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Abstract

The rampant usage of non-biodegradable materials and in particular conventional plastics
hampers the ecological balance and poses environmental hazards. Conventional plastics
persist in the environment for long periods due to their resistance to degradation,
contributing to pollution and health risks. There is an urgent need for sustainable and
biodegradable alternatives to mitigate these issues. Polyhydroxyalkanoate (PHA) is
gaining attraction as a potential replacement for non-biodegradable polymers due to
rising awareness of global environmental concerns. Microbial plastics have
physicochemical properties like petrochemical plastics. These biopolymers usually
comprise hydroxy-acyl-CoA derivatives and are synthesized from fatty acid metabolic
pathways. Microbial plastics are present as storage granules that accumulate intracellularly
in microorganisms. However, the physicochemical properties of these bioplastics vary
depending on the microbial origin and synthesis mechanism. Numerous multidisciplinary
scientific approaches have been used to elucidate various aspects of microbial bioplastics.
PHA has promising potential applications in a variety of industries as well as in the medical
field. However, the high production cost of PHA has been a significant disadvantage.
Therefore, scientists have recently developed transgenic plants containing microbial PHA
biosynthesis genes to lower the cost of the polymer. Further effort is required in this regard
to increase the production of bioplastics for the successful replacement of non-
biodegradable plastics. This review seeks to address these challenges by examining
microbial bioplastic synthesis and degradation mechanisms, particularly PHAs, and
exploring their industrial and therapeutic applications. It aims to provide insights into current
limitations and propose strategies for overcoming them to establish microbial bioplastics
as a viable and sustainable alternative to conventional plastics.
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1. Introduction

Biomaterials are natural materials that are synthesized and catabolized by various
organisms and these bioplastics offer a broad range of biotechnological applications.
These bioplastics can be assimilated by many species (biopolymer) and have no toxic
effects on the host (biocompatible), providing them a significant advantage over other
conventional synthetic products. Bioplastics are a type of biomaterial that was first
produced in 1926 from the bacterium Bacillus megaterium. Bioplastics, as the name
suggests, are made from organic and renewable sources of biomass like agro-wastes,
plant residues, woodchips, starch, or microbes in contrast to conventional plastics which
are generally made of non-renewable petrochemical products (Abe et al., 2010).
Bioplastics, which are biopolymers, are used in various industries including food
packaging, agriculture, medicine, textiles, automobiles, biomedical applications (Aburas,
2016).

Microorganisms can store polyhydroxyalkanoate (PHA) in their cytoplasm up to
97% of their cell dry weights (CDWs) (Muhammadi et al., 2015). The necessary
circumstances to increase PHA accumulation in bacterial cytoplasm are excess amounts
of carbon sources combined with nutritional limitations such as nitrogen or phosphorous,
and pH alterations (Shah et al., 2008). PHA can be produced from a wide range of
renewable resources by a wide range of microorganisms, including gram-positive and
gram-negative bacteria, many of which have been found to collect PHAs both in the
presence and absence of oxygen (Hermann-Krauss et al., 2013; Anjum et al., 2016).

Bioplastic degradation depends on various factors like biomass source,
processing, additives, and the chemicals involved. Moreover, the use of bioplastics can
help cut down the amount of energy being consumed during plastic production and can
result in lower emissions of greenhouse gases, serving as a better alternative to
conventional plastics. However, bioplastics may not be taken to be the best alternative as
they also have their share of drawbacks such as lag in terms of durability, malleability, and
practicality of use. The use of bioplastics instead of regular plastics makes possible the
potential reduction in waste generation and pollution resulting in a sustainable and green
future (Atiwesh et al., 2021).

This review describes the fundamentals of bioplastics with special emphasis on
PHAs and the production from both pure and mixed microbial cultures. It also highlights
the microbial accumulation and degradation of PHAs. Further, bioplastic applications have
been discussed.

2. Microorganisms and Bioplastics

Microorganisms serve as cell factories in the synthesis of bioplastics. These polyesters are
produced by a variety of microbes that have been cultivated under diverse nutrient and
environmental conditions (Adane & Muleta, 2011). Microbial biopolymers are typically
lipophilic in nature and water-insoluble. They aggregate as reserve materials in the form of
mobile, amorphous, or liquid granules.

2.1 Polyhydroxyalkanoates

Polyhydroxyalkanoates (PHAs) are the most popular forms of microbial bioplastics. PHAs
are polyesters that have adjustable mechanical and physical characteristics. PHAs have a
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high rate of biodegradation and biocompatibility. PHAs are a promising bioplastic
alternative to traditional petrochemical plastics (Ahuja et al., 2024).

As storage compounds, polyhydroxyalkanoates can accumulate up to 80% of dry
bacterial biomass. Poly-3-hydroxybutyrate (PHB) and polyhydroxy valerate (PHV) are the
two most important PHAs, with monomer formulas of (-OCH(CH3)-CH2-C(O)- and (-OCH
(CH2CH3)-CH2-C(O)-, respectively (Adhikari et al., 2016). Depending on the
microorganism involved in the synthesis of bioplastics, the physicochemical properties,
structure of macromolecules, monomeric composition, size, and the number of granules
vary (Amini et al., 2019). Besides, microorganisms which synthesize bioplastics, are also
predominant degraders of bioplastics. Aerobes, anaerobes, photosynthetic bacteria,
archaebacteria, and lower eukaryotic microorganisms are among the microorganisms
involved in the biodegradation and catabolism of bioplastics (Anderson & Dawes, 1990).

2.2 PHA accumulation

Both prokaryotic and eukaryotic organisms serve as suitable sources for bioplastic
synthesis. Metabolic engineering and structural studies serve as promising options in
selecting the right microbial candidates for bioplastic synthesis. To achieve greater control
over the quality, quantity, and economics of microbial bioplastic production, various
methodologies and different sources like natural isolates and recombinant organisms have
been explored (Barnard & Sanders, 1989).

PHA accumulation occurs because of growth imbalance caused by nutrient
limitations. PHAs are produced by a diverse range of microorganisms. Table 1 presents
the different bacteria, algae, and transgenic plants involved in the synthesis of bioplastics
along with the type of bioplastics synthesized. Several bacterial strains use the polymer as
a source of carbon as well as an energy source under starvation. Because of their lower
solubility and higher molecular weight, PHAs are an ideal carbon-energy storage material
and therefore have no impact on bacterial cell's osmotic pressure (Lu et al., 2023). It should
be noted that bacteria such as Alcaligenes latus (Beun et al., 2002) and a mutant strain
of Azotobacter vinelandii (Blinkova & Boturova, 2017) were shown to accumulate PHA
under nutrient limitations. Yet limitation in nitrogen was shown to increase PHA synthesis
in A. latus, which suggested that the growth during PHA accumulation is inefficient
(Boyandin et al., 2013).

PHAs are produced using both pure and mixed microbial cultures (MMC);
however, owing to high storage capacity and cell density, the use of pure cultures led to
the highest process yields and PHA productivities (Brandl et al., 2005). Mixed cultures are
advantageous as they do not require aseptic conditions and are more adaptable to
complex substrates such as agricultural waste than pure cultures (Li, 2007). Mixed
cultures are more economical for PHA production. However, mixed cultures must be
enriched with PHA-accumulating microorganisms before PHA production, and the yield is
lower (Chee et., 2010). Important parameters to be optimized for PHA production are
enrichment conditions, culture stability, suitable feedstock, and supplement. Figure 1
shows bacterium-producing PHAs and general structure of PHAs.

Organic waste can be used as a feedstock in the production of PHAs. However,
for organic wastes to be viable feedstocks, they must be relatively concentrated, easily
degradable, and abundantly available. PHA bioplastics derived from such wastes are now
being considered for commercialization (Chen & Wu 2005). The use of malt wastes from
beer breweries as carbon sources for the microbial synthesis of bioplastics has been



Table 1. Overview of microorganisms utilized in the synthesis of bioplastics.
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Sl. Microorganisms Synthesized Source Bioplastic Reference
No. Bioplastics content
(wt%)
Bacteria
1. Aeromonas hydrophila MCL-PHAs Lauric acid 19.5 (Hu et al., 2005)
2. Bacillus megaterium PHB Cheese whey 64 (El-malek et al., 2020)
3.  Pseudomonas putida KT2440 PHA Stearic acid 36.4 (Ruiz et al., 2019)
4. Serratia sp. ISTVKRI PHA Volatile fatty acid 51 (Reddy & Mohan, 2015)
5. Burkholderia xenovorans PHA Palm oil derivative, fatty acid 22-70 (Fukui et al., 1998)
6.  Pseudomonas aeruginosa MCL-PHAs Palm oil 39 (Giosafatto et al., 2020)
7.  Plasticicumulans acidivorans PHA wastewater 70 (Gonzalez-Gutierrez et al., 2010)
8.  Comamonas testosteroni PHA Mustard oil, olive oil, castor oil, sesame 79-88 (Grothe et al., 1999)
oil, groundnut oil
9. Cupriavidus necator, Cupriavidus PHB9 Olive oil, sunflower oil, crude palm oil 60-90 (Hempel et al., 2011)
necator H16
10. Pseudomonas cepacia PHB Xylose, lactose 50 (Hrabak, 1992)
11.  Alcaligenes latus PHB Sugarbeet juice 38 (Wang et al., 2013)
12.  Bacillus megaterium PHB Beet molasses, dates 50 (Ishii et al., 2008)
13.  Halomonas halophila PHB Cheese whey hydrolysate 82 (Kucera et al., 2018)
14.  Bacillus cereus PHB Dirout channel 28.799 (Hamdy et al., 2022)
15.  Burkholderia sacchari PHB Wheat straw hydrolysate 60 (Cesario et al., 2014)
16.  Rhizobium viciae, R. meliloti, PHB Volatile fatty acid 62.43 (Jung et al., 2018)
Bradyrhizobium japonicum
17.  Recombinant Escherichia coli JM109 PHB Soybean oil 6 (Jia et al., 2013)
Algae
18  Spiruline plantensis PHB Kosaric medium 10 (Jau et al., 2018)
19  Nostoc muscorum P(3HB) Acetate 45-60 (Sharma et al., 2007)
20  Synechocystis sp. PCC6803 P(3HB) Fructose 38 (Panda & Mallick, 2007)
21 Synechococcus MA19 P(3HB) CO, 7-50 (Miyake et al., 1997)
22 Oscillatoria limosa P(3HV) CO,/Acetate 6 (Stal, 1992)
Transgenic plant
23  Arabidopsis thaliana PHB Plastid 14 (Kourtz et al., 2007)
24  Camelina sativa PHB Seeds 15 (Malik et al., 2015)
25  Saccharum officinarum PHB Plastid 11.8 (McQualter et al., 2014)
26 Populus sp. PHB Plastid 3.69 (Dalton et al., 2012)
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Figure 1. General structure of PHAs (polyhydroxyalkanoates), their localization in
bacteria, and the corresponding biosynthesis

investigated and this has led to the eventual use of wastewater from food industries as a
nutrient source for microorganisms in the synthesis of bioplastics. Using A. latus DSM
1124, specific polymer production yield was amplified to 70% polymer cell and 32 g/L cell
dry weight (Wong et al., 2004). Besides industrial waste, cheese whey was also used as a
carbon substrate for PHA synthesis. Cheese whey fermentation is important because it
generates precursors of PHAs and modifies PHA composition based on the type of organic
acid produced (Colombo et al., 2016). The different substrates used for PHA production
alter its rate of production and yield. Polyhydroxybutyrate (PHB) is a type of PHA and is a
biodegradable biopolymer synthesized by microorganisms as intracellular granules under
nutrient-limited conditions with excess carbon. Ethanol leads to a higher yield of PHB when
compared to glucose (McAdam et al., 2020). An experiment by Yu et al. (1999) revealed
that different polyhydroxyalkanoate copolymers with distinct polymer properties could be
produced using various types of food wastes as the source of carbon. The highest amount
of PHB was accumulated by Pseudodonghicola xiamenensis, which was identified using
16S rRNA gene analyses. The use of 4 % (w/v) date syrup produced a PHA concentration
of 15.54 g/L and 38.85 % PHB yield, with a productivity rate of 0.162 g/L/h. Mostafa et al.
(2020) were the first to show that P. xiamenensis produces a bioplastic, implying that the
natural habitats of the Red Sea could serve as a potential biological reservoir for novel
bioplastic-producing bacteria. Some Pseudomonas strains can also accumulate
monomers like 3HB from a variety of carbon substrates. On genetic analysis, it was found
that these Pseudomonas strains possessed a minimum of two distinct polymerizing
enzymes with distinct substrate specificities (Dawes & Senior 1973).

2.3 Metabolic engineering for PHA production

For the natural selection and isolation of bioplastic producers, recombinant technology
serves as a promising approach. This promising approach involves genetically engineering
microorganisms to introduce new production pathways that facilitate bioplastic synthesis
(Chacon et al., 2024). However, this necessitates the expression of multiple genes as well
as PHA production optimization in the host (Khatami et al., 2021). Figure 2 represents the
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Figure 2. Metabolic pathways for PHA biosynthesis Pha A:  ketothiolase, Pha B:
acetoacetyl Coenzyme A reductase, Pha C: PHA synthase, Pha G: acyl-ACP-CoA
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different metabolic pathways involved in PHA biosynthesis. The temperature, pH, oxygen
levels, and bioreactor conditions (agitation speed, bioreactor type, scale) need to be
monitored for effective bioplastic production. Genetic engineering techniques have been
used to manipulate PHA biosynthesis since the entire operon which controls the
biosynthesis of P(3HB) in R. eutropha was cloned (Matsusaki et al.,, 1998), and this
technique enables gene expression in various organisms. Eschericha coli is an ideal model
organism for heterologous gene expression, since the physiology, biochemistry, and
genetics of E. colihave all been extensively studied. As a result, E. coli strains are
genetically modified to produce PHB. On introducing the PHA CAB operon from R.
eutropha, recombinant E. colibecame a PHA producer. The yeast, Saccharomyces
cerevisiae is a prominent eukaryotic system that has been used to produce PHA.
Incorporating the PHA synthase gene of R. eutropha itself could cause the cytoplasm to
accumulate smaller amounts of PHA (Maestro & Sanz, 2017). The monomer-supplying
pathway in S. cerevisiae needs to be improved to further elevate the P(3HB) production
capacity (Dias et al., 2006). According to Hempel et al. (2011), the introduction of the
bacterial PHB pathway of R. eutropha H16 into the diatom Phaeodactylum tricornutum was
first reported to be possible for the PHB production in a microalgal system. PHB levels as
high as 10.6% of algal dry weight were obtained after the bacterial enzymes were
expressed, and this research demonstrated the tremendous potential of microalgae such
as the diatom P. tricornutum in bioplastic synthesis. A successful method for transforming
B-butyrolactone into poly(-hydroxybutyrate) (PHB), a promising biodegradable polyester,
involves ring-opening polymerization (Yang et al., 2021). The synthesis of PHA-PEG from
B butyrolactone mediated by metal complexes has received a lot of attention recently and
has made significant progress (Adamus et al., 2012). The high degree of (stereo)control
that some of these catalysts demonstrate under favorable circumstances is a key topic of
interest (Ajellal et al., 2010; Brulé et al., 2011). The potential for bioplastic and



Muralikrishnan et al. Curr. Appl. Sci. Technol. 2025, Vol. 25 (No. 5), e0263545

thermoplastic blend production in microalgal biomass species of Chlorella vulgaris, a green
alga, and Spirulina platensis, a cyanobacterium, was investigated. This thermomechanical
polymerization study of microalgae protein biomass revealed that Chlorella demonstrated
better bioplastic behavior than Spirulina microalgae, while Spirulina demonstrated better
blend performance (Ding et al., 2016). There is considerable progress in recombinant
hosts. However, the barriers to obtaining large amounts of PHA at a lower cost are yet to
be overcome. The relationship between microbial mechanisms and environmental
conditions is crucial for effective microbial bioplastic production. Controlled fermentation
helps maintain optimal conditions for microbial growth and PHA synthesis. Genetic
engineering of microbial strains improves bioplastic yield. Process optimization with
advanced bioreactor designs and real-time monitoring systems can ensure high-quality
production of bioplastics. The use of waste materials or renewable resources as substrates
decreases the production costs and increases the sustainability of bioplastic production
(Ali et al., 2023).

3. Microbial Degradation of Bioplastics

Biodegradation refers to degradation mediated by microorganisms. Besides the synthesis
of bioplastics, microorganisms degrade bioplastics in various ecosystems. Aerobes,
anaerobes, photosynthetic bacteria, archaebacteria, and lower eukaryotic microorganisms
are predominantly involved in the catabolism and biodegradation of bioplastics (Kumbar et
al.,, 2014). It has been discovered that over 150 microbial species, including bacteria,
actinomycetes, and fungi, are capable of decomposing various types of bioplastics (Swetha
et al., 2024). In general, bacteria and fungi degrade bioplastics because these
microorganisms are the most prevalent in every ecosystem. Sewage sludge, leachate from
landfills, waste compost, soil, sand, pond, and lake sediment from water bodies are
abundant with degradative microorganisms. Many studies have been conducted to identify
microorganisms capable of degrading biopolymers (Laborit, 1964).

3.1 Microbes involved in bioplastic degradation

Bacteria were the most common microorganisms isolated from aquatic habitats, including
marine and river water, that were capable of bioplastic degradation. Bioplastics primarily
demonstrated high degradability in soil and compost environments. Hence, the
biodegradability of bioplastics in soil and compost environments has been studied
extensively (Lee et al., 2005). Bacterial and fungal species isolated from soil, compost,
seawater, river water, and other environments and their ability to utilize bioplastics in their
end products were assessed. In a laboratory test, a clear zone formation was observed
encircling microbial growth in an agar plate added with bioplastic as the sole carbon source
and the diameter for the zone clearance is indicative of the bioplastic degradation mediated
by bacteria or fungi (Lee, 1996). High levels of PHB-degrading microbes were found in soil
compost, soils, and farm hay. Soil from agricultural land was investigated as a potential
source of polylactic acid (PLA) degraders, due to its high organic content (Penkhrue et al.,
2015). This study revealed that 16 of 79 soil microorganisms isolated by the clear zone
method from agricultural soil could degrade PLA, polycaprolactone (PCL), and
polybutylene succinate (PBS) bioplastics, and Amycolatopsis sp. strain SCM MK2 4
exhibited the greatest enzyme action towards PLA and PCL bioplastics.

The role of fungi in degradation is also being explored. According to the study by
Ishii et al. (2008), over 20 filamentous fungal strains isolated from different soil and
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freshwater resulted in clear zones on agar plates containing poly(3-hydroxybutyrate)
(P3HB). Table 2 presents the different microorganisms involved in the degradation of
bioplastics along with the type of bioplastic degraded by the microorganisms. Fusarium
oxysporium, for example, degrades bioplastics while also acting as a phytopathogen and
the increased population of such fungal strains during biodegradation process may hamper
ecological balance. It was reported that an increased prevalence of Fusarium oxysporium
or other phytopathogens in agricultural soil infected crops and reduced yields. However,
such environmental issues can be addressed by developing appropriate guidelines for
bioplastic production, application, and degradation. Bioplastic biodegradation is enhanced
by the co-culture of various microorganisms. In co-culturing, the bioplastic intermediates
released by the primary microorganism are utilized by the other microorganisms aiding in
the biodegradation. Co-inoculation of fungi and bacteria can accelerate bioplastic
degradation. The combination of Fusarium solaniWF-6 and Stenotrophomonas maltophilia
YB-6 increased the biodegradation of polybutylene succinate, even though the YB-6 strain
was incapable of degrading the PBS independently (Lizarraga-Valderrama et al., 2015).
Another study found that when Streptomyces thermonitrificans PDS-1 was co-cultured
with Bacillus licheniformis HA1, PCL degradation was higher (Lu et al., 2011). The co-
cultivation of Sphinogomonas paucimobilis sp. with hydrolyzate degraders significantly
enhanced polymer (p-dioxanone) degradation. However, it is to be noted that
microorganisms use enzymes to catalyze the biodegradation of biopolymers. Enzymes,
both intracellular and extracellular, are responsible for the enzymatic degradation of
bioplastics. Researchers all over the world have been looking into the mechanisms of
biodegradation of various bioplastics such as PLA, PHAs, PCL, PBS, and others.
Furthermore, bioplastic-degrading enzymes are isolated from bacteria and fungi and
characterized using molecular tools and techniques (Luengo et al., 2003).

Table 2. Overview of microorganisms and their corresponding bioplastic degradation

SI. Degradative microorganisms Degraded Reference
No. Bioplastics
1. Pseudomonas aeruginosa, Bacillus subtilis PHA (Nelson et al., 1981)
2. Candida albicans, Fusarium oxysporum PHA (Nelson et al., 1981)
3. Leptothrix sp, Pseudomonas putida, Variovorax sp. PHA (Niaounakis, 2015)
4. Penicillium sp., Trichoderma pseudokoningii, PHB (Nigmatullin et al.,
Acremonium recifei., Cogronella sp., Paecilomyces 2015)
lilacinus
5. Enterobacter sp., Gracilibacillus sp., PHB (Novikova et al., 2008)
Bacillus sp.
6. Aspergillus niger PHB (Obruca et al., 2009)
7. Penicillium sp., Aspergillus sp. PHB (Oppermann-Sanio &
Steinblchel, 2002)
8. Cephalosporium sp., Gliocladium album, PHB (Page, 1989)
Eupenicillium sp., Gerronema postii, Cladosporium
sp.
9. Pseudomonas lemoignei PHB (Panith et al., 2016)
10. Burkholderia capacia, Streptomyces sp., PHB (Peng et al., 2012)

Cupriavidus sp., Bacillus sp., Mycobacterium sp.,
Nocardiopsis sp.
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3.2 Enzymes involved in bioplastic biodegradation

As enzymes play an important role in the biodegradation of bioplastics, enzymes involved
in bioplastic biodegradation were produced and included were esterase from Comomonas
acidivorans, lipase from Alcaligenes faecalis, and serine hydrolase from Pestalotiopsis
microspora (Ma et al., 2018). PHA/ PHB depolymerases derived from bioplastic-degrading
microorganisms were analyzed (Mamelak, 1989; Madison & Huisman, 1999). Numerous
studies on depolymerase purification from bioplastic-degrading microorganisms have been
conducted. Streptomyces thermoviolaceus subsp. Thermoviolaceus 76T-2 was used to
isolate the depolymerase enzyme responsible for PCL degradation (Marang et al., 2014),
Rhodospirillum  rubrum synthesizes depolymerase intracellularly. This intracellular
depolymerase was researched as a PHB-degrading enzyme (Mergaert & Swings, 1996).

The degradation of three types of bioplastics, as well as their effects on microbial
biomass and diversity in the soil environment, were investigated. PBS-starch was buried
in three types of soils that differed in bacterial biomass (7.5/106, 7.5/107, and 7.5/108
cells/g soil) to investigate the effect of bacterial biomass in soil on the biodegradability of
bioplastics. The rate of bioplastic degradation was accelerated, accompanied by an
increase in bacterial biomass in the soil. The results of 16S rDNA (ribosomal
deoxyribonucleic acid) PCR-DGGE (polymerase chain reaction/denaturing gradient gel
electrophoresis) analysis revealed that the bacterial diversity was unaffected by the
degradation of bioplastics. This study also revealed that the bioplastic degradation rate in
soil was dependent on the bioplastic composition (Mller & Seebach, 1993).

3.3 Factors influencing bioplastic degradation

Besides microorganisms, various factors influence degradation. Pressure, temperature,
pH, incubation time, type of polymer and active cell concentration are some of the vital
parameters that affect or regulate microbial degradation of polymers, as do other biological
processes (Mostafa et al., 2020; Lu et al.,, 2023; Piyathilake et al., 2024). Several
microbiological and ecological factors related to the location of polymers play an important
role in their decomposition (Nadhman et al., 2012). The biodegradability of various
bioplastics in the same local habitat was also found to vary significantly depending on the
structure, composition, and inherent properties of biopolymers (Nakasaki et al., 2006).

4. Therapeutic Applications of Bioplastics

PHAs have become indispensable in a wide range of novel applications, including
agricultural, industrial, medical, and therapeutic applications (Bano et al., 2024), and these
applications are mentioned in Table 3. According to Chen & Wu (2005), the toxicity of
various PHAs, including PHB, P4HB, PHBV, PHBHHX, and polyhydroxy octanoate (PHO),
along with their degradation were analyzed. The non-toxicity and non-carcinogenicity of
polymers make them an ideal candidate for nutritional or therapeutic applications. PHA, as
a biomaterial, can interact with a biological system to direct a medical treatment with an
appropriate host response (Ang et al., 2020). PHA has been studied for a variety of
therapeutic applications, which include heart valves and nerve conduit tissue engineering
(Reddy et al., 2003), vascular tissue engineering, bones, and cartilage (Reddy & Mohan
2015). PHA is also involved in drug delivery carrier materials (Sabarinathan et al., 2018)
and PHAs were reported to be non-carcinogenic during long-term implantation (Sadat-
Shojai et al., 2016). PHAs and their composites have been used in making bone marrow



Table 3. Different types of bioplastics involved in various industries along with their applications

Ll

SI. Industry Used Bioplastics Applications Reference
No.
1. Agriculture poly (4- hydroxybutyrate) Used in making agricultural nets (Wang et al.,
[P(4HB)] and PLA/PHA-blends 2010)
PHA Used for agricultural grow bags
(Ward et al., 2005)
Pl_:At; pto:ylactic ac_id (tPLA), Mulch production
p?hyl utylene IS”CC;”f‘ e, (Williams et al.,
ethylene vinyl acetate 2013)
2. Food packaging PHB film based packaging for food (Wu, 2012)
3. 3Dimensions PHA and PHB Used as filler in 3D printing (Yilmaz & Beyaitli,
printing (3D) 2005)
4, Wood plastic PHB, PHBV Incorporated in wood plastic composites (Simo-Cabrera et
composite al., 2021)
5. Construction PHA Crude nanocomposite from bacterial biomass (Kucera et al.,
and PHAs are used for used for insulation 2018)
walls and construction of walls and partitions
6. Cosmetics PHA Found to absorb and retain the oil and used in (Sudesh et al.,
oil blotting films 2000)
7. Personal PHA Used in the manufacture of diapers and other (Van Loosdrecht
hygiene packaging materials etal., 1997)
8. Animal P(3HB) Used as a biocontrol agent and antimicrobial (Vaidya et al.,
production agent 2019; Defoirdt et
al., 2007)
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scaffolds, orthopedic pins, cardiovascular patches, tendon repair devices, cartilage repair
devices, and wound dressings (Sankhla et al., 2020).

4.1 Bioplastics in tissue engineering and implants

PHBHHXx (poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) outperformed PLA and PHB in
the support of bone tissue growth by increasing bone marrow cell proliferation.
Arginylglycylaspartic RGD peptide fused with PHA granule binding protein PhaP forming
(PhaP-RGD) and coated on PHBHHx scaffolds, resulted in improved cell adhesion,
proliferation, and chondrogenic differentiation in the scaffolds and therefore could help
cartilage tissue engineering (Serafim et al., 2008).

In in vitro and in vivo conditions, PHB on blending with hydroxyapatite (HAP)
improved cell growth (Shishatskaya et al., 2016; Simo6-Cabrera et al., 2021). P3HB4HB
has the potential to be developed into material for the synthesis of artificial blood vessels
due to its strength, elasticity, and prompt elastin formation (Srubar et al., 2012).

4.2 Bioplastics in neurology

PHB offers neurological benefits. It aids axonal regeneration and promotes the survival,
proliferation, and attachment of adult Schwann cells (Steinbichel & Schlegel, 1991).
According to Wang et al. (2010), to extend the differentiation of human bone marrow
mesenchymal stem cells (hBMSC) into nerve cells, a terpolyester of 3-hydroxybutyrate, 3-
hydroxyhexanoate, and 3-hydroxy valerate (PHBVHHXx) were utilized.

4.3 Bioplastics in drug delivery

Bioplastics can also serve as suitable drug delivery systems. PHA hydrophobic nano and
microparticles are ideal for transporting hydrophobic drugs (Sudesh et al., 2000). A PHA-
based drug delivery system was developed by the fusion of polypeptide ligands, PHA
nanoparticles, and PhaP (Sudesh et al., 2007). This ligand-PhaPPHA has been shown to
effectively target cancer cells.

PHBHHx nanoparticles loaded with insulin phospholipid blends have been
reported to be a successful delivery system due to their prolonged therapeutic effects,
particularly in comparison to insulin solution (Suriyamongkol et al., 2007). Microparticles
made of PHB and PHB-PHV copolymers facilitate low rates of drug release and enable
drug deposition.

4.4 Bioplastics in gene delivery

PHA can be used as a suitable gene delivery vector. It was reported that monomethoxy-
poly (hydroxyalkanoates) (mPHA-acrylated) with branched poly (ethyleneimine) (bPEI) on
binding to small interfering ribonucleic acid (siRNA) prevented nuclease degradation of
siRNA (Thakur et al., 2018).

4.5 Bioplastics in cancer research

Due to its inherent biocompatibility, PHB is used for cancer detection (Tokiwa & Calabia,

2004). According to the study, it was found that cancer cells adhered well to PHB sheets,
while normal cells did not, and this adhesion of cells was detected with the help of contact
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angle techniques. It is also to be noted that when compared to other techniques, the PHB-
based cancer detection is a faster and less painful process. Besides cancer detection,
bioplastics were analyzed for their ability to inhibit cancer. PHBHHx nanoparticles-based
phosphoinositide-3-kinase inhibitor was studied for its ability to inhibit cancer cell line
proliferation (Trivedi et al., 2016).

4.6 Bioplastics in surgical dressing

Bioplastics are also used in wound dressings, and the biodegradable and biocompatible
polymers used to make nanofibrous wound dressings have sparked a lot of research
interest (Chauhan et al., 2024). PHB/chitosan nanofibrous membranes with varying
chitosan ratios was used as post-surgical wound dressing (Sariipek, 2024). Furthermore,
adding polyvinylidene difluoride (PVDF) nanofibers to the PHB/chitosan layer increased its
mechanical strength and resulted in the successful development of a novel bilayer
electrospun nanofibrous membrane (UNEP, 2009).

5. The Potential of P4HB in Therapeutic Applications

It was reported that PHAs containing 4-hydroxybutyrate (4HB) monomers likely held
potential therapeutic value (Deeken et al., 2023). Like P3HB, P4HB (Vaidya et al., 2019),
is a naturally occurring substance in many organisms (Van Immersel et al., 2006), and they
both belong to the bacterial PHA family (Van Loosdrecht et al., 1997). The potential
therapeutic value of 4HB was recognized as early as the 1960s, as exhibited by
pharmaceutical companies’ interest. Since P(3HB-co-4HB) is a biodegradable and
biocompatible copolymer, it can potentially be used in the controlled release of 4HB for
therapeutic purposes. For clinical applications, PHA-PEG conjugates and hybrids are
extremely effective instruments. Utilizable conjugates for targeted drug delivery and tissue
engineering are made possible by the combination of the hydrophobic PHB and hydrophilic
polyethylene glycol (PEG) characteristics of the two biocompatible polymers. PEGylation
could be conducted in vivo through bioprocessing, such as end-capping of microbial PHAs.
Several succinct synthetic methods and blending processes have been established,
making it simple to obtain these conjugates. For these PHA-PEG medical applications over
the past few years, the potential for micelle and nanoparticle synthesis as well as the
creation of films have drawn growing attention. The biological, physicochemical, and
material properties of PHAs can be efficiently modified through PEGylation (Winnacker &
Rieger 2017).

5.1 P4HB in de-addiction

The use of 4HB in the treatment of alcoholism, as well as heroin and nicotine addiction,
involves the controlled release of 4HB, and a patent describing the use of 4HB-containing
PHA as a slow-releasing system for biomedical purposes was filed (Williams & Peoples
1996; Martin et al., 1997).

5.2 P4HB in anesthesia

4HB (also known as g-hydroxybutyrate [GHB]) was originally used as an intravenous

anesthetic agent due to its rapid ability to cross the blood-brain barrier to induce a sleep-
like state with cardiovascular stability (Vickers, 1968; Verlinden et al., 2007). It is to be

12



Muralikrishnan et al. Curr. Appl. Sci. Technol. 2025, Vol. 25 (No. 5), e0263545

noted that the Food and Drug Administration (FDA) in the United States approved the use
of 4HB in investigational research, such as narcolepsy trials. Several studies have also
shown that P4HB can reduce energy substrate consumption in both brain and peripheral
tissues, and it has the potential to protect these tissues from the damaging effects of anoxia
or excessive metabolic demand (Volova et al., 2010). The sodium salt of p(4HB) has been
widely used as an anesthetic (Ali et al., 2017), and in investigational research, for oral or
intravenous administration. Although P4HB offers an array of therapeutic benefits, the
compound is prone to degradation, and lipases from different sources are capable of
hydrolyzing P(4HB). According to Doi et al. (1995), the studies show that P(3HB-co-4HB)
implantation causes some sort of degradation in vivo. By controlling the feeding regimen
of carbon sources to the bacteria, PHA copolymers with random distributions of 4HB can
also be produced. As a result, precise control of the release of 4HB in a predetermined
dosage over a short/long period might be possible. However, more clinical research is
necessary before the potential therapeutic value of 4HB-containing PHA can be
recognized.

6. Limitations and Ways to Overcome the Limitations

Polyhydroxyalkanoates (PHAs) are the most used bioplastics and Poly-3-hydroxybutyrate
(PHB) and polyhydroxyvalerate (PHV) are the most important PHAs with considerable
applications in various industries. PHA has promising applications in a variety of industries
and the medical field. Nevertheless, the high cost of PHA production has been a significant
disadvantage. As a result, scientists have made tremendous progress in isolating new
bacterial strains, developing new types of recombinant strains, and curating a new
approach to the production of PHA to reduce production costs. Significant efforts have been
made to reduce production costs by developing efficient bacterial strains, fermentation,
and recovery processes (Lee, 1996; Grothe et al., 1999). PHA is hence expected to be
available for applications in a variety of fields soon because of ongoing commercialization
efforts in many countries. Bioplastics produced aseptically in fermenters are significantly
more expensive than petrochemical-based plastics. The use of low-cost raw materials and
technological innovations to reduce bioplastic production costs remains critical for the
bioplastic industry and applications. However, implementing the following techniques will
help to diminish the cost of bioplastic PHAs: The cost of the substrate is the most expensive
part of the PHA production process (Ward et al., 2005). Thus, selecting an appropriate
carbon substrate is a critical factor in determining the overall performance of bacterial
fermentation as well as the cost of the final product. Hence, the most straightforward
approach is to select renewable, inexpensive, readily available carbon substrates that can
efficiently support microbial growth and PHA production. Agriculture generates 140 billion
metric tons of biomass each year. Therefore, biomass wastes have a high potential as raw
material for large-scale industries and community-level enterprises involved in bioplastic
production (Trivedi et al., 2016). The organic residues of municipal solid wastes, liquid
wastes, food processing wastes, or agricultural wastes are also considered suitable
substrates for production. The organic residues of municipal solid wastes, liquid wastes,
food processing wastes, or agricultural wastes are also considered suitable substrates for
production. According to Serafim et al. (2008), agricultural wastes predominantly include
unbaled straw; coconut fronds, husks, and shells; corn cobs, stalks, corn stover; cotton
(stalks), nutshells; rice hull, husk, straw, and stalks, sugarcane bagasse, silage effluent;
horticulture residues and farmyard manure can be utilized. Using these waste materials as
a carbon source for PHA production not only lowers the substrate cost but also lowers the
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cost of waste disposal (Yamane, 1993; Yang et al., 2007; Wu, 2012; Williams et al., 2013).
Non-aseptic batches or the continuous cultivation of mixed bacterial cultures for bioplastic
biosynthesis can help in diminishing the cost significantly (Lu et al., 2011). The continuous
process has the potential of producing about 1 kg of PHAs/day/m3 of bioreactor while batch
biosynthesis of bioplastic despite being a simple process has low productivity (Rebah et
al., 2009). Semi-continuous cultivation of a mixed culture in one bioreactor utilizes a feast-
famine cycle with a feast phase and a famine phase. This cycling process enhances the
accumulation of PHAs in the biomass, but it also facilitates the selection of PHA-producing
microorganisms (Beun et al., 2002; Van Immerseel et al., 2006). Under non-aseptic
conditions, organic wastes can be converted to organic acids via acidogenic fermentation
of organics, and organic acids can then be converted to PHAs (Yilmaz & Beyatli, 2005;
Yao et al. 2008; You et al., 2011; Zhou et al. 2012; Zeller et al., 2013). Chemical treatment,
filtration, centrifugation, or flotation are some of the cost-effective options for the recovery
of bioplastics. These are some of the major techniques and ways in which the production
cost of bioplastics can be lowered.

7. Conclusions

Microbial bioplastics like PHAs have sparked considerable interest in both academia and
industry. Their structural versatility and properties have been analyzed, and new areas of
application are being identified. The recent advancements in metabolic engineering, aided
by genomics and bioinformatics, have generated a cascade of opportunities for the
introduction of new metabolic pathways and this has led to considerable enhancement in
the synthesis and yields of PHA. PHAs have become indispensable in a broad array of
applications, including agriculture, industry, medicine, and therapy. Currently, numerous
strategies and sources to obtain high concentrations of sustainable PHA are increasing
extensively. The advancements in genetics and metabolic engineering have led to the
identification of a broad range of bioplastics. Using advanced techniques like Crispr-Cas 9
technology, bioplastic production can be elevated. Research in synthetic biology can be
developed to formulate a consortium of microbes that can synergistically produce a higher
yield of bioplastics. Chemical engineers can optimize the physiochemical parameters in
bioreactors for efficient large-scale bioplastic production. The utilization of waste as a raw
material for bioplastic production is an interesting area of research as it can lead to
sustainability. The role of bioplastics in novel therapeutic and clinical applications is to be
further investigated. Hence, it is anticipated that besides polyhydroxyalkanoates, many
more bioplastics with diverse structures, properties, and applications can be obtained if the
appropriate organism are selected and genetically manipulated.
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