocatalytic process. In photocatalysis,
various ROS such as h*, "OH, e-, and Oz~ can be generated and can interact with the dyes.
The addition of the scavengers, including 10 mM sodium oxalate (h* scavenger), 10 mM
isopropanol ("OH scavenger), and 10 mM p-benzoquinone (O2" scavenger) significantly
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reduced the photocatalytic efficiency of zNaHCOs. As illustrated in Figure 9, the
photocatalytic efficiencies were 96.90%, 85.21%, 53.05%, and 6.57% for the samples
without a scavenger, and with sodium oxalate (SO), p-benzoquinone (PBQ), and
isopropanol (IPA), respectively. These results indicate that the presence of p-
benzoquinone and isopropanol as scavengers greatly affected and decreased the
photocatalytic efficiency relative to the control. Additionally, a minor decrease was
observed when sodium oxalate was employed as a scavenger. Therefore, it can be inferred
that superoxide (Oz*) and hydroxyl ("OH) radicals were the predominant ROS species
influencing the photocatalytic efficiency of zZNaHCOs. In summary, the order of dominance
of ROS species in the photocatalytic process can be estimated as *OH > Oz > h*.

100 4 96.90
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§ 80 ~
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= 60 1 53.05
T 50+
o
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20
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0 J
None SO PBQ IPA

Figure 9. The effect of scavengers on the photodegradation of 10 ppm BB41 by
zNaHCOs (20 mg/L) under UV irradiation for 3 h.

The findings of this research underscored the critical role of base precursors in
shaping the environmental performance of ZnO nanoparticles. The preference for NaHCOs3
as a base precursor highlighted the importance of considering environmental aspects in
nanoparticle synthesis procedures. The improved photocatalytic efficiency of ZnO
nanoparticles synthesized with NaHCOs had significant implications for environmental
remediation efforts. These photocatalysts offer a sustainable method for combating water
pollution and preserving aquatic ecosystems by efficiently degrading dye pollutants found
in wastewater. Additionally, using NaHCO3 as a benign and environmentally friendly base
precursor is in alignment with the principles of green chemistry, which aims to minimize the
production of hazardous by-products and decrease the overall environmental impact of the
synthesis process.

4. Conclusions

ZnO nanoparticles were synthesized via a simple precipitation method using different basic
solutions, including NaOH, KOH, NH4OH, or NaHCOs. The basicity of the resulting solution
was varied by employing different types of basic solutions, which significantly influenced
the formation of intermediate compounds and ions. Each base has a distinct dissociation
constant (Kp) that influences the hydroxide precursor, thereby directly affecting the
formation of intermediates and ZnO nanoparticles. The results indicated that intermediate
formation played an important role in the growth mechanism of ZnO nanoparticles,
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affecting their morphology, crystallite size, crystallinity, and lattice strain. The presence of
ions from various basic solutions in the ZnO structure caused variations in the color and
the band gap energy of the ZnO samples. The photodegradation efficiency of the
synthesized ZnO nanoparticles was evaluated using various organic dyes (BB41, AO7,
and MB) under UV light irradiation. Among the photocatalysts, zZNaHCOs3; exhibited the
highest dye removal efficiency, attributed to its high crystallinity and large crystallite size.
The addition of scavengers indicated that hydroxyl ("OH) was the predominant reactive
oxygen species that influenced the photocatalytic efficiency of zNaHCOs.
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