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Abstract

Air pollution, particularly particulate matter < 2.5 ym (PM2s), is a significant global concern
for human health. Technological advances in light-scattering low-cost sensors (LCSs) have
facilitated extensive deployment of these devices, enhancing the spatial and temporal
resolution of air quality monitoring networks beyond traditional stations. However, LCS
measurements often face systematic biases and uncertainties due to technological
limitations. This study aimed to calibrate LCS PM2sdata collected from February 14 to July
31, 2022, in Chiang Mai, Thailand, against reference measurements from the Pollution
Control Department (PCD). Two nonlinear regressions, generalized additive model (GAM)
and random forest (RF), were employed with linear regression (LR) as the baseline model.
Model performance was evaluated using 10-fold and holdout cross-validation and metrics
including R?, RMSE, MAE, and MAPE. GAM exhibited superior performance compared to
LR and RF when incorporating environmental and temporal factors such as temperature,
humidity, month, and time (R? = 0.915, RMSE = 5.084 ug/m?). The LR model showed
comparable performance (R? = 0.900, RMSE = 5.494 ug/m?), while RF performed well with
environmental factors alone (R? = 0. 892, RMSE = 5.742 ug/m?3). The GAM calibration
significantly reduced MAPE to 17%, followed by LR (19%) and RF (21%). This study
demonstrates that the integration of both environmental and temporal variables within the
GAM framework is crucial for accurately calibrating LCS PMz5 data in northern Thailand,
considering the region's distinct atmospheric characteristics. Our study underscores the
necessity of including environmental and temporal factors in GAM to calibrate LCS-
collected PM2s data in northern Thailand.
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1. Introduction

Air pollution, specifically ambient fine particulate matter with a diameter of <2.5 ym (PM2:),
has become an increasingly serious global health problem that is contributing significantly
to all-cause morbidity and mortality rates worldwide (Chu et al., 2020; Hua et al., 2021;
McFarlane et al., 2021; Tomaskova et al., 2022; Tsai et al., 2022). According to the World
Health Organization, PM25 causes detrimental health effects that lead to more than 7
million premature deaths annually worldwide, accounting for approximately 65% of
mortality attributable to outdoor air pollution (Anderson et al., 2012; Taimuri et al., 2022;
Salehi et al., 2023; World Health Organization, 2024). Over the past decade, Thailand has
faced significant challenges due to high PMzs levels, particularly in the northern region.
These high levels are primarily a result of forest fires and the open burning of agricultural
waste for land clearing and crop preparation during the dry season (January—April) (Vichit-
Vadakan & Vajanapoom, 2011; Pani et al., 2019; Thepnuan et al., 2019; Dejchanchaiwong
etal., 2023). In addition, transboundary pollution from neighboring countries in the Mekong
Subregion (including Laos, Cambodia, Vietnam, and Myanmar) significantly contributes to
air pollution in Thailand's northern and northeastern regions (Chantara et al., 2019).
Consequently, it is critical to provide the public and administrative agencies with an air
pollution alert system to enable individuals to take protective action by strengthening air
particulate matter (PM) pollution monitoring and formulating a series of pollutant emission
reduction plans.

The reference-grade air quality monitoring network in Thailand operated by the
Pollution Control Department (PCD) under the Ministry of Natural Resources and
Environment continuously monitors air pollutants such as dust, suspended particulate
matter (PM1o and PMas), sulfur dioxide (SOz2), carbon monoxide (CO), nitrogen dioxide
(NO2), and ground-level ozone (O3). A filter-based inertial or gravimetric technique along
with a well-constructed size-selection inlet comprising an automatic beta ray attenuation
(BAM) or a tapered element oscillating microbalance (TEOM) is conventionally used as a
reference method to evaluate other indirect measurement techniques. The reference
technique is not strongly affected by relative humidity since the monitor contains a heated
sampler inlet that reduces the moisture deposition in the system. The reference technique
has been subjected to extensive field evaluation at which time the PM concentration
measurements were equilibrated via the United States Federal Reference Method, thereby
ensuring high accuracy and reliability (Bai et al. 2020; Raysoni et al., 2023). In Thailand,
BAM or TEOM mass monitors are employed to routinely measure the hourly and daily
PMzs concentrations at 96 stations in 64 provinces in Thailand’s air quality monitoring
network. The reference-grade air quality monitoring network can provide high temporal
resolution PM measurements, yet the systems are relatively expensive and sparsely
deployed at central monitoring sites in each province due to the high cost of installation
and maintenance of the air quality monitoring instruments (Dejchanchaiwong et al., 2023).

One promising solution is the use of low-cost sensors (LCSs) for PM2.s exposure
assessment to supplement the reference-grade monitoring network. LCSs can be installed
in large numbers, enabling the construction of a high spatial and temporal resolution PM25
network (Neal et al., 2014; Lyu et al., 2017; Hong et al., 2021; Hua et al., 2021; McFarlane
etal., 2021). LCSs are typically based on optical particle counters (OPCs), which use light
scattering to estimate the concentration of particulate matter. As air passes through the
sensor, particles scatter light, the intensity of which is proportional to the size and number
of particles present. This enables the measurement of PM2s concentrations in real-time
with minute-level resolution (Salimifard et al., 2019; Hagan & Kroll, 2020; Giordano et al.,
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2021). While LCS monitoring is not as precise as that using reference-grade monitors,
advancements in sensor technology and calibration methods have improved the accuracy
and reliability of the former. Moreover, they are much cheaper than reference-grade
monitors and their compactness, lightness, portability and low maintenance requirements
allow for their dense deployment, significantly improving the coverage for PM2.s monitoring
(Salimifard et al., 2019; Chu et al., 2020; Hagan & Kroll, 2020; Giordano et al., 2021; Hua
et al., 2021; McFarlane et al., 2021). This approach is especially beneficial for low and
middle-income countries where few, if any, reference-grade measurement devices have
been deployed and in areas where the concentration fields of air pollutants have significant
spatial gradients (McFarlane et al., 2021). For instance, a study conducted in Accra, Ghana
highlights the challenges of quantifying air pollution exposure and its impacts due to limited
access to air quality monitoring. By collocating data from a PurpleAir PM2.5 LCS with those
from a Met One Beta Attenuation Monitor 1020, this initiative represents a crucial step
towards developing methods that provide high-quality, affordable, and accessible air
pollution data. This is vital for communities in areas with limited access to reference-grade
air pollution monitors, and thereby enabling a better understanding of and timely response
to air quality issues (McFarlane et al., 2021). In Thailand, entities such as The National
Astronomical Research Institute (NARIT) have exploited LCSs as part of the Air Quality
Awareness Raising under the American-Thai Collaboration (AQAAT) initiative. However,
the affordability and simplicity of LCSs come with a trade-off, particularly due to their
reliance on light-scattering (nephelometric) principles. LCSs are inherently sensitive to the
microphysical properties of aerosols; environmental factors such as aerosol size
distribution, temperature, and relative humidity (RH); as well as emission sources all of
which can introduce bias in the measurements (Chu et al., 2020; Hua et al., 2021;
McFarlane et al., 2021, Srishti et al., 2022; Lavanyaa et al., 2022). For instance, a high RH
level can cause particles to swell, leading to overestimation of the PM concentration.
Moreover, the performance of LCSs also varies based on the emission source and particle
characteristics such as size, shape, and refractive index (Noti et al., 2013). This variability,
combined with differences in sensor model designs and the geometry of the measurement
cell, can result in inconsistent readings among different sensors (Weisserta et al., 2019);
this can lead to sensitivity issues that need to be addressed through careful calibration and
correction strategies. Numerous researchers have pointed out the inconsistency between
LCSs and high-quality regulatory instruments, with the former being relatively poor in terms
of accuracy and reliability (Neal et al., 2014; Lyu et al., 2017; Hong et al., 2021; Hua et al.,
2021; McFarlane et al.,, 2021). To provide high-quality data, the raw data need to be
calibrated, and correction factors need to be developed.

Several methods have been applied to perform in-field calibrations for a variety of
LCSs. The most widely used model is linear regression, in which it is assumed that there
is a linear relationship between the LCS data and the reference-grade PM2s measurements
(McFarlane et al., 2021). Nevertheless, given the intricate nature of atmospheric chemistry,
it has become imperative to employ calibration methods that can deal with nonlinear
relationships (Hua et al., 2021; McFarlane et al., 2021; Lavanyaa et al., 2022; Srishti et al.,
2022). For instance, RH causes particles to grow through moisture absorption as well as
the formation of water droplets that can be detected as aerosols, which can cause a
nonlinear relationship. Meanwhile, a secondary source of particulate matter is via
photochemical reactions from precursor gases under high solar radiation, which can cause
a nonlinear increase in PMz.s concentration (McFarlane et al., 2021; Lavanyaa et al., 2022;
Srishti et al., 2022). In addition, meteorological conditions such as wind speed and direction
can disperse or concentrate pollutants, thereby adding another layer of nonlinearity (Yang
et al.,, 2021). To address these challenges, advanced calibration techniques such as
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nonlinear regression models and machine-learning techniques have been adopted to
better account for these variations in LCS PM2s data. However, the calibration process
remains complicated due to environmental factors such as RH and temperature that can
affect sensor performance in unpredictable ways. Collinearity between these variables can
further complicate the development of robust calibration models that perform consistently
across diverse field conditions. Moreover, sensor aging causes sensitivity to drift over time,
which requires frequent recalibration to maintain accuracy (Anik et al., 2021). Despite these
limitations, LCSs, when effectively calibrated, remain a cost-effective and valuable tool for
air quality monitoring, especially in resource-limited settings. Their ability to enhance
spatial and temporal resolution makes them crucial in improving air quality surveillance
where reference-grade monitoring networks are insufficient.

In the present study, we utilized two nonlinear regression approaches, a
generalized additive model (GAM) and random forest (RF) and linear regression (LR) as a
baseline model, to calibrate hourly PM2s measurements potentially confounded by factors
such as %RH and temperature with those from a standard pollution monitoring station
(35T) in Chiang Mai, northern Thailand, during both the dry and rainy seasons. We sought
to reduce the systematic error by elucidating the error patterns to calibrate the LCS-based
PM2s data. This PM2s data supplementation approach may provide better support for
dynamic air quality management practices.

2. Materials and Methods
2.1 Data sources

The LCSs used in this research employing a light-scattering technique to measure real-
time PM concentrations were acquired under the AQAAT project. LCS PMz.s data collection
was carried out during the dry and rainy seasons in Chiang Mai, Thailand. The dry season
is marked by high PM2s concentrations due to both domestic sources, particularly forest
fires and agricultural waste burning, and transboundary sources from neighboring
countries. In contrast, the rainy season is characterized by high humidity, which can affect
the accuracy of LCS readings. Details about the low-cost LCSs used in this research can
be found at https://aqaat.narit.or.th/agaat/index.php.

The PM25 data from LCSs located approximately 4 km away from a reference PCD
monitoring station, located at 18.85296 N latitude and 98.95763 W longitude, in Chiang
Mai (PCD station#35T/CM) were acquired from February 14, 2022, to July 31, 2022. Hourly
aggregated PM2s data from both the reference and LCS sensors, as well as the RH and
temperature levels, were used in the analysis. To justify the acceptability of the 4 km
distance between the LCS and the reference monitoring station, we conducted an
additional analysis comparing PM2.s concentrations between two standard PCD monitoring
stations in Chiang Mai (Stations 35T and 36T), which are approximately 6-7 km apart. The
comparison showed that the PMzs concentrations at these two stations were highly
consistent, with minimal differences (Table 1 and Figures 1 and 2). This suggests that PM2s
concentrations are relatively uniform over distances up to 7 km in our study area,
supporting the acceptability of the 4 km separation between our LCS and PCD Station 35T.
Similar to the EPA's Air Sensor Guidebook, it indicated that this proximity was sufficient for
comparative monitoring while reflecting local microenvironmental conditions. Moreover,
distances of between 1 and 5 km have been employed in similar studies (Wang et al.,
2020; Margaritis et al., 2021; Jon et al., 2023), which the author posited ensured spatial
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Table 1. Statistical summary of the PM2.s of two reference-grade monitoring from February

14, 2022 to July 31, 2022

Reference Mean = SD Range Mean 95% Limits of
Measurements (ng/m3) (ng/m3) Difference = Agreement
(ug/m?®) (ng/m®)
PCD Station 35T  27.031+16.47 7.52-73.65 0.0067 -0.6436 — 0.6570
PCD Station 36T  27.02+16.44 7.45-72.21
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Figure 1. Bland-Altman analysis
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Figure 2. Scatter plot between two reference-grade monitoring (PCD Station 35T and

36T)
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representativeness and could account for variability in pollution sources. Thus, the distance
between the sensors in our study ensures that the LCS readings encompass local
atmospheric conditions while still allowing for effective comparison with the reference
station, thus providing a more comprehensive assessment of PM2s levels in the region.

2.2 Variables selection

In developing the calibration equations for the LCS, we employed a forward stepwise
regression approach for variable selection. This method was chosen due to its efficiency
in identifying a subset of predictors that significantly contribute to the model while
minimizing multicollinearity and overfitting. The process begins with an empty model and
sequentially adds predictors by adding one variable at a time based on its contribution to
the model’s performance. This is specifically assessed through improvements in the
coefficient of determination (R?) (McFarlane et al., 2021). Their statistical significance is
also assessed using p-values and Akaike Information Criterion (AIC) results for model
evaluation. Table 2 illustrates the variable selection for each calibration method. Several
studies have demonstrated the efficacy of forward stepwise regression in the calibration of
air quality models. For instance, in the work of McFarlane et al. (2021) on calibrating low-
cost air quality sensors, forward selection was used to enhance model accuracy by
systematically including significant predictors while avoiding overfitting. Furthermore, the
process of selecting variables was conducted iteratively. Although increasing the number
of input variables can improve the R? value for the model, adding redundant variables with
minimal contributions to R? can result in collinearity issues. Thereby, we sought the optimal
balance between predictive accuracy and model simplicity.

Table 2. The LR, GAM and RF models used to calibrate the LCS-derived PM2s
concentration data

Model Type Equations

1 LR PMz.s, ref = (PM2.s, Lcs)

2 LR PM2s, ref = (PM2.5, Lcs + TempLcs)

3 LR PMz2s, ref = {(PM25, Lcs + TempLcs + RHLcs)

4 LR PMzs, ref = f(PM25, Lcs + TempLcs + RHics + Month)

5 LR PM2s, ref = f(PM2.5, Lcs + TempLcs + RHics + Month + Time)

6 GAM PM2s, ref = S(PMzs, Lcs)

7 GAM PM2s, ref = S(PM2s, Lcs) + s(Tempics)

8 GAM PM2s, ref = S(PM2s, Lcs) + s(Temprcs) + s(RHLcs)

9 GAM  PMzs, ref = S(PM2s, Lcs) + s(Tempics) + S(RHLcs) + fiMonth)

10 GAM  PMa2s, ref = S(PM2s, Lcs) + s(Tempics) + s(RHLcs) + fiMonth) +
f(Time)

11 RF RF model with PM2scs

12 RF RF model with multiplicative terms PM25,cs, and TempLcs

13 RF RF model with multiplicative terms PM2scs, Tempics, and RHics

14 RF RF model with multiplicative terms PMzs,.cs, TempLcs, RHLcs, and
month

15 RF RF model with multiplicative terms PMzs,.cs, RHLcs, Tempics, and
time
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2.3 Calibration models

Hourly PM25 concentration data from LCSs were constrained between 0 ug/ms3, and 1000
pg/m3, with RH level restricted to greater than 0%. Three different models were tested for
their ability to correct low-cost sensor data: linear regression, generalized additive model,
and random forest. Following the feature selection process, each calibration model utilized
three primary parameters from the LCS as explanatory variables: the LCS-derived PMzs
concentration, temperature (T, °C), and RH (%), and two temporal features (month and
time of day). The calibrated models used PMzs concentration from PCD station#35T/CM
as the dependent variable, represented as follows:

PM, s[Ref] =f (PM, 5[LCS], T[LCS], RH[LCS], Month[Derived], Time[Derived]) (1)

where PM, s[Ref] is PM2.s concentration from PCD station#35T/CM, PM, s[LCS] represent
the LCS PMz25 concentration, T is the temperature recorded by LCS PM2.5s monitor, and RH
is the relative humidity recorded by LCS PM2.5s monitor. The month was derived was derived
from the timestamp of the collected data, and time of day was categorized into four groups:
morning (6:00 AM — 10:00 AM), noon (11:00 AM — 4:00 PM), evening (5:00 PM — 8:00 PM),
and night (9:00 PM — 5:00 AM).

231LR

LR was employed as the baseline model to optimize the best fit by minimizing the distance
between the observed values (i.e., reference-grade PM2s concentrations) and the
predicted values (LCS PM2s corrected). LR is advantageous due to its simplicity, ease of
interpretation, and ability to facilitate using a standard equation. Linear and higher-order
polynomial fits are among the least computationally demanding methods and are easy to
implement, making them the most commonly utilized correction techniques in the
calibration of low-cost sensors (Wang et al., 2020). The linear regression approach
followed the structure outlined in equation (2).

PMysrer = Bo + Xica fi(x) + &, (2)

where B, represents the intercept, x; denotes a set of predictors (LCS PM2s, temperature,
RH, month, and time of day), n is the number of selected predictors, and ¢ represents the
residual.

2.3.2 GAM

GAM was employed as a nonlinear regression method between predictors and the
response variable, the framework for which is

PM35rer = Bo + Xiz1 si(x) + &, (3)

where B, represents the intercept for GAM, and x; denotes a set of predictors (LCS PMzs,
temperature, RH, month, and time). s(-) refers to the P-spline smoothing functions, which
optimize the model fit and control the smoothness through a penalty term (Hastie &
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Tibshirani, 1986; Eilers & Marx, 1996), the smoothers of s;(x;) characterize the effects of
the predictors on the reference PM2s concentrations, n is the number of selected
predictors, and ¢ represents the residual.

23.3RF

This is a machine-learning algorithm designed to address regression or classification tasks
(Raheja et al., 2023). It operates by constructing a supervised ensemble of decision trees
that individually isolate errors within a training dataset. The collective prediction from this
ensemble (typically the mean value across the decision trees) is subsequently utilized for
predicting outcomes based on new input data (Raheja et al., 2023). In the context of LCS
PM2s concentration analysis, calibrating the RF model necessitates adjusting its
hyperparameters. To optimize the model performance, a grid search was conducted using
the 10-fold cross-validation technique and employing the coefficient of determination (R?)
metric for evaluation.

2.4 Performance metrics

We conducted both 10-fold cross-validation and holdout validation tests to evaluate the
robustness of the models and to mitigate overfitting, thereby ensuring that the method
performed reliably on unseen data. We also applied residual diagnostics using the Durbin-
Watson statistic to assess autocorrelation: values near 2 indicate minimal autocorrelation,
thus supporting the independence assumption for residuals. When significant
autocorrelation was observed, adjustments were made using lagged variables to enhance
the model performance. The performance of the calibration models were assessed using
several metrics: R?, the root-mean-square error (RMSE), the mean absolute error (MAE),
and the mean absolute percentage error (MAPE). The R? metric, with values ranging
between 0 and 1, was used to quantify the degree of correlation between the calibrated
LCS and reference PM2s values: the value closest to 1 indicates the best fit. RMSE
measures the average magnitude of the errors between the calibrated LCS and reference
PMzs values, with the lowest value indicating the best performance. MAE and MAPE were
used to assess any discrepancies between the LCS and reference PM2s values (Wang et
al., 2020; Srishti et al., 2022). These metrics are defined as follows:

2 _q _ 2 0i-99?
RE=1 L =32’ ()
n . —1.)2
RMSE = lel(y;l yl) : (5)
1 ~
MAE = —¥ilyi = Jil, (6)
MAPE = 237, |yyi| x 100, 7)

where ¥; represents the calibrated values of LCS PM2s, y; denotes the reference PMzs
values, y is the average concentration of reference PM2s, and n is the number of
measurements. Data preprocessing, data analysis, LR, GAM and RF calculation, and
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model validation process were conducted using the R environment (Version 4.3.3)

leveraging packages including “gam,” “ggplot2,” “mgcv,” “tidyr”, “plotly”, “dplyr”, “caret”,
‘randomForest” and “car”.

3. Results and Discussion
3.1 Measurements of LCS and reference-grade monitoring

The hourly averaged LCS and reference PM2s concentration, RH, and temperature data
from February 14, 2022, to July 31, 2022, obtained at NARIT site Chiang Mai-35T are
summarized in Table 3. During the dry season, the PM2.s concentration reached 96 ug/m?3
(based on the reference data) and 148 ug/m® (based on the LCS data). The overall-
averaged PM2s concentration during the dry season using the LCS measurements was
43.4+21.8 pg/m3, approximately three times higher than the overall-averaged PM2s
concentration during the rainy season (11.3+8.4 pg/m3). Contrastively, these were
37.7£16.7 and 14.646.2 ug/m3, respectively, using the reference data. Our findings align
with those from a previous study (Jainontee et al., 2023). The primary contributors to air
pollution in Chiang Mai are domestic activities such as forest fires and agricultural waste
burning during the dry season. This is due to Chiang Mai's geography, featuring high
mountains along the north-south corridor with significant forest and agricultural coverage
(Dejchanchaiwong et al., 2023). In addition, aerosol transport from biomass burning in
parts of Myanmar and Laos also impacts the air quality in northern Thailand (Chantara et
al., 2019). From the LCS measurements, the average RH and temperature during the dry
season ranged from 25-86% and 20.8-35.7°C, respectively, and the RH was 5-25% higher
and the temperature was slightly higher during the rainy season. Increased RH levels may
cause particle swelling, leading to an overestimation of PM concentrations.

Table 3. Statistical summary of the PM2s measurement parameters by season from
February 14, 2022, to July 31, 2022

Season Parameter Unit Reference LCS Measurements
Measurements

MeantSD Range MeantSD Range

Dry
PMzs Mg/m3  37.7+16.7 3.0-96.0 43.4+21.8 1.0-148.0
T C 27.6+44 17.0-39.1 28.6x29 20.8-357
RH % 60.8£18.7 18.0-99.0 58.6+12.2 25.0-86.0
Rainy
PMzs pg/md  14.616.2 3.0-58.0 11.318.4 0.0-24.8
T C 27.3+3.2 21.7-37.6 28.0£1.9 248-342
RH % 76.1£16.3 37.0-99.0 75.119.2 47.0-91.0

Figure 3 illustrates the seasonal variation in the 24-hour-average PM:2s
concentration measured using the LCS and reference monitor. Overall, the uncalibrated
LCS measurements generally followed the trend observed in the reference measurements.
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Figure 3. Twenty-four-hour average PM2.s concentrations measured using the reference
monitor (PCD) and the LCS from February 14, 2022, to July 31, 2022, in Chiang Mai,
Thailand

Notably, during the hottest month of the year in Thailand (April), the uncalibrated LCS PM2s
concentrations were approximately 1.5 times higher than those recorded using the
reference-grade monitor. Many low-cost sensors tend to saturate at high PM2s
concentrations, typically above 100 pg/m3, leading to overestimated readings. This
limitation in sensor design prevents accurate measurement during severe pollution
episodes, resulting in inflated concentration values (Dejchanchaiwong et al., 2023). This
finding is consistent with a previous study in Wenshang County, Shandong Province, China
(Hua et al.,, 2021), the authors of which reported that LCSs overestimated PMo:s
concentrations by approximately 1.4 times in dry conditions and 2.0 times in humid
conditions compared to a reference monitor. In contrast, our findings showed that LCS
PM2.s concentrations were consistently underestimated by approximately 2 times during
the rainy season, particularly in June and July, when heavy rainfall occurred in Chiang Mai.
This result contradicts the expected behavior of LCSs, which generally overestimate
concentrations at high RH levels due to particle swelling. The unexpected underestimation
observed in our study could be attributed to limitations in the sensor's response mechanism
under high humidity conditions, which may have caused interference in the sensor's ability
to accurately detect PM concentrations. Another possible explanation for this
underestimation is the condensation effect, where the accumulation of moisture on the
sensor surface might have reduced the efficiency of particle detection, leading to lower
readings (Park et al., 2021). In our study, PMz.s concentrations measured using LCSs were
found to be 75.8% higher than those measured by reference instruments during the dry
season. This finding aligns with (Dejchanchaiwong et al., 2023), who reported that the
Plantower LCS overestimated PM2s concentrations in Chiang Mai, which reached 246
Mg/m3/d during the dry season. However, we also observed that RH significantly influenced
LCS particulate matter measurements performance. Under high RH conditions, the LCS
tended to underestimate the actual values from May to August (the rainy season) (79.3%
lower). LCS devices are known to be highly sensitive to RH, and numerous studies have
shown that LCS performance deteriorates with low PM2.5 concentrations and high RH (Hua
et al., 2021). Similarly, Jayaratne et al. (2018) found that PM2s concentrations reported by
an LCS increased exponentially with RH up to 75%. These findings highlight the
importance of calibrating LCSs for different environmental conditions, such as high-

10
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humidity conditions during the rainy season in tropical regions. In addition, our results align
with findings from other countries, such as the United States (Sousan et al., 2016), where
it was observed that LCS devices respond differently depending on the climate conditions.
It has been recommended that calibration is performed under specific conditions to
minimize errors (Nalakurthi et al., 2024). Thus, RH can significantly impact the accuracy of
PMz.s concentration measurements using LCSs.

The linear regression R? value used for comparing the PM2.s concentration data
from the LCS and reference monitor was notably high (0.947) (Figure 4). A slope value
significantly deviating from 1 indicates that potential systematic bias or inconsistency in
measurements caused by variations in humidity and temperature and/or interference from
other particulate matter such as dust or pollen can skew the results, particularly during
high-concentration events (Jayaratne et al., 2018). Notably, some extreme values were
observed when the PM25s concentration exceeded 70 pg/m3, resulting in an unstructured
pattern. This anomaly can be attributed to the significant air pollution contribution from
biomass burning during the dry season (Chantara et al., 2019; Pani et al., 2019; Thepnuan
et al., 2019; Dejchanchaiwong et al., 2023). However, the source contribution is not the
only factor affecting measurement error. The performance of the LCS can also vary at
lower PM2s concentration levels. For instance, measurements below 15 pyg/m?® may exhibit
greater relative error due to the sensors’ inherent limitations in sensitivity and accuracy at
lower concentrations. In addition, the response time of the LCS can lead to discrepancies
during rapid changes in PMzs levels, particularly during episodes of high pollution
(Jayaratne et al., 2020). A previous study on calibrated LCS PMz2.s data from three different
locations in Thailand revealed that the LCS response varied depending on the type of
aerosols (Dejchanchaiwong et al., 2023). Specifically, LCSs were more responsive to
emissions from open biomass burning than to traffic emissions in large cities such as
Bangkok. Moreover, the particle size from biomass burning predominantly ranges from 0.5-
2.5 ym (Samae et al., 2021) or 0.5-1.0 ym in accumulation mode (Hata et al., 2014). Thus,
the overestimation of PM2s concentration by the LCS could be due to its heightened
sensitivity to biomass burning emissions.

3.2 Feature selection for the correction models

Table 4 demonstrates the feature selection process to determine the optimal calibration
models for LR, GAM, and RF. This process involved evaluating five different sets of
predictors for each method. For LR, the model with the lowest AIC and the highest
performance metrics was LR5, which included the following predictors: LCS PMo2s,
temperature, relative humidity, month, and time. Therefore, LR5 was selected as the final
model for multiple linear regression (MLR) calibration. Similarly, for GAM, the model with
the lowest AIC, highest R?, and lowest RMSE was GAMS, which also included all five
predictors (LCS PM2.s, temperature, relative humidity, month, and time), making it the best
choice for calibration. In contrast, for RF, the model with three predictors (LCS PMzs,
temperature, and relative humidity) exhibited the most favorable performance metrics, as
RF4 and RF5 showed slightly increased AIC and RMSE values. Consequently, RF3 was
selected as the final calibration model for the random forest method. These selected
models, LR5, GAMS5, and RF3, provided the best balance between predictive accuracy and
model complexity. Moreover, a significant interaction between the factors was not found
(Table 5).
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Figure 4. Hourly PM2.s concentration measurements by the LCS and reference monitor
from the PCD. The solid line is for slope = 1 while the dashed circle highlights the

extreme values.

Table 4. Feature selection for calibration models (LR, GAM, RF)

Model Predictor(s) AlC R?
LR1 LCS PM2s 24136.75 0.886
LR2 LCS PMz.5; Temperature 23871.02  0.894
LR3 LCS PMzs; Temperature; Relative humidity 23713.99  0.898
LR4 LCS PMzs; Temperature; Relative humidity; Month 23664.64  0.899
LR5 LCS PM2s;, Temperature; Relative humidity; Month; 23591.78 0.901
Time
GAM1 LCS PMa2s 23235.34  0.910
GAM2 LCS PMzs; Temperature 22961.99  0.917
GAM3 LCS PMzs; Temperature; Relative humidity 2289946  0.918
GAM4 LCS PMzs; Temperature; Relative humidity; Month 22873.51 0.919
GAM5 LCS PMa2s; Temperature; Relative humidity; Month; 22809.23 0.920
Time
RF1 LCS PMzs 13652.13  0.906
RF2 LCS PMz.5; Temperature 13531.94  0.909
RF3 LCS PMzs; Temperature; Relative humidity 13420.21 0.911
RF4 LCS PMzs; Temperature; Relative humidity; Month 13503.25 0.910
RF5 LCS PMzs; Temperature; Relative humidity; Time 1419142  0.891
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Table 5. Assessment of potential interaction between factors

Variables p Conclusion?

LCS PM.;s x Temperature No interaction
LCS PMzs <0.001
Temperature 0.379
Interaction <0.001

LCS PM.;s x Relative humidity No interaction
LCS PM2s <0.001
Relative humidity 0.232
Interaction <0.001

Temperature x Relative humidity No interaction
Temperature 0.023
Relative humidity 0.181
Interaction 0.116

2lnteraction was considered significant when p-values of all terms were significant
3.3 Performance evaluation of the correction models

The robustness of the selected calibration models was evaluated through 10-fold cross-
validation and holdout validation. The results of the 10-fold cross-validation for the selected
MLR, GAM, and RF models were derived from the same training-validation datasets. The
average RMSE and R? values for the three models obtained from the 10-fold cross-
validation were 5.494 ug/m?and 0.900 for MLR, 5.084 ug/m?and 0.915 for GAM, and 5.742
pg/m? and 0.892 for RF, respectively (Table 6).

Table 6. Comparison of model fitting and 10-fold cross-validation for hourly PM2s
concentrations calibrated using selected LR, GAM, and RF models

Model R? RMSE (ug/m®) ___ MAE (ug/m®) MAPE (%)
LR5 0.900 5.494 3.960 18.29
GAMS5 0.915 5.084 3.701 17.13
RF3 0.892 5.742 4223 20.78

The results of the holdout validation are presented in Figure 5. The differences in
RMSE between the 10-fold cross-validation and the holdout validation were approximately
0.136, 0.257, and 0.317 ug/m? for MLR, GAM, and RF, respectively. Figure 5a-f illustrates
the relationships between the reference PM2s measurements and the calibrated LCS
output for the training and validation sets using the three correction models.

The R? values for the models trained using 2044 data points from the training set
ranged from 0.970 to 0.976, thus indicating strong explanatory power for all three models.
In terms of RMSE, GAM exhibited the lowest value (5.011 pug/m?) with the training set
(Figures 5a, 5c, and 5e). A validation set of 1052 data points was used to further assess
the performance of these models on new data (Figures 5b, 5d, and 5f) This time, the R?
values for all three models ranged from 0.963 to 0.972 (thus once again indicating strong
explanatory power), and the lowest RMSE value (5.341 ug/m?3) was attained with GAM. In
conclusion, the RMSE values for GAM were found to be 9% and 11% lower than those for
MLR and RF in the training sets, and 6% and 15% in validation sets, respectively, thus
indicating that GAM outperformed the other two models in terms of predictive accuracy.
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Figure 5. Model performance of (a) multiple linear regression (MLR) with training
data, (b) MLR with validation data, (c) generalized additive model (GAM) with training
data, (d) GAM with validation data, (e) random forest (RF) with training data, and (f) RF
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Overall, the uncalibrated LCS PM2s measurements exhibited good agreement with
the corresponding measurements from the reference monitor (R? = 0.947) (Figure 3). Both
the MLR and GAM approaches outperformed the RF model, likely due to the inclusion of
environmental and temporal variables in the former two. The RF approach appears to be
limited when applied to data beyond the range of the training set, which is a common
limitation of tree-based algorithms (Dejchanchaiwong et al., 2023). Moreover, the R? values
for the GAM model improved significantly with the inclusion of environmental factors such
as RH and temperature, and temporal factors (monthly in this case). The integration of both
meteorological and chemical parameters resulted in calibrated LCS PMzs concentrations
that more closely matched the reference PM2s measurements (Hua et al., 2021). This is
consistent with the findings of Jain et al. (2023), who reported daily-averaged PM:s
concentrations ranging from 4-75 pg/m? (mean = 12.0 yg/m?), with weekend concentrations
being approximately 10% higher than weekday concentrations. These results indicate that
including temporal valuation, such as the time of day, can further enhance model
performance. In contrast to previous studies where RF demonstrated superior performance
to MLR and supported vector regression (SVR). Compared to SVR, the RMSE values of
RF were 35% and 85% lower for both the training and validation sets, respectively (Wang
et al., 2020). Notably, unlike our model, a temporal factor was not included in the
aforementioned study. This discrepancy could be due to the larger datasets utilized in
previous studies, which could have facilitated better model training and enhanced
prediction accuracy compared to the present study. Among the few in-field correction
studies, one research group employed a similar GAM model to correct LCS data from three
Taiwan EPA stations in December 2017, and after applying the correction, the RMSE
values decreased from 15.55-31.34 ug/m? to 4.88-9.66 ug/m? (Lee et al., 2019). These
findings are comparable to our studies, which was a reduction in RMSE from 7.398 pg/m?
to 5.084 pg/m?® (Table 6).

3.4 PM_2;s corrections

Figure 6 illustrates the reduction in the percentage of overestimated PM2s values
(exceeding 10 ug/m?) by the LCS after applying the LR, GAM, and RF models, decreasing
from 12.3% to 3.7%, 1.7%, and 1.8%, respectively. Similarly, the percentage of
underestimated PM2.s values (exceeding 10 pg/m?) decreased from 5.2% to 2.2%, 3.3%,
and increased to 5.5%, respectively. These results suggest that the GAM model is
particularly effective in mitigating overestimation at high PM2s levels, while the RF model
performs well in addressing underestimation at low PM:s levels. These findings contrast
with previous research (Hua et al., 2021), which indicated that the GAM model performed
well in conditions of high RH and low PM2s concentrations. In addition, it is possible that
the types and characteristics of aerosols present in the study area influenced the calibration
performance (Dejchanchaiwong et al., 2023). Figure 7 presents a time series plot
comparing raw LCS PMzs values with the model-corrected PMzs values using MLR, GAM,
and RF for the first half of 2022. Following calibration using observations from nearby PCD
stations (35T/CM), the GAM-corrected PMzs levels closely aligned with those from
reference-grade monitors, significantly reducing the overestimation observed in the raw
PM2.s measurements. However, discrepancies persisted during periods of very high PM2.5
concentrations (April), and corrections during the rainy season exhibited greater variability,
which may be attributed to the influence of RH. Similarly, the MLR model demonstrated
performance comparable to GAM but exhibited higher errors during extreme PM2.5 events.
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Figure 6. Error distributions of the LCS PMzs data: (a) uncalibrated, (b) after MLR
calibration, (c) after GAM calibration, and (d) after RF calibration
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Figure 7. Time-Series of raw PMz, reference-grade monitoring, and model-corrected
PMz using the MLR, GAM, and RF models

In contrast, the RF model performed effectively during lower PM25s levels (range 10-40
pg/m?3). Normal Q-Q plots showed that residuals deviated from normality, suggesting that
parametric models like MLR may not adequately capture extreme PM2.5 events. Non-linear
regression or machine learning models are recommended to improve model accuracy
(Figure 8). In addition, the Durbin-Watson test results (Table 7) indicate positive
autocorrelation in MLR residuals, violating the independence assumption, whereas GAM
showed better adherence. These findings support exploring non-linear or machine learning
approaches to improve model robustness and accuracy.
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Figure 8. Normal Q-Q Plot
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Table 7. Durbin-Watson test result

Model Iteration D-W Statistic
LR 1 1.58
LR 2 1.83
LR 3 1.61
LR 4 1.55
LR 5 1.52
LR 6 1.69
LR 7 1.78
LR 8 1.77
LR 9 1.70
LR 10 1.69

GAM 1 1.84
GAM 2 1.92
GAM 3 1.85
GAM 4 1.66
GAM 5 1.90
GAM 6 1.88
GAM 7 1.91
GAM 8 1.91
GAM 9 213
GAM 10 1.75

Abbreviations: LR, linear regression; GAM, generalized additive model
3.5 Limitations of this work

This study has several limitations that should be acknowledged. A more comprehensive
understanding of the correction factors and their respective characteristics is necessary.
Specifically, stratifying the data by season to examine the influence of each factor on the
model could provide valuable insights. However, our attempt at seasonal analysis resulted
in decreased model performance, which can be attributed to the relatively small dataset
and data being collected from a single station over 6-months. This likely affected the
model's capacity and made generalization of the findings over a longer time period
impossible. Therefore, we will consider incorporating data spanning multiple years
collected from multiple LCS stations to develop a more robust calibration model that can
deal with temporospatial variability in the future.

Although the calibrated models significantly improved data accuracy, potential
deviations could still arise from the inherent differences between ambient and street-level
PM2s concentrations. Street-level PM25s monitoring can be influenced by various local
emission sources, such as from vehicles and agricultural burning, while reference-grade
monitoring stations are designed to measure well-mixed ambient PM2.s concentrations free
from direct local emission interference. In this study, the LCS station was located within a
4 km radius of the reference-grade monitoring station and we assumed that PM25 particles
were uniformly distributed within this distance. However, spatial variability in the emissions
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data could have made this assumption moot. In scenarios where LCS co-location with
reference-grade monitoring is not feasible, alternative approaches such as employing
spatial interpolation methods, such as kriging or inverse distance weighting, could be
considered to estimate PMzs concentrations at unsampled locations, accounting for spatial
variability. In our study, we provide a practical and resource-efficient approach for
calibrating LCS data without the need for exact co-location or extensive spatial
interpolation, by demonstrating that PM2s concentrations are relatively uniform over
distances up to 7 km. This is particularly beneficial in areas where resources for
establishing extensive monitoring networks are limited.

These findings underscore the importance of establishing a more extensive
network of LCS stations to assess local ambient air quality comprehensively. Future
research should consider co-locating LCSs with reference-grade stations when possible to
facilitate direct comparisons under identical environmental conditions, thereby improving
calibration accuracy and reducing potential bias. In addition, a systematic sensitivity
analysis could be conducted to assess the influence of various factors, such as local
emission source intensity, topographic conditions, prevailing meteorological parameters
(e.g., wind speed and direction), and background pollution levels, on the spatial distribution
of PMzs and the reliability of assumptions about uniform pollutant dispersion. This would
help identify conditions under which co-location or advanced spatial interpolation methods
are essential, thereby informing the design and implementation of more effective LCS-
based air quality monitoring programs. Ultimately, this approach would enhance the
representativeness of the calibration process and improve the overall reliability of LCS-
based air quality monitoring.

4. Conclusions

In the present study, hourly PM2s measurements from LCSs installed at NARIT in Chiang
Mai, Thailand, showed good agreement with those from reference-grade air quality monitor
(PCD at 35T station) located 4 km away. The LCS PM2s concentrations were likely
overestimated during the dry season and underestimated during the rainy season. The
effects of key environmental factors such as RH and temperature on the performance of
LCS PMz.s concentration monitoring were investigated.

RH had significant nonlinear relationships with both the properties of the particles
and the response of the LCSs. To address this, nonlinear regression approaches,
specifically GAM and RF, were employed to calibrate the LCS PM25 concentrations. Our
study underscores the importance of including environmental and temporal factors in the
GAM approach to enhance the accuracy of LCS PM2s measurements. However, the GAM
model in this study faced limitations in handling extremely high RH levels. Therefore,
stratifying the dataset by season may offer a viable alternative to developing a more
effective calibration algorithm for LCS PM2s measurements. Extending the observation
period will be essential to comprehensively understand the characteristics of seasonal
PMg2s variation. The performance of the RF model was lower during extreme PM2.5 events,
suggesting its applicability could be compromised during periods of elevated PM:s levels,
such as those caused by agricultural burning during the dry season from February to April
in Thailand. Despite this, we successfully demonstrated the value of employing a
calibration method and confirmed that nonlinear regression approaches were more
effective than conventional linear regression.

As LCSs hold promise for supporting regulatory air quality monitoring, especially
for tracking 24-hour average PMas levels, further improvements in sensor accuracy,
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environmental robustness, and validation will make them more fit for the task. Providing
strong calibration methods to address environmental sensitivity could enable LCS networks
to become valuable tools for air quality management; high-coverage real-time pollution
monitoring could help public health policies provide timely interventions to protect
community health.

In the future, we will assess LCS PM2.5 concentrations across different locations
over extended periods to capture the full seasonal cycle of PMzs pollution throughout
Thailand. Moreover, further exploration of diverse calibration methods is needed to
determine optimal solutions for calibrating LCS PMz2s concentrations under varying
conditions, which should enhance the reliability and effectiveness of LCS-based monitoring
in Thailand.
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