

**Research article****Combined Effect of Acid Salts with Clove and Cinnamon Oils on Controlling of Postharvest Decay in Carrot****Suree Nanasombat\* and Saranya Phunpruch***Department of Biology, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand*

Received: 3 June 2024, Revised: 24 October 2024, Accepted: 25 November 2024, Published: 22 April 2025

**Abstract**

Fungal decay in carrots is a serious problem during postharvest storage. The present work aimed to study the antifungal effect of ammonium carbonate (AC) or potassium metabisulfite (PM) in combination with cinnamon or clove oils on delaying carrot decay caused by black rot mold during chill storage. *In vitro* trials were conducted to determine the antifungal activity of those acid salts, essential oils and their combinations against selected fungi isolated from carrots. *Alternaria* sp. C7D7 isolated from carrots was inhibited by AC and PM at 0.5-1.0% w/v minimum inhibitory concentration (MIC), while cinnamon and clove oils possessed strong anti-*Alternaria* effect with 0.025% w/v MIC. The combination of AC or PM at 0.25-0.5% w/v with cinnamon or clove oils at 0.04-0.25% w/v in potato dextrose agar produced a 100% antifungal index. Synergy testing by the checkerboard method showed that the combination of AC and cinnamon oil had partial synergistic effects against the mold. The optimum concentrations of combined AC or PM and cinnamon or clove oil were selected to formulate dipping solutions for carrot treatments. Their effect on controlling black rot decay in carrots during chill storage was investigated. The treatment with the dipping solutions consisting of combined 0.5% AC with 0.25% cinnamon oil or 1% AC alone caused a lower percentage of black rot decay (13.9-19.4% decay) in carrots compared to the others during storage at 5°C for 10 weeks. These findings show the usefulness of cinnamon oil and AC or their combination on delaying black rot decay in carrots.

**Keywords:** *Alternaria*; antifungal effect; antifungal effect; ammonium carbonate; potassium metabisulfite**1. Introduction**

Carrot (*Daucus carota* L.), one of the most commonly consumed root vegetables, belongs to the Apiaceae family, commonly known as the Umbelliferae family. Fresh carrots are sensitive to decay during storage due to fungal growth. This problem can occur throughout storage period resulting in postharvest loss. Carrot decay can be due to the action of soil-borne fungi including *Alternaria* spp. (black rot) and *Botrytis cinerea* (gray mold rot)

---

\*Corresponding author: E-mail: suree.na@kmitl.ac.th

<https://doi.org/10.55003/cast.2025.263583>

Copyright © 2024 by King Mongkut's Institute of Technology Ladkrabang, Thailand. This is an open access article under the CC BY-NC-ND license (<http://creativecommons.org/licenses/by-nc-nd/4.0/>).

(Papoutsis & Edelenbos, 2021). Moreover, some molds including *Alternaria dauci* (*Alternaria* leaf blight), *Aspergillus niger*, *Geotrichum candidum*, *Rhizopus oryzae* and yeasts were reported to cause spoilage of carrots (Akhtari et al., 2016; Perrin et al., 2017; Ahamad et al., 2023). Various chemical fungicides such as strobilurins and chlorothalonil are normally applied to carrots during preharvest and postharvest. These fungicides can control a wide range of diseases. However, the continuous use and improper handling of fungicides can lead to their accumulation in the environment and have a negative impact on biodiversity (Deresa & Diriba, 2023).

To control the postharvest fungal pathogens in carrots, one would prefer non-toxic methods to the environment and human. Thus, alternative techniques have been developed and applied, e.g., GRAS salt treatment (Papoutsis & Edelenbos, 2021), active coating with pectin (Ranjitha et al., 2017), and plant extract and essential oil treatments (Khetabi et al., 2022). Essential oils, which are potential natural products obtained from different spices and herbs, have been reported to possess antifungal properties (Matrose et al., 2021). Cinnamon and clove oils are rich sources of natural compounds. These plant oils have been shown to be the potent oils against several fungi (Hu et al., 2019; Gadhi et al., 2020). Studies have suggested that essential oils are probably not effective enough as a single inhibitor (Jackson-Davis et al., 2023) and should be used in combination with other hurdles for postharvest fungal control. In recent years, synergy testing has been applied to evaluate the antimicrobial interaction for some reasons such as the need to decrease the dosage of inhibitors, the development of microbial resistance, and the need to broaden the spectrum of antimicrobial properties. When two or more control methods are applied together, a good outcome such as synergistic effect can be expected. However, indifferent, additive, or antagonistic effects can also occur (Laishram et al., 2017).

Many organic and inorganic salts are classified as food-grade additives. Some salts such as carbonates, acetates, metabisulfites, sorbates, and others are approved as generally recognized as safe (GRAS) (US FDA, 2024), and have been suggested as alternative substances for controlling fungal pathogens in fresh produce (Palou et al., 2016). The use of salts as fungicides has some advantages including their availability at inexpensive cost, solubility in water, low toxicity to organisms and environment. These allow them to be suitable choices for hurdle technology used in postharvest treatment. Several GRAS salts have been reported to control black rot caused by *Alternaria alternata* in yellow pitahaya (*Selenicereus megalanthus*) (Vilaplana et al., 2018) and sour rot caused by *Geotrichum citri-aurantii* in citrus fruits (Soto-Muñoz et al., 2020). Previous studies reported the synergistic effects of essential oil combination against mold species (Pekmezovic et al., 2015; Ribes et al., 2018; Ji et al., 2019). Thus, one approach is to use a combination of cinnamon or clove oils with these GRAS salts in the formulation of carrot dipping solutions for their synergistic effects against black rot during storage.

To extend the shelf life of carrots, some researchers have relied on physical methods such as modified atmosphere packaging (Larsen & Wold, 2016) and chill storage (Condurso et al., 2020). Fresh carrots are perishable and prone to moisture loss. Chill storage of less than 10°C is essential to delay their quality deterioration. While psychrotrophic microorganisms can still grow under these conditions, their growth rate is significantly slower. Although chill storage alone does not serve as a fungal control treatment, it can alter microbiological changes, helping to prevent moisture loss and allowing plant tissues to maintain resistance against fungal invasion (Usall et al., 2016; Zhang et al., 2019). However, each fungal control treatment has limitations when used alone, and some may induce tissue damage or lead to the accumulation of unwanted chemicals (Romanazzi et al., 2016). Therefore, combining multiple control methods has been suggested to enhance effectiveness. The success of these combined treatments

depends on the compatibility of the selected methods. The aim of this research was to evaluate the antifungal activity of combining cinnamon or clove oils with specific acid salts against fungi isolated from rotting carrots. Additionally, this study assessed the synergistic effects of these combinations against black rot mold and formulated dipping solutions with optimized concentrations of cinnamon and clove oils and acid salts to delay black rot decay in carrots during chill storage.

## 2. Materials and Methods

### 2.1 Plant materials

Dried cinnamon (*Cinnamomum verum*) stem bark and clove (*Syzygium aromaticum*) buds were obtained at the local market in Bangkok, Thailand. Fresh carrots were purchased from the central market in Pathum Thani, Thailand in January 2021.

### 2.2 Extraction of essential oils

Dried cinnamon and cloves were ground and extracted by hydrodistillation process. Then, oil extraction was performed using a Clevenger's apparatus. Briefly, 150 g of each plant powder was placed in the distillation flask. Then, water was added and heated until the amount of oil in the receiver was steady. The distillation process was done for approximately 3 h. To remove the excess water, sodium sulfate anhydrous was added into the oil, stirred and filtered using Whatman no. 1 filter paper (Nanasombat & Wimuttigosol, 2011).

### 2.3 Study of contaminated fungi in carrot

Ten samples of carrot were determined for total yeast and mold count using the methods as described by Tournas et al. (2001). Each different fungal colony was transferred to Czapek yeast extract agar (CYA) and malt extract agar (MEA). After a 7-day incubation at 30°C for molds and 3 days for yeasts, the morphological characteristics of each isolate were observed. They were re-isolated to get pure culture and maintained on potato dextrose agar (PDA) and yeast malt agar (YMA) for the identification process. The mold isolates were identified morphologically using the methods as described by Samson et al. (2004), while yeast isolates were identified using an API 20 C AUX biochemical test kit (bioMérieux, France).

### 2.4 Molecular identification of the fungal isolate

The selected mold isolate was identified by molecular technique. Briefly, DNA was extracted by the FavorPrep™ Fungi/Yeast genomic DNA extraction mini kit (Flavorgen, Taiwan) and subjected to internal transcribed spacer (ITS)-based PCR amplification. PCR was performed using universal primers ITS1 (5'-TCCGTAGGTGAACCTGCGG-3') and ITS4 (5'-TCCTCCGCTTATTGA TATGC-3') (Bellemain et al., 2010). The 50-  $\mu$ L reaction mixture was composed of 1x KAPA *Taq* ready mix (Sigma, USA) containing each 0.25  $\mu$ M primer and 50 ng of genomic DNA. The reaction involved initial denaturation at 95°C for 10 min, followed by 30 cycles in series of denaturation at 95°C for 1 min, annealing at 55°C for 1 min, and extension at 72°C for 90 s, with a final step of one cycle at 72°C for 10 min to final extension. The PCR product was subsequently subjected to sequencing (U2Bio company, Thailand). The nucleotide sequences were compared with other ITS1-ITS4 sequences

deposited in Genbank using the Nucleotide Basic local alignment search tool (BLASTn) program (Altschul et al., 1990). The phylogenetic analysis of ITS1-ITS4 sequences was performed by the maximum likelihood (ML) algorithm using Molecular Evolutionary Genetics Analysis (MEGA11) software with 1,000 bootstraps (Tamura et al., 2021).

## 2.5 Minimum inhibitory concentration (MIC) determination of acids and salts

Firstly, the MIC determination of ascorbic and lactic acids, AC and PM was conducted using the agar dilution technique (Collins et al., 2001) against the selected fungal isolates from rot carrots as well as a reference strain, *A. alternata* TISTR 3282 obtained from Bangkok MIRCEN, the Microbiological Resources Centre for Southeast Asian Region, Thailand. Briefly, stock solution of each tested sample in 10% dimethyl sulfoxide (DMSO) was diluted and mixed with molten PDA for molds and YMA for yeasts to obtain a final concentration in the range of 0.05-8% for ascorbic acid and lactic acid and 0.01-10 % for AC and PM. The spore suspension ( $10^6$  spore/ml, 5  $\mu$ L in 0.1% v/v tween 80) was then inoculated onto the medium surface and incubated at 30°C for 7 days. The presence or absence of fungal growth was examined visually. The lowest concentration inhibiting mold growth was recorded as the MIC value. Chlorothalonil and 10% DMSO were used as a positive control and a negative control, respectively. These tests were conducted in triplicate.

## 2.6 MIC determination of cinnamon and clove oils

The MIC test of cinnamon and clove oils as well as some positive controls (cinnamaldehyde, eugenol and chlorothalonil) against the two mold strains was performed using the same procedure as described above. However, the final concentration of all tested samples after mixing with molten PDA were different, and as follows: 0.006-0.8% of cinnamon and clove oils, 0.008-30.27 mM of cinnamaldehyde, 0.006-24.36 mM of eugenol and 50-5,000 ppm of chlorothalonil.

## 2.7 Synergy assay of combination of acid salt and essential oil

Agar dilution checkerboard procedure was used to conduct synergy testing of combined GRAS salts (AC and PM) with clove or cinnamon oil against the two mold strains using the protocol as described by Rosato et al., 2007. Briefly, each sample of the combination was prepared at 1/2, 1/4, 1/8 and 1/16 of their MIC. Then, each combination of essential oil and acid salt (0.125 mL each, a total of 0.25 mL) and 4.75 mL molten PDA were mixed together and left to solidify. Then,  $10^6$  spore/ml (5  $\mu$ L) were inoculated and incubated at 30°C for 7 days. The fractional inhibitory concentration index (FICI) was calculated and interpreted (Pekmezovic et al., 2015).

## 2.8 Antifungal assay of acid salts in combination with clove or cinnamon oil

The antifungal activity of selected combinations of AC or PM and clove or cinnamon oil on growth of the two mold strains was tested according to Xie et al. (2017). The PDA medium was incorporated with AC or PM at 0.25-0.5% w/v and cinnamon or clove oil at 0.04-0.25% w/v. These PDA plates were inoculated with each tested mold at the center of the plate. After 7-day incubation at 30°C, mycelial growth was observed, and the diameter of radial growth was measured. The antifungal index (AI) was calculated as follows: AI (%) = (1-

$D_e/D_n \times 100$ , where  $D_e$  and  $D_n$  are the diameter of the mycelial growth on the surface of the experimental plate and the negative control plate, respectively.

### **2.9 *In vivo* antifungal activity of clove or cinnamon oil in combination with acid salts against *Alternaria* in carrots stored at abusive temperature**

Fresh mature carrots were washed and sanitized by soaking in 0.5% v/v sodium hypochlorite and rinsing with sterile water. After surface drying, a sterile 4-mm diameter corkborer was used to puncture into the surface of each carrot to make three wounds (3 mm deep each) according to Kolaei et al. (2012) with slightly modification. All punctured carrots were divided into six groups (9 carrots each) for dipping treatments in solutions: T1, control (sterile water); T2, 7,500 ppm chlorothalonil; T3, 0.25% AC mixed with 0.125% cinnamon oil; T4, 0.5% AC mixed with 0.25% cinnamon oil; T5, 0.25% PM mixed with 0.04% clove oil; and T6, 1% AC. The T3-T6 dipping solutions were incorporated with tween 80 (0.2% v/v) and glycerol (2.5% v/v) before stirring vigorously for 1 min using hand mixer (Sokany 800W, China). Then, all carrots were left to dry, and  $10^6$ /mL spore suspension (50  $\mu$ L) of each tested mold was inoculated into each wound. Each inoculated carrot was placed on a sterile moistened container, and stored at 30°C in 95% relative humidity condition for 10 days. All carrots were examined at day 0, 6 and 10 of storage for determination of black rot control efficiency (BRCE), weight loss and pH value using Testo 207 pH meter, Testo AG, Germany. Each carrot showing visible black rot decay was sorted and measured for lesion sizes. Then, the diameter and number of lesions were assessed. The BRCE was calculated as follows: BRCE (%) =  $[(N-T) \times 100]/N$ , where N is lesion diameter in a negative control sample and T is lesion diameter in a treated sample.

### **2.10 Application of dipping solutions in non-inoculated carrots**

All mature carrots were tested using a procedure similar to that described above, but no inoculation process was performed. After surface-sterilization, carrots were treated with each dipping solution. Then, they were left to dry and stored at 5°C for 10 weeks. Black rot decay was assessed visually every 2-week time interval. Then, the percentage of black rot decay was calculated (Eshel et al., 2009).

### **2.11 Effect of dipping solution on membrane integrity**

The mycelia of the studied mold treated with the selected potential dipping solutions were evaluated for membrane integrity using Evans blue staining technique as described by Peralta-Ruiz et al. (2020) with slightly modification. To prepare the slide culture, 30  $\mu$ L spore suspension was inoculated into 100  $\mu$ L potato dextrose broth (PDB) previously added on a sterile coverslip. After 7-day incubation at 30°C, the hyphae attached on the coverslip were soaked with each dipping solution (500  $\mu$ L) for 6 h before rinsing with phosphate buffer saline (PBS). Then, Evans blue (1% (w/v), ACROS ORGANICS, USA) in PBS was used to stain the hyphae for 5 min before washing with PBS. The hyphae were then examined under a bright-field microscope.

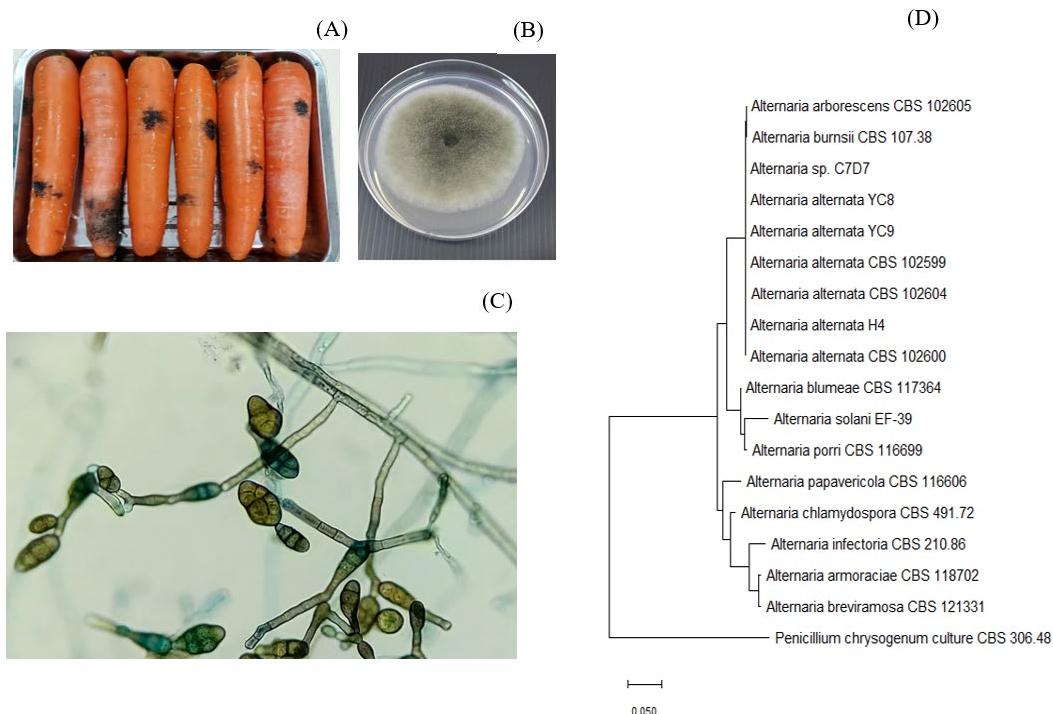
### **2.12 Statistical analysis**

Data obtained from the testing of combined acid salt and essential oil were subjected to analysis of variance (ANOVA) and Duncan's multiple range test using version 26.0 SPSS

statistical package (MBI, USA) to determine if significant difference existed between each treatment mean ( $P \leq 0.05$ ).

### 3. Results and Discussion

#### 3.1 Fungal contamination in fresh carrots


Fresh carrots were highly contaminated with fungi in the range of  $1.2 \times 10^6$  -  $3.1 \times 10^7$  and  $2.6 \times 10^5$  -  $3.2 \times 10^7$  CFU/g on DRBC and acidified PDA, respectively. The main mold isolates were *Geotrichum* spp. (26.7%) and *Absidia* spp. (20%). Other molds and yeasts found with 6.7% each were *Aspergillus* spp., *Penicillium* spp., *Geotrichum* spp., *Candida famata*, *Candida lusitaniae*, *Trichosporon asahii*, *Rhodotula minuta* and *Trichosporon asahii*. The morphological characteristics of the selected mold isolate C7D7 were similar to those of *Alternaria*, which is a common mold isolated from rot carrots (Samson et al., 2004; Ahamad et al., 2023). It was selected for molecular identification and further study.

#### 3.2 Morphological and molecular identification

The results of morphological and molecular identification of the mold isolate C7D7 from rot carrots (Figure 1A) are illustrated. This mold colony appeared pale brown in color with the diameter of 7.4 cm on PDA after 7-day incubation at 25°C (Figure 1B). Its conidiophore was also pale brown with smooth wall. The conidia were ellipsoidal in shape, with transverse and longitudinal septa (Figure 1C). They occurred in chains with up to 8 conidia consecutively. Each conidial chain arose from a short conidiophore. Secondary branch chains occasionally occurred.

By molecular identification of the selected fungal isolate C7D7, the PCR product of the ITS1-ITS4 fragment with an approximate size of 500 bp was amplified and sequenced. The obtained ITS1-ITS4 sequence of isolate C7D7 was deposited in GenBank with the accession number PP455647. The result of BLAST sequence analysis showed that the ITS1-ITS4 of the isolate C7D7 was highly homologous (99.81-100 %) with those of many *Alternaria* strains. Thus, the fungal isolate C7D7 was classified by molecular analysis in the genus *Alternaria* and named as *Alternaria* sp. C7D7. By phylogenetic tree analysis based on ITS1-ITS4 sequences using the maximum likelihood (ML) method, *Alternaria* could be divided into two clades (Figure 1D). Clade I was divided into 2 subgroups, IA and IB. *Alternaria* sp. C7D7 was clustered in the clade IA which included many strains such as *Alternaria alternata*, *A. arborescens*, and *A. burnsii*, whereas Clade IB contained *A. blumeae*, *A. solani* and *A. porri* (Figure 1D). The second clade was composed of *A. papavericola*, *A. chlamydospore*, *A. infectoria*, *A. armoraciae*, and *A. breviramosa* (Figure 1D).

In the current study, the mold grew very well on DRBC agar medium. This medium was highly recommended by Pitt & Hocking (1985), who noted that rose Bengal and dichloran (2, 6-dichloro-4-nitroaniline) had been added to the medium to decrease the spreading growth of mold colonies, enabling the accurate counting of the mold colonies. *Geotrichum* spp. was the most common mold isolated from rotted carrots. Akhtari et al. (2016) reported similar results. They found many strains of fungi contaminating carrots cultivated in the State of Odisha, India. *Geotrichum candidum* was found the most (49.1%). *Candida* spp. was also the most common yeast in carrots. Similarly, Horita & Hatta (2016) isolated molds from rotted carrots in Hokkaido, Japan. They found *G. candidum* at up to 83%.



**Figure 1.** Morphological and molecular identification of the mold isolate C7D7 isolated from rotted carrots: (A) black rot in carrots; (B) colony morphology on PDA plate at 25°C for 7 days; (C) microscopic observation (400X); (D) phylogenetic tree analysis of ITS1-ITS4 using maximum likelihood method with 1,000 bootstraps

As previously known, the analysis of conserved ITS sequences was widely used for molecular identification of several fungi. In this study, the mold isolate C7D7 was identified as *Alternaria* by both molecular and morphological results. Interestingly, *Alternaria* sp. C7D7 was in the same cluster and showed very high similarity to many strains of *Alternaria alternata* (Figure 1D). Previous study showed that by phylogenetic tree analysis based on the ITS region, the small-spored *Alternaria* was distinct with the large-spored *Alternaria* (Landschoot et al., 2017). *Alternaria* sp. C7D7 contained spores of small size as same as *A. alternata*. Among the small-spored *Alternaria*, *A. alternata* is the most widespread strain in this group. Therefore, *Alternaria* sp. C7D7 formed a monophyletic group together with *A. alternata* species. Since there are many species classified in genus *Alternaria*, phylogenetic analysis of multilocus genes can help to distinguish among *Alternaria* species. Besides the ITS region, phylogenetic tree analyses of other genes including glyceraldehyde-3-phosphate dehydrogenase (*gpd*), endopolygalacturonase (*endoPG*), *Alternaria* major allergen (*Alt a1*), RNA polymerase II (RPB2), plasma membrane ATPase (ATPase), Calmodulin, translation elongation factor 1-alpha (TEF 1- $\alpha$ ) have been reported in the study of the genetic diversity of *Alternaria* species (Andrew et al., 2009; Deng et al., 2013; Lawrence et al., 2016; Wang et al., 2021; Woudenberg et al., 2013; Zhu & Xiao, 2015).

### 3.3 Antifungal activity of acids and salts

The MIC values implied that AC and PM could inhibit the growth of all fungal strains more than lactic and tartaric acids. Mostly, AC possessed more potent antifungal activity compared to PM. The growth of two *Alternaria* strains was restricted by AC and PM at 0.5% and 1%, respectively. However, the yeast isolate, *Candida famata* C1A3 was more sensitive to AC with the MIC of 0.25% compared to other yeast strains (Table 1).

**Table 1.** Antifungal activity of acids and salts

| Fungal strains                         | Minimum Inhibitory Concentration (% w/v) |                         |               |             |
|----------------------------------------|------------------------------------------|-------------------------|---------------|-------------|
|                                        | Salts                                    |                         | Acids         |             |
|                                        | Ammonium Carbonate                       | Potassium Metabisulfite | Ascorbic Acid | Lactic Acid |
| Molds                                  |                                          |                         |               |             |
| <i>Alternaria</i> sp. C7D7             | 0.5                                      | 1.0                     | 8.0           | 2.0         |
| <i>Alternaria alternata</i> TISTR 3282 | 0.5                                      | 1.0                     | 8.0           | 1.0         |
| Yeasts                                 |                                          |                         |               |             |
| <i>Candida lusitaniae</i> C1D3         | 0.5                                      | 0.5                     | >8.0          | 4.0         |
| <i>Candida famata</i> C1A3             | 0.25                                     | 0.5                     | >8.0          | 4.0         |
| <i>Rhodotorula minuta</i> C1A4         | 0.5                                      | 1.0                     | >8.0          | >8.0        |
| <i>Trichosporon asahii</i> C9D7        | 0.1                                      | 1.0                     | >8.0          | >8.0        |

The current study revealed that AC effectively inhibited mold growth. This was in agreement with those reported by Türkkan (2013). Similarly, some researchers previously confirmed the strong inhibitory effect of carbonates and succeeded in using these salts to control the growth of *Monilinia fructicola* on plums (Karaca et al., 2014). Carbonate anions are responsible for the growth inhibition of fungal pathogens. Their effect on suppression of mold growth was likely related to their alkaline pH value, which was found to be 8.00-8.39 for 0.25-1.0% AC solution used in the current study. Most microorganisms are vulnerable to this pH range. A number of researchers previously confirmed the strong inhibitory effect of chemical sanitizers such as organic acids and their salts. In case of PM, which is a sulfur-containing salt, was quite effective at 0.5-1%. Its efficacy was revealed as an effective fungicide to control the growth of pathogenic fungi (Arslan, 2015). Metabisulfites at 10-100 mM in PDA were reported to completely inhibit mycelial growth of citrus blue mold, green mold and sour rot mold (Martínez-Blay et al., 2020). PM is a sulfur dioxide salt approved for use in food, especially in fruit and vegetable products for controlling spoilage and fermentative fungi. It has been suggested that metabisulfites act through sulfur dioxide liberation. The interaction of liberated sulfur dioxide with cellular components produces antifungal activity (Papoutsis & Edelenbos, 2021).

### 3.4 Antifungal activity of essential oils

Cinnamon oil displayed stronger antifungal activity against *Alternaria* sp. C7D7 and *A. alternata* TISTR 3282 (0.0125-0.025% MIC) than clove oil. *Alternaria alternata* TISTR 3282 was more susceptible to cinnamon oil compared to the other strains. The positive controls, cinnamaldehyde and eugenol had antifungal activity against these two *Alternaria* strains. *Alternaria* sp. C7D7 was more resistant to eugenol than *A. alternata* TISTR 3282 (Table 2).

**Table 2.** Antifungal activity of essential oils and active compounds against *Alternaria*

| Essential Oils and Compounds | Minimum Inhibititory Concentration |                                        |
|------------------------------|------------------------------------|----------------------------------------|
|                              | <i>Alternaria</i> sp. C7D7         | <i>Alternaria alternata</i> TISTR 3282 |
| Cinnamon oil (%w/v)          | 0.025                              | 0.0125                                 |
| Clove oil (%w/v)             | 0.025                              | 0.05                                   |
| Cinnamaldehyde (mM)          | 7.60                               | 0.05                                   |
| Eugenol (mM)                 | >24.40                             | 6.10                                   |
| Chlorothalonil (ppm)         | 2,000                              | 2,000                                  |

The MIC test of the cinnamon and clove oils revealed the strong antifungal effect of these essential oils against all tested fungi. Cinnamon oil possessed stronger antifungal activity than clove oil. These results were in agreement with those reported by Yooussef et al. (2016). They reported that cinnamon oil at  $\geq 1,000$  ppm completely inhibited the mycelial growth of the tested fungi, while clove oil needed higher concentrations ( $\geq 1,500$  ppm). This was probably due to the action of their active components. Cinnamaldehyde and eugenol are the two main antifungal compounds in these two oils (Xie et al. 2015; Ribeiro-Santos et al., 2017). Cinnamon oil from cinnamon stem bark was reported to contain 60.58 g cinnamaldehyde/100 g oil (Bakr et al., 2024), while clove oil was found to contain eugenol (80.15%) as the main constituent (Sethunga et al., 2023). Thus, it can be assumed that the activity of these two oils was due to the presence of cinnamaldehyde and eugenol.

### 3.5 Synergy characteristic of combined acid salt and essential oil

Combined ammonium carbonate and cinnamon oil could inhibit the growth of *Alternaria* sp. C7D7 with partial synergistic effect as the FIC index was between 0.5 and 0.75. However, the combination of potassium metabisulfite and clove oil showed synergistic effect against *A. alternata* TISTR 3282 with the FIC index of less than 0.5 (Table 3).

**Table 3.** Synergy effect of combined acid salt and essential oil against *Alternaria*

| Combinations                                                | MIC              |                  | MIC <sub>c</sub>  |                   | FIC              |                  | FICI | Interpretation of FICI |  |  |
|-------------------------------------------------------------|------------------|------------------|-------------------|-------------------|------------------|------------------|------|------------------------|--|--|
|                                                             | MIC <sub>1</sub> | MIC <sub>2</sub> | MIC <sub>c1</sub> | MIC <sub>c2</sub> | FIC <sub>1</sub> | FIC <sub>2</sub> |      |                        |  |  |
| <i>Alternaria</i> sp. C7D7                                  |                  |                  |                   |                   |                  |                  |      |                        |  |  |
| Combination of ammonium carbonate (1) and cinnamon oil (2)  |                  |                  |                   |                   |                  |                  |      |                        |  |  |
| 0.5                                                         | 0.025            | 0.03125          | 0.0125            | 0.0625            | 0.5              | 0.5625           |      | Partial synergism      |  |  |
| Combination of potassium metabisulfite (1) and clove oil(2) |                  |                  |                   |                   |                  |                  |      |                        |  |  |
| 1.0                                                         | 0.025            | 0.5              | 0.0125            | 0.5               | 0.5              | 0.5              | 1.0  | Indifference           |  |  |
| <i>Alternaria alternata</i> TISTR 3282                      |                  |                  |                   |                   |                  |                  |      |                        |  |  |
| Combination of ammonium carbonate (1) and cinnamon oil (2)  |                  |                  |                   |                   |                  |                  |      |                        |  |  |
| 0.5                                                         | 0.0125           | 0.25             | 0.00625           | 0.5               | 0.5              | 0.5              | 1.0  | Indifference           |  |  |
| Combination of potassium metabisulfite (1) and clove oil(2) |                  |                  |                   |                   |                  |                  |      |                        |  |  |
| 1.0                                                         | 0.05             | 0.125            | 0.00625           | 0.125             | 0.125            | 0.125            | 0.25 | Synergism              |  |  |

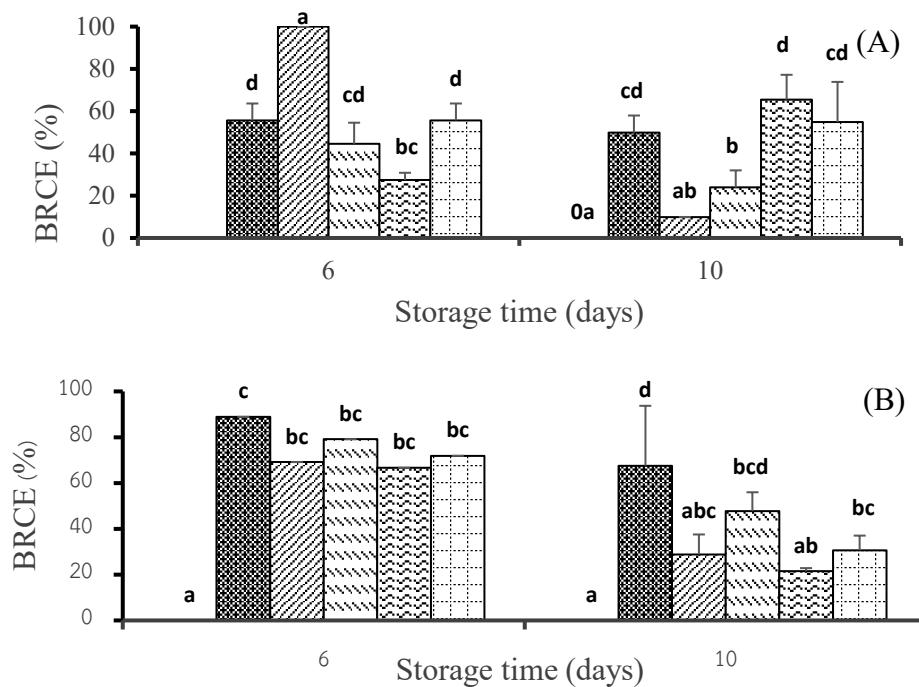
MIC<sub>1</sub> is MIC of salt (1) alone, and MIC<sub>2</sub> is MIC of oil (2) alone. MIC<sub>c1</sub> is MIC of salt (1) combined with oil (2), and MIC<sub>c2</sub> is MIC of oil (2) combined with salt (1). FIC<sub>1</sub> was calculated using MIC<sub>c1</sub> divided by MIC<sub>1</sub>, and FIC<sub>2</sub> was calculated using MIC<sub>c2</sub> divided by MIC<sub>2</sub>. The sum of FIC<sub>1</sub> and FIC<sub>2</sub> is FIC index (FICI); FICI  $\leq 0.5$  indicates synergistic effect;  $0.5 < FICI \leq 0.75$  indicates partial synergistic effect;  $0.75 < FICI \leq 2$  indicates indifference; FICI  $> 2$  indicates antagonistic effect.

### 3.6 Combined effect of acid salts and cinnamon or clove oils on growth inhibition of *Alternaria*

Our preliminary study revealed the effect of single acid salt (AC and PM) and essential oil (cinnamon and clove oils) on mycelial growth inhibition of *Alternaria* sp. C7D7 and *A. alternata* TISTR 3282 on PDA. AC at 0.25-1% could inhibit the growth of *Alternaria* sp. C7D7 and *A. alternata* TISTR 3282 with 21.9-95.3% and 27.9-100% AI, while PM at 0.25-1% showed 67.2-100% and 56.4-100% AI, respectively. For the inhibitory effect of single essential oils, almost all concentrations of cinnamon and clove oils at 0.04-0.25% on PDA could completely inhibit the mycelial growth of the two *Alternaria* strains with 100% AI. However, cinnamon oil at 0.04% was found to inhibit *Alternaria* sp. C7D7 and *A. alternata* TISTR 3282 with only 72.5% and 52.7 AI, respectively. Similarly, the combinations of PM (0.25-0.5%) and clove oil (0.04-0.06%) were also strong with 100% AI against these two mold strains (Table 4). However, 64.29-68.93% AI of *Alternaria* sp. C7D7 was found when this mold strain was grown on PDA added with combined 0.04-0.06% cinnamon oil and 0.25-0.5% AC, but 100% AI was observed at higher concentrations. Similarly, all combined cinnamon oil (0.04-0.25%) and ammonium carbonate (0.25-0.5%) in PDA completely inhibited the growth of *A. alternata* TISTR 3282. Based on the synergistic interaction, some of these combinations were selected for use in the dip treatment of carrots.

**Table 4.** Antifungal activity of combined acid salt with essential oil on potato dextrose agar against *Alternaria*

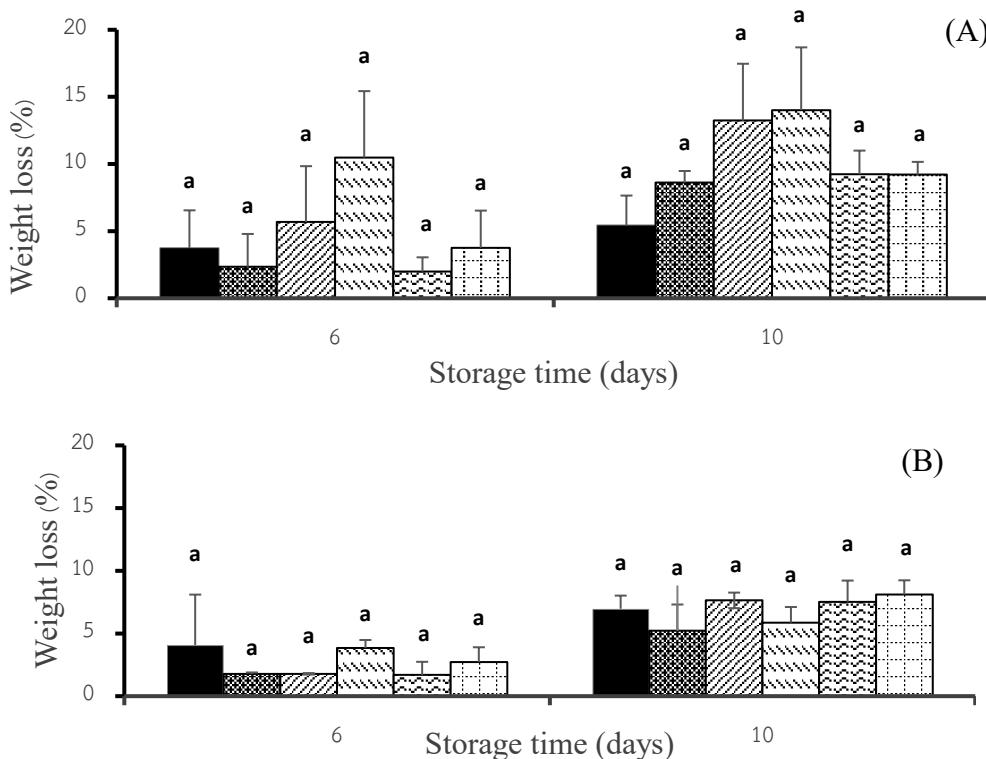
| Treatments                        | Antifungal index <sup>x</sup> (%) ± SD <sup>y</sup> |                                        |
|-----------------------------------|-----------------------------------------------------|----------------------------------------|
|                                   | <i>Alternaria</i> sp. C7D7                          | <i>Alternaria</i> alternata TISTR 3282 |
| AC (0.25%) + Cinnamon oil (0.04%) | 64.29±5.05 <sup>a</sup>                             | 100±0 <sup>a</sup>                     |
| AC (0.5%) + Cinnamon oil (0.06%)  | 68.93±4.39 <sup>a</sup>                             | 100±0 <sup>a</sup>                     |
| AC (0.25%) + Cinnamon oil (0.12%) | 100±0 <sup>a</sup>                                  | 100±0 <sup>a</sup>                     |
| AC (0.5%) + Cinnamon oil (0.25%)  | 100±0 <sup>a</sup>                                  | 100±0 <sup>a</sup>                     |
| PM (0.25%) + Clove oil (0.04%)    | 100±0 <sup>a</sup>                                  | 100±0 <sup>a</sup>                     |
| PM (0.5%) + Clove oil (0.06%)     | 100±0 <sup>a</sup>                                  | 100±0 <sup>a</sup>                     |


<sup>x</sup>Data are means of two replications. <sup>y</sup>Different letters in different rows of the same column indicate significant difference (P<0.05).

Increased concentrations of AC in combination with cinnamon oil produced an increase antifungal potential. Although the synergistic inhibitory effect of combined acid salt and essential oil against fungi has rarely been reported, only the synergistic effects of cinnamon oil and other food ingredients against foodborne mold were studied (Clemente et al., 2019). The advantage of using the oil and salt in combination as different hurdles is to lower treatment intensities. These can minimize the sensory adverse effect of the essential oil in food. Moreover, the potency of different functional groups in the essential oils with different biochemical properties may enhance their antifungal potential (Khan et al., 2017; Gurtler & Garner, 2022).

### 3.7 *In vivo* antifungal effect of combined acid salt and essential oil

#### 3.7.1 Black rot control efficiency


Inoculated carrots treated with each dipping solution were stored at 30°C for rapid observation of decay patterns to delay carrot decay. The results showed that carrots treated with T2-T6 dipping solutions and inoculated with *Alternaria* sp. C7D7 or *A. alternata* TISTR 3282 had significantly higher BRCE after 6-day storage as compared to the negative control ( $P<0.05$ , Figure 2). After 6-day storage, the T2, T4 and T6-dipped carrots with inoculation of *A. alternata* TISTR 3282 showed higher %BRCE of 88.89, 79.17 and 71.88, respectively, compared to the others (Figure 2B). Interestingly, the T3 dipping solutions gave the best protection with 100% BRCE in carrots after 6-day storage. However, higher %BRCE were observed in T5 and T6 carrots inoculated with *Alternaria* sp. C7D7 after 10-day storage (Figure 2A).



**Figure 2.** Effect of combined acid salt and essential oil on black rot control efficiency (BRCE) in carrots inoculated with *Alternaria* sp. C7D7 (A) and *Alternaria alternata* TISTR 3282 (B) during storage at 30°C for 10 days: T1, ■ Control (Sterile water); T2, ■■ 7,500 ppm Chlorothalonil; T3, ■■■ 0.25% ammonium carbonate + 0.125% cinnamon oil; T4, ■■■■ 0.5% ammonium carbonate + 0.25% cinnamon oil; T5, ■■■■■ 0.25% potassium metabisulfite + 0.04% clove oil; T6, ■■■■■■ 1% ammonium carbonate. Different letters in different bar chart indicate significant different ( $P<0.05$ ).

### 3.7.2 Weight loss

After 6-day storage, carrots inoculated with *Alternaria* sp. C7D7 and *A. alternata* TISTR 3282 had 1.99-10.49% and 1.69-4.18% weight loss, respectively (Figure 3). After 10-day storage, weight loss increased to 5.22-8.39% and 5.42-14.02%, respectively. However, most of carrots treated with the dipping solutions had less weight loss after 6-day storage compared to the negative control samples.



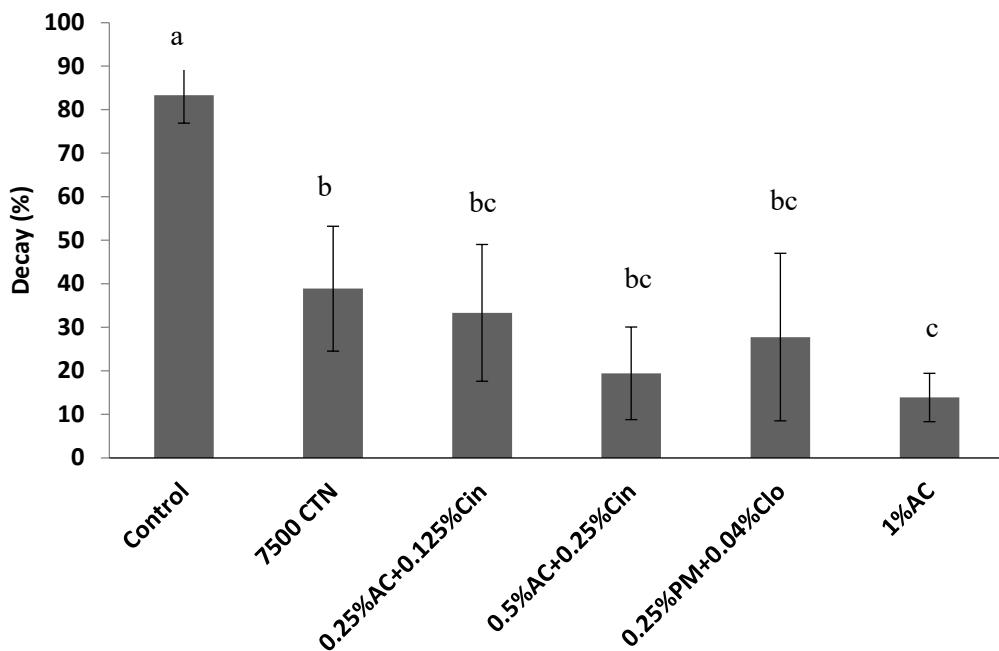
**Figure 3.** Effect of combined acid salt and essential oil on weight loss in carrots inoculated with *Alternaria* sp. C7D7 (A) and *Alternaria alternata* TISTR 3282 (B) during storage at 30°C for 10 days: T1, ■ Control (sterile water); T2, ▨ 7,500 ppm Chlorothalonil ;T3, ▨ 0.25% ammonium carbonate + 0.125% cinnamon oil; T4, ▨ 0.5% ammonium carbonate + 0.25% cinnamon oil; T5, ▨ 0.25% potassium metabisulfite + 0.04% clove oil ; T6, ▨ 1% ammonium carbonate: Different letters in different bar chart indicate significant difference ( $P<0.05$ ).

### 3.7.3 Change of pH value

The initial pH value of carrots inoculated with *Alternaria* sp. C7D7 and those with *A. alternata* TISTR 3282 was 6.09-6.35 and 6.00-6.62, respectively. Carrot pH value decreased as storage time increased. After 10-day storage, the pH value dropped to 5.61-6.04 and 4.99-5.97, respectively (Table 5). These storage temperatures at 30°C accelerated growth and fermentation of microorganisms in carrots.

**Table 5.** Effect of combined acid salt and essential oil on pH value of inoculated carrots

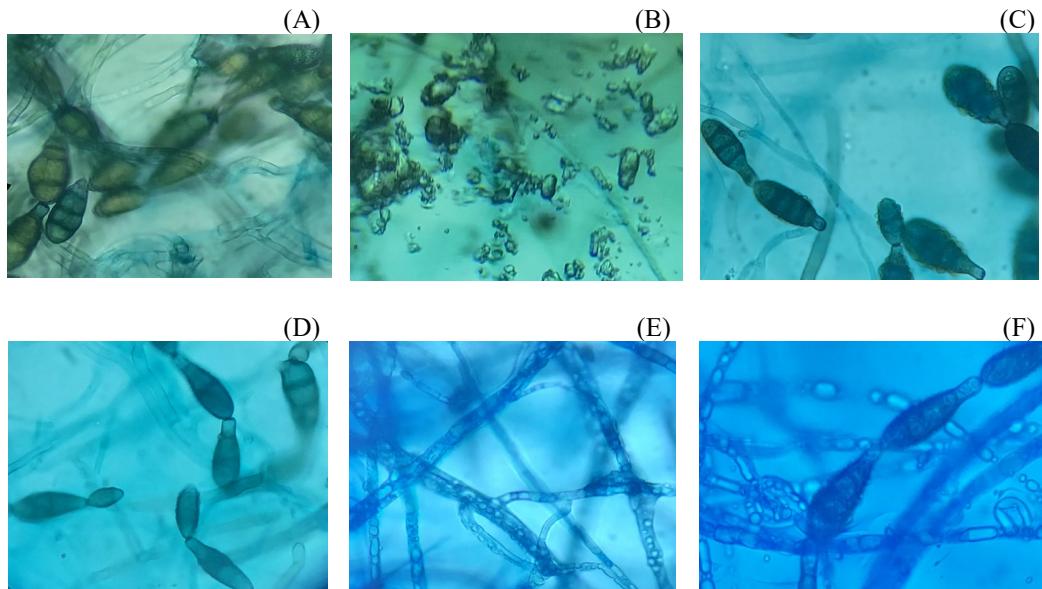
| Storage Time (Days) | Treatments                 | pH <sup>x</sup> ± SD <sup>y</sup> |                                        |  |
|---------------------|----------------------------|-----------------------------------|----------------------------------------|--|
|                     |                            | <i>Alternaria</i> sp. C7D7        | <i>Alternaria alternata</i> TISTR 3282 |  |
| 0                   | T1: Control: sterile water | 6.26±0.03 <sup>ab</sup>           | 6.34±0.09 <sup>ab</sup>                |  |
|                     | T2: 7500 ppm CTN           | 6.35±0.12 <sup>b</sup>            | 6.62±0.04 <sup>b</sup>                 |  |
|                     | T3: 0.25% AC + 0.125% Cin  | 6.22±0.00 <sup>ab</sup>           | 6.23±0.04 <sup>a</sup>                 |  |
|                     | T4: 0.5% AC + 0.25% Cin    | 6.19±0.08 <sup>ab</sup>           | 6.34±0.25 <sup>ab</sup>                |  |
|                     | T5: 0.25% PM + 0.04% Clo   | 6.20±0.00 <sup>ab</sup>           | 6.13±0.08 <sup>a</sup>                 |  |
|                     | T6: 1% AC                  | 6.09±0.11 <sup>a</sup>            | 6.00±0.02 <sup>a</sup>                 |  |
| 6                   | T1: Control: sterile water | 5.88±0.023 <sup>a</sup>           | 6.15±0.05 <sup>a</sup>                 |  |
|                     | T2: 7500 ppm CTN           | 5.86±0.11 <sup>a</sup>            | 5.16±1.12 <sup>a</sup>                 |  |
|                     | T3: 0.25% AC + 0.125% Cin  | 5.97±0.01 <sup>a</sup>            | 5.57±0.22 <sup>a</sup>                 |  |
|                     | T4: 0.5% AC + 0.25% Cin    | 5.92±0.11 <sup>a</sup>            | 5.93±0.14 <sup>a</sup>                 |  |
|                     | T5: 0.25% PM + 0.04% Clo   | 5.76±0.04 <sup>a</sup>            | 4.86±0.95 <sup>a</sup>                 |  |
|                     | T6: 1% AC                  | 5.97±0.18 <sup>a</sup>            | 5.74±0.57 <sup>a</sup>                 |  |
| 10                  | T1: Control: sterile water | 5.63±0.26 <sup>a</sup>            | 4.99±0.89 <sup>a</sup>                 |  |
|                     | T2: 7500 ppm CTN           | 5.71±0.19 <sup>a</sup>            | 5.86±0.51 <sup>ab</sup>                |  |
|                     | T3: 0.25% AC + 0.125% Cin  | 5.76±0.09 <sup>a</sup>            | 5.68±0.02 <sup>ab</sup>                |  |
|                     | T4: 0.5% AC + 0.25% Cin    | 5.61±0.55 <sup>a</sup>            | 5.97±0.15 <sup>ab</sup>                |  |
|                     | T5: 0.25% PM + 0.04% Clo   | 5.91±0.13 <sup>a</sup>            | 5.47±0.36 <sup>ab</sup>                |  |
|                     | T6: 1% AC                  | 6.04±0.04 <sup>a</sup>            | 5.74±0.33 <sup>ab</sup>                |  |


<sup>x</sup>Data are mean of two replications. <sup>y</sup>Different letters in different row of the same column indicate significant difference (P<0.05).

CTN, chlorothalonil; Cin, cinnamon oil; Clo, clove oil; AC, ammonium carbonate; PM, potassium metabisulfite

### 3.8 Effect of dip treatments in combination with chill storage on controlling of carrot decay

After 10-week storage at 5°C, control carrot samples had the highest percentage of decay (83.3%), followed by the carrot samples dipped with T2, T3 and T5 solutions (38.9%, 33.3 and 27.8% decay, respectively). Interestingly, combined chilling storage condition and dip treatments of 0.5% AC mixed with 0.25% cinnamon oil (T4), and the treatment with 1%AC alone (T6) affected lower black rot decay in carrots (13.9-19.4% decay) as compared to other treatments (Figure 4).


In the current study, the combination of AC or PM with cinnamon or clove oils affected the postharvest quality of carrots. Carrots treated with AC in combination with cinnamon oil showed delayed black rot decay during chill storage. This was probably due to the action of the active compounds combined with chilling condition. Larsen & Wold (2016) studied the effects of different storage conditions on the quality of carrots. They revealed that after 15-day storage, the percentage of rotted carrots stored at chilling conditions was lower compared to those stored at retail conditions. Regarding the weight loss of carrots, Vilaplana et al. (2018) reported that non-treated fruits had higher weight loss compared to the fruits treated with chemicals or fungicidal substances. This may be due to their thin peel which was prone to water loss. Thus, carrots should be stored at chilling temperature with high relative humidity conditions of more than 95% (Seljåsen et al., 2013).



**Figure 4.** Effect of combined dip treatment and cold storage on controlling of black rot decay in non-inoculated carrot during storage at 5°C for 10 weeks: T1, Control (sterile water); T2, 7,500 ppm chlorothalonil (CTN); T3, 0.25% ammonium carbonate (AC) + 0.125% cinnamon oil (Cin); T4, 0.5% AC + 0.25% Cin; T5, 0.25% potassium metabisulfite (PM) + 0.04% clove oil (Clo) ; T6, 1% AC  
Different letters in different bar charts indicate significant difference (P<0.05).

### 3.9 Response of dipping solution on membrane integrity

Microscopic observation of *Alternaria* sp. C7D7 mycelia treated with dipping solutions revealed some morphological alteration (Figure 5B-5F). The T4 (0.5% ammonium carbonate plus 0.25% cinnamon oil) and T6 (1% ammonium carbonate) dipping solutions, which produced a lower percentage of carrot decay, were selected for this test. Chlorothalonil (T2) solution clearly produced deformations of fungal morphology with lots of debris of conidium and mycelium fragments (Figure 5B). When the fungal hyphae were soaked with these dipping solutions, they were stained in blue which indicated dead cells. Previous researchers reported the change of cytoplasmic membrane integrity in fungal cells after treatment with chlorothalonil (2,4,5,6-tetrachloro-1,3-benzene-benzenedicarbonitrile), a broad-spectrum fungicide. The number of damage cells depended upon the fungicide concentration (Scariot et al., 2022). Moreover, morphological changes were more pronounced in hyphae treated with cinnamon oil and cinnamaldehyde which definitely implied severe damage of fungal cytoplasmic membrane and cell death (Figures 5E and 5F).



**Figure 5.** Microscopic observation (1000  $\times$  total magnification) of *Alternaria* sp. C7D7 after treatment with dipping solutions: (A) the negative control, sterile water (T1); (B) 7,500 ppm chlorothalonil (T2); (C) 0.5% ammonium carbonate + 0.25% cinnamon oil (T4); (D) 1% ammonium carbonate (T6); (E) the positive control, cinnamon oil; (F) the positive control, cinnamaldehyde

The antifungal activity of cinnamaldehyde and its mode of action against *A. alternata* were previously reported (Xu et al., 2018). Their study described morphological alterations in *A. alternata* hyphae and the destruction of its cytoplasmic membrane after treatment with cinnamaldehyde. As shown in the current study, Evans blue dye was used to treat the mycelia of *Alternaria* sp. C7D7 that had been previously soaked with cinnamon oil or cinnamaldehyde. Evans blue ( $C_{34}H_{24}N_6Na_4O_{14}S_4$ ) is synthetic dye commonly used for staining to characterize cell death. Additionally, it exhibits toxicity that can inhibit the activity of various microorganisms (Kameche et al., 2022). After treatment with cinnamon oil and cinnamaldehyde, *Alternaria* sp. C7D7 appeared blue upon staining, indicating fungal cell death (Figures 5E and 5F). This suggests that the tested compounds penetrate the fungal cells, leading to their destruction. These findings support the potential use of cinnamon oil as an effective treatment for eradicating fungal infections in carrots.

#### 4. Conclusions

This research confirmed that *Alternaria* sp. C7D7, isolated from carrots, was effectively inhibited by AC and PM. The synergistic effect was observed when these acid salts were used in combination with cinnamon and clove oils. Notably, the synergism between AC and cinnamon oil was more pronounced when used together. The application of a dipping treatment with either 0.5% AC and 0.25% cinnamon oil in combination or 1% AC alone effectively delayed black rot decay in carrots during chill storage. Therefore, this combination of acid salts and essential oils could be a valuable approach for carrot dip

treatments, helping to extend the shelf life of fresh-cut carrots during long-term chill storage.

## 5. Acknowledgements

The authors would like to thank King Mongkut's Institute of Technology Ladkrabang for research grant of this project (Research Grant No. 2564-02-05-014).

## 6. Conflicts of Interest

There are no conflicts of interest of this research project.

### ORCID

Suree Nanasombat  <https://orcid.org/0000-0002-7497-6503>  
Saranya Phunpruch  <https://orcid.org/0000-0003-0755-0833>

## References

Ahamad, L., Khan, A. A., Khan, M., Farid, O., & Alam, M. (2023). Exploring the nano-fungicidal efficacy of green synthesized magnesium oxide nanoparticles (MgO NPs) on the development, physiology, and infection of carrot (*Daucus carota* L.) with *Alternaria* leaf blight (ALB): Molecular docking. *Journal of Integrative Agriculture*, 22, 3069-3080. <https://doi.org/10.1016/j.jia.2023.02.034>

Akhtari, K., Ashirbad, M., & Bihari, S. K. (2016). Studies on fungi associated with storage rot of carrot (*Daucus carota* L.) and radish (*Raphanus sativus* L.) in Odisha, India. *Scholars Academic Journal of Biosciences*, 4(10B), 880-885. <https://doi.org/10.36347/sajb.2016.v04i10.015>

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. *Journal of Molecular Biology*, 215, 403-410. [https://doi.org/10.1016/S0022-2836\(05\)80360-2](https://doi.org/10.1016/S0022-2836(05)80360-2)

Andrew, M., Peever, T., & Pryor, B. (2009). An expanded multilocus phylogeny does not resolve morphological species within the small-spored *Alternaria* species complex. *Mycologia*, 101, 95-109. <https://doi.org/10.3852/08-135>

Arslan, U. 2015. Evaluation of antifungal activity of sulfur-containing salts against phytopathogenic fungi. *Fresenius Environmental Bulletin*, 24(5), 1879-1886.

Bakr, J. G., Khalid, S. A., Khafaga, N. I. M., Yassien, N. A., & Zaki, H. M. B. A. (2024). Impact of using cinnamon (*Cinnamomum verum*) essential oil and its pectin-chitosan nano-emulsion on survival of *Aspergillus flavus* and total aflatoxin inhibition in beef burger patties. *Food Control*, 159, Article 110294. <https://doi.org/10.1016/j.foodcont.2024.110294>

Bellemain, E., Carlsen, T., Brochmann, C., Coissac, E., Taberlet, P., & Kauserud, H. (2010). ITS as an environmental DNA barcode for fungi: an *in silico* approach reveals potential PCR biases. *BMC Microbiology*, 10, Article 189. <https://doi.org/10.1186/1471-2180-10-189>

Clemente, I., Aznar, M., & Nerín, C. (2019). Synergistic properties of mustard and cinnamon oils for the inactivation of foodborne moulds in vitro and on Spanish bread. *International Journal of Food Microbiology*, 298, 44-50. <https://doi.org/10.1016/j.ijfoodmicro.2019.03.012>

Collins, C. H., Lyne, P. M., & Grange, J. M. (2001). *Collin and Lyne's microbiological methods*. Oxford University Press.

Condurso, C., Cincotta, F., Tripodi, G., Merlini, M., Giarratana, F., & Verzera, A., (2020). A new approach for the shelf-life definition of minimally processed carrots. *Postharvest Biology and Technology*, 163, Article 111138. <https://doi.org/10.1016/j.postharvbio.2020.111138>

Deng, J. X., Paul, N. C., Park, M. S., & Yu, S. H. (2013). Molecular characterization, morphology, and pathogenicity of *Alternaria panax* from araliaceous plants in Korea. *Mycological Progress*, 12, 383-396. <https://doi.org/10.1007/s11557-012-0844-8>

Deresa, E. M., & Diriba T. F. (2023). Phytochemicals as alternative fungicides for controlling plant diseases: A comprehensive review of their efficacy, commercial representatives, advantages, challenges for adoption, and possible solutions. *Helijon*, 9(3), Article e13810. <https://doi.org/10.1016/j.heliyon.2023.e13810>

Eshel, D., Regev, R., Orenstein, J., Droby, S., & Gan-Mor, S. (2009). Combining physical, chemical and biological methods for synergistic control of postharvest diseases: A case study of black root of carrot. *Postharvest Biology and Technology*, 54, 48-52. <https://doi.org/10.1016/j.postharvbio.2009.04.011>

Gadhi, M. A., Nizamani, Z. A., Jatoi, G. H., Abro, M. A., Keerio, A. U., Poussio, G. B., & Qiu, D. (2020). *In vitro* efficacy of bio-control agent and essential oils against leaf blight of chickpea caused by *Alternaria alternata*. *Acta Ecologica Sinica*, 40, 166-171. <https://doi.org/10.1016/j.chnaes.2018.11.002>

Gurtler, J. B., & Garner, C. M. (2022). A review of essential oils as antimicrobials in foods with special emphasis on fresh produce. *Journal of Food Protection*, 85(9), 1300-1319. <https://doi.org/10.4315/JFP-22-017>

Horita, H., & Hatta, Y. (2016). Sour rot of carrot caused by *Geotrichum candidum* in Japan. *Journal of General Plant Pathology*, 82(1) 65-68. <https://doi.org/10.1017/s10327-015-0638-3>

Hu, F., Tu, X.-F., Thakur, K., Hu, F., Li, X.-L., Zhang, Y.-S., Zhang J.-G., & Wei, Z.-J. (2019). Comparison of antifungal activity of essential oils from different plants against three fungi. *Food and Chemical Toxicology*, 134, Article 110821. <https://doi.org/10.1016/j.fct.2019.110821>

Jackson-Davis, A., White, S., Kassama, L. S., Coleman, S., Shaw, A., Mendonca, A., Cooper, B., Thomas-Popo, E., Gordon, K., & London, L. (2023). A review of regulatory standards and advances in essential oils as antimicrobials in foods. *Journal of Food Protection*, 86, Article 100025. <https://doi.org/10.1016/j.jfp.2022.100025>

Ji, H., Kim, H., Beuchat, L. R., & Ryu, J.-H. (2019). Synergistic antimicrobial activities of essential oil vapours against *Penicillium corylophilum* on a laboratory medium and beef jerky. *International Journal of Food Microbiology*, 291, 104-110. <https://doi.org/10.1016/j.ijfoodmicro.2018.11.023>

Kameche, K., Amrani, S., Mouzaoui, S., & Aït-Amar, H. (2022). Biodegradation of diazo dye Evans blue by four strains of *Streptomyces* isolated from soils of Algeria. *Biocatalysis and Agricultural Biotechnology*, 46, Article 102529. <https://doi.org/10.1016/j.bcab.2022.102529>

Karaca, H., Pérez-Gago, M. B., Taberner, V., & Palou, L. (2014). Evaluating food additives as antifungal agents against *Monilinia fructicola* in vitro and in hydroxypropyl methylcellulose-lipid composite edible coatings for plums. *International Journal of Food Microbiology*, 179, 72-79. <https://doi.org/10.1016/j.ijfoodmicro.2014.03.027>

Khan, I., Tango, C. N., Miskeen, S., Lee, B. H., & Oh, D.-H. (2017). Hurdle technology: A novel approach for enhanced food quality and safety – A review. *Food Control*, 73(part B), 1426-1444. <https://doi.org/10.1016/j.foodcont.2016.11.010>

Khetabi, A. E., Lahlali, R., Ezrari, S., Radouane, N., Lyousfi, N., Banani, H., Askarne, L., Tahiri, A., Ghadraoui, L. E., Belmalha, S., & Barka, E. A. (2022). Role of plant extracts and essential oils in fighting against postharvest fruit pathogens and extending fruit

shelf life: a review. *Trends in Food Science and Technology*, 120, 402-417. <https://doi.org/10.1016/j.tifs.2022.01.009>

Kolaei, E. A., Tweddell, J. R., & Avis, T. J. (2012). Antifungal activity of sulfur-containing salts against the development of carrot cavity spot and potato dry rot. *Postharvest Biology and Technology*, 63, 55-59. <https://doi.org/10.1016/j.postharvbio.2011.09.006>

Laishram, S., Pragasam, A. K., Bakthavatchalam, Y. D., & Veeraraghavan, B. (2017). An update on technical, interpretative and clinical relevance of antimicrobial synergy testing methodologies. *Indian Journal of Medical Microbiology*, 35(4), 445-468. [https://doi.org/10.4103/ijmm.IJMM\\_17\\_189](https://doi.org/10.4103/ijmm.IJMM_17_189)

Landschoot, S., Vandecasteele, M., De Baets, B., Höfte, M., Audenaert, K., & Haesaert, G. (2017). Identification of *A. arborescens*, *A. grandis*, and *A. protenta* as new members of the European *Alternaria* population on potato. *Fungal Biology*, 121, 172-188. <https://doi.org/10.1016/j.funbio.2016.11.005>

Larsen, H., & Wold, A.-B. (2016). Effect of modified atmosphere packaging on sensory, chemical parameters and shelf life of carrot roots (*Daucus carota L.*) stored at chilled and abusive temperatures. *Postharvest Biology and Technology*, 114, 76-85.

Lawrence, D. P., Rotondo, F., & Gennibal, P. B. (2016). Biodiversity and taxonomy of the pleomorphic genus *Alternaria*. *Mycological Progress*, 15(1), 1-22. <https://doi.org/10.1007/s11557-015-1144-x>

Martínez-Blay, V., Taberner, V., Pérez-Gago, M. B., & Palou, L. (2020). Control of major citrus postharvest diseases by sulfur-containing food additives. *International Journal of Food Microbiology*, 330, Article 108713. <https://doi.org/10.1016/j.ijfoodmicro.2020.108713>

Matrose, N. A., Obikeze, K., Belay, Z. A., & Caleb, O. J. (2021). Plant extracts and other natural compounds as alternatives for post-harvest management of fruit fungal pathogens: A review. *Food Biosciences*, 41, Article 100840. <https://doi.org/10.1016/j.fbio.2020.100840>

Nanasombat, S., & Wimuttigosol, P. (2011). Antimicrobial and antioxidant activity of spice essential oils. *Food Science and Biotechnology*, 20(1), 45-53. <https://doi.org/10.1007/s10068-011-0007-8>

Palou, L., Ali, A., Fallik, E., & Romanazzi, G. (2016). GRAS, plant- and animal-derived compounds as alternatives to conventional fungicides for the control of postharvest diseased of fresh horticultural produce. *Postharvest Biology and Technology*, 122, 41-52. <https://doi.org/10.1016/j.postharvbio.2016.04.017>

Papoutsis, K., & Edelenbos, M. (2021). Postharvest environmentally and human-friendly pre-treatment to minimize carrot waste in the supply chain caused by physiological disorders and fungi. *Trends in Food Science and Technology*, 112, 88-98. <https://doi.org/10.1016/j.tifs.2021.03.038>

Pekmezovic, M., Rajkovic, K., Barac, A., Senerović, L., & Arsenijevic, V. A. (2015). Development of kinetic model for testing antifungal effect of *Thymus vulgaris* L. and *Cinnamomum cassia* L. essential on *Aspergillus flavus* spores and application for optimization of synergistic effect. *Biochemical Engineering Journal*, 99, 131-137. <https://doi.org/10.1016/j.bej.2015.03.024>

Peralta-Ruiz, Y., Tovar, C. G., Sinning-Mangonez, A., Bermont, D., Cordero, A. P., Paparella, A., & Chaves-López, C. (2020). *Colletotrichum gloeosporioides* inhibition using chitosan-*Ruta graveolens* L essential oil coatings: Studies *in vitro* and *in situ* on *Carica papaya* fruit. *International Journal of Food Microbiology*, 326, Article 108649. <https://doi.org/10.1016/j.ijfoodmicro.2020.108649>

Perrin, F., Dubois-Laurent, C., Gibon, Y., Citerne, S., Huet, S., Suel, A., Clerc, V. L., Briard, M., Hamama, L., Peltier, D., Gagné, S., & Geoffriau, E. (2017). Combined *Alternaria dauci* infection and water stresses impact carotenoid content of carrot leaves and roots. *Environmental and Experimental Botany*, 143, 125-134. <https://doi.org/10.1016/j.envexpbot.2017.09.004>

Pitt J. I., & Hocking, A. D. (1985). *Fungi and food spoilage*. Academic Press.

Ranjitha, K., Rao, D. V., Shivashankara, K. S., Oberoi, H. S., Roy, T. K., & Bharathamma, H. (2017). Shelf-life extension and quality retention in fresh-cut carrots coated with pectin. *Innovative Food Science and Emerging Technologies*, 42, 91-100. <https://doi.org/10.1016/j.ifset.2017.05.013>

Ribeiro-Santos, R., Andrade, M., Madella, D., Martinazzo, A. P., Moura, L. D. A. G., de Melo, N. R., & Sanches-Silva, A. (2017). Revisiting an ancient spice with medicinal purposes: Cinnamon. *Trends in Food Science & Technology*, 62, 154-169. <https://doi.org/10.1016/j.tifs.2017.02.011>

Ribes, S., Fuentes, A., Talens, P., & Barat, J. M. (2018). Combination of different antifungal agents in oil-in-water emulsions to control strawberry jam spoilage. *Food Chemistry*, 239, 704-711. <https://doi.org/10.1016/j.foodchem.2017.07.002>

Romanazzi, G., Sanzani, S. M., Bi, Y., Tian, S., Martínez, P. G., & Alkan, N. (2016). Induced resistance to control postharvest decay of fruit and vegetables. *Postharvest Biology and Technology*, 122, 82-94. <https://doi.org/10.1016/j.postharvbio.2016.08.003>

Rosato, A., Vitali, C., de Laurentis, N., Armenise, D., & Antonietta Milillo, M. (2007). Antibacterial effect of some essential oils administered alone or in combination with norfloxacin. *Phytomedicine*, 14, 727-732. <https://doi.org/10.1016/j.phymed.2007.01.005>

Samson, R. A., Hoekstra, E. S., & Frisvad, J. C. (2004). *Introduction to Food and Airborne Fungi*. (7th ed.) Centraalbureau voor Schimmelcultures

Scariot, F. J., Delamare, A. P. L., & Echeverrigaray, S. (2022). The effect of chlorothalonil on *Saccharomyces cerevisiae* under alcoholic fermentation. *Pesticide Biochemistry and Physiology*, 182, Article 105032. <https://doi.org/10.1016/j.pestbp.2021.105032>

Seljåsen, R., Kritensen, H. L., Lauridsen, C., Wyss, G. S., Kretzschmar, U., Birlouez-Aragone, I., & Kahl J. (2013). Quality of carrots as affected by pre- and postharvest factors and processing. *Journal of the Science of Food and Agriculture*, 93, 2611-2626. <https://doi.org/10.1002/jsfa.6189>

Sethunga, M., Ranasinghe, M. M. K. D., Ranaweera, K. K. D. S., Munaweera, I., & Gunathilake, K. D. P. P. (2023). Synergistic antimicrobial activity of essential oils and oleoresins of cinnamon oil (*Cinnamomum zeylanicum*), clove bud (*Syzygium aromaticum*) and ginger (*Zingiber officinale*). *Biocatalysis and Agricultural Biotechnology*, 51, Article 102800. <https://doi.org/10.1016/j.bcab.2023.102800>

Soto-Muñoz, L., Taberner, V., de la Fuente, B., Jerbi, N., & Palou, L. (2020). Curative activity of postharvest GRAS salt treatments to control citrus sour rot caused by *Geotrichum citri-aurantii*. *International Journal of Food Microbiology*, 335, Article 108860. <https://doi.org/10.1016/j.ijfoodmicro.2020.108860>

Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular evolutionary genetics analysis version 11. *Molecular Biology and Evolution*, 38, 3022-3027. <https://doi.org/10.1093/molbev/msab120>

Tourmas, V., Stack, M. E., Mislivec, P. B., Koch, H. A., & Bandler, R. (2001). *Bacteriological analytical manual chapter 18: yeasts, molds, and mycotoxins*. <https://www.fda.gov/media/183581/download?attachment>

Türkkan, M. (2013). Antifungal effect of various salts against *Fusarium oxysporum* f. sp. *cepae*, the causal agent of Fusarium basal rot of onion. *Journal of Agricultural Sciences*, 19, 178-187. [https://doi.org/10.1501/Tarimbil\\_0000001243](https://doi.org/10.1501/Tarimbil_0000001243)

US FDA. (2024). *Code of federal regulation. 21 CFR Part 182 – Substances Generally Recognized as Safe*. <https://www.ecfr.gov/current/title-21/chapter-1/subchapter-B/part-182>

Usall, J., Ippolito, A., Sisquella, M., & Neri, F. (2016). Physical treatments to control postharvest diseases of fresh fruits and vegetables. *Postharvest Biology and Technology*, 122, 30-40. <https://doi.org/10.1016/j.postharvbio.2016.05.002>

Vilaplana, R., Alba, P., & Valencia-Chamorro, S. (2018). Sodium bicarbonate salts for the control of postharvest black rot disease in yellow pitahaya (*Selenicereus megalanthus*). *Crop Protection*, 114, 90-96. <https://doi.org/10.1016/j.cropro.2018.08.021>

Wang, F., Saito, S., Machailide T. J., & Xiao C.-L. (2021). Phylogenetic, morphological, and pathogenic characterization of *Alternaria* species associated with fruit rot of Mandarin in California. *Plant Disease*, 105(9), 2606-2617. <https://doi.org/10.1094/PDIS-10-20-2145-RE>

Woudenberg, J. H. C., Groenewald, J. Z., Binder, M., & Crous, P. W. (2013). *Alternaria* redefined. *Studies in Mycology*, 75, 171-212. <https://doi.org/10.3114/sim0015>

Xie, Y., Huang, Q., Wang, Z., Cao, H., & Zhang, D. (2017). Structure-activity relationships of cinnamaldehyde and eugenol derivatives against plant pathogenic fungi. *Industrial Crops and Products*, 97, 388-394. <https://doi.org/10.1016/j.indcrop.2016.12.043>

Xie, Y., Yang, Z., Cao, D., Rong, F., Ding, H., & Zhang, D. (2015). Antitermitic and antifungal activities of eugenol and its congeners from the flower buds of *Syzgium aromaticum* (clove). *Industrial Crops and Products*, 77, 780-786. <https://doi.org/10.1016/j.indcrop.2015.09.044>

Xu, L., Tao, N., Yang, W., & Jing, G. (2018). Cinnamaldehyde damaged the cell membrane of *Alternaria alternata* and induced the degradation of mycotoxins *in vivo*. *Industrial Crops and Products*, 112, 427-433. <https://doi.org/10.1016/j.bcab.2022.102529>

Yoossef, M. M., Pham, Q., Achar, P.N., & Sreenivasa, M. Y. (2016). Antifungal activity of essential oils on *Aspergillus parasiticus* isolated from peanuts. *Journal of Plant Protection Research*, 56(2), 139-142. <https://doi.org/10.1515/jppr-2016-0021>

Zhang, Y., Wei J, Yuan, Y., & Yue, T. (2019). Diversity and characterization of spoilage-associated phychrotrophs in food in cold chain. *International Journal of Food Microbiology*, 290, 86-95. <https://doi.org/10.1016/j.ijfoodmicro.2018.09.026>

Zhu, X. Q., & Xiao, C.L. (2015). Phylogenetic, morphological, and pathogenic characterization of *Alternaria* species associated with fruit rot of blueberry in California. *Phytopathology*, 105, 1555-1567. <https://doi.org/10.1094/PHYTO-05-15-0122-R>