
Current Applied Science and Technology          e-ISSN: 2586-9396 
 
Curr. Appl. Sci. Technol. 2025, Vol. 25 (No. 5), e0263964 
 

Research article  
 
 

_________________________________________ 
*Corresponding author: E-mail: titaporn@narit.or.th 
https://doi.org/10.55003/cast.2025.263964 
Copyright © 2024 by King Mongkut’s Institute of Technology Ladkrabang, Thailand. This is an open access article under the CC 
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 

 

Improving Monitored PM2.5 Data from Low-Cost Sensors in 
Chiang Mai, Thailand: Utilizing a Nonlinear Regression 

Modeling Approach 
 

Natthanidnan Sricharoen1, Titaporn Supasri2*, Patrinee Traisathit3, 
Sukon Prasitwattanaseree3, Pimwarat Srikummoon3 and Jeerasak 

Longmali2 
 

1Department of Statistics, Faculty of Science, Chiang Mai University, under the CMU 
Presidential Scholarship, Chiang Mai, Thailand 

2National Astronomical Research Institute of Thailand, Chiang Mai, Thailand 
3Department of Statistics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand 

 
Received: 10 July 2024, Revised: 9 December 2024, Accepted: 10 December 2024, Published: 27 March 2025 
 

Abstract 
 
Air pollution, particularly particulate matter ≤ 2.5 µm (PM2.5), is a significant global concern 
for human health. Technological advances in light-scattering low-cost sensors (LCSs) have 
facilitated extensive deployment of these devices, enhancing the spatial and temporal 
resolution of air quality monitoring networks beyond traditional stations. However, LCS 
measurements often face systematic biases and uncertainties due to technological 
limitations. This study aimed to calibrate LCS PM2.5 data collected from February 14 to July 
31, 2022, in Chiang Mai, Thailand, against reference measurements from the Pollution 
Control Department (PCD). Two nonlinear regressions, generalized additive model (GAM) 
and random forest (RF), were employed with linear regression (LR) as the baseline model. 
Model performance was evaluated using 10-fold and holdout cross-validation and metrics 
including R², RMSE, MAE, and MAPE. GAM exhibited superior performance compared to 
LR and RF when incorporating environmental and temporal factors such as temperature, 
humidity, month, and time (R² = 0.915, RMSE = 5.084 µg/m³). The LR model showed 
comparable performance (R² = 0.900, RMSE = 5.494 µg/m³), while RF performed well with 
environmental factors alone (R² = 0. 892, RMSE = 5.742 µg/m³). The GAM calibration 
significantly reduced MAPE to 17%, followed by LR (19%) and RF (21%). This study 
demonstrates that the integration of both environmental and temporal variables within the 
GAM framework is crucial for accurately calibrating LCS PM2.5 data in northern Thailand, 
considering the region's distinct atmospheric characteristics. Our study underscores the 
necessity of including environmental and temporal factors in GAM to calibrate LCS-
collected PM2.5 data in northern Thailand.  
 
Keywords: air quality; low-cost sensors; bias correction; nonlinear regression 
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1. Introduction 
 
Air pollution, specifically ambient fine particulate matter with a diameter of ≤2.5 µm (PM2.5), 
has become an increasingly serious global health problem that is contributing significantly 
to all-cause morbidity and mortality rates worldwide (Chu et al., 2020; Hua et al., 2021; 
McFarlane et al., 2021; Tomášková et al., 2022; Tsai et al., 2022). According to the World 
Health Organization, PM2.5 causes detrimental health effects that lead to more than 7 
million premature deaths annually worldwide, accounting for approximately 65% of 
mortality attributable to outdoor air pollution (Anderson et al., 2012; Taimuri et al., 2022; 
Salehi et al., 2023; World Health Organization, 2024). Over the past decade, Thailand has 
faced significant challenges due to high PM2.5 levels, particularly in the northern region. 
These high levels are primarily a result of forest fires and the open burning of agricultural 
waste for land clearing and crop preparation during the dry season (January–April) (Vichit-
Vadakan & Vajanapoom, 2011; Pani et al., 2019; Thepnuan et al., 2019; Dejchanchaiwong 
et al., 2023). In addition, transboundary pollution from neighboring countries in the Mekong 
Subregion (including Laos, Cambodia, Vietnam, and Myanmar) significantly contributes to 
air pollution in Thailand's northern and northeastern regions (Chantara et al., 2019). 
Consequently, it is critical to provide the public and administrative agencies with an air 
pollution alert system to enable individuals to take protective action by strengthening air 
particulate matter (PM) pollution monitoring and formulating a series of pollutant emission 
reduction plans.  

The reference-grade air quality monitoring network in Thailand operated by the 
Pollution Control Department (PCD) under the Ministry of Natural Resources and 
Environment continuously monitors air pollutants such as dust, suspended particulate 
matter (PM10 and PM2.5), sulfur dioxide (SO2), carbon monoxide (CO), nitrogen dioxide 
(NO2), and ground-level ozone (O3). A filter-based inertial or gravimetric technique along 
with a well-constructed size-selection inlet comprising an automatic beta ray attenuation 
(BAM) or a tapered element oscillating microbalance (TEOM) is conventionally used as a 
reference method to evaluate other indirect measurement techniques. The reference 
technique is not strongly affected by relative humidity since the monitor contains a heated 
sampler inlet that reduces the moisture deposition in the system. The reference technique 
has been subjected to extensive field evaluation at which time the PM concentration 
measurements were equilibrated via the United States Federal Reference Method, thereby 
ensuring high accuracy and reliability (Bai et al. 2020; Raysoni et al., 2023). In Thailand, 
BAM or TEOM mass monitors are employed to routinely measure the hourly and daily 
PM2.5 concentrations at 96 stations in 64 provinces in Thailand’s air quality monitoring 
network. The reference-grade air quality monitoring network can provide high temporal 
resolution PM measurements, yet the systems are relatively expensive and sparsely 
deployed at central monitoring sites in each province due to the high cost of installation 
and maintenance of the air quality monitoring instruments (Dejchanchaiwong et al., 2023). 

One promising solution is the use of low-cost sensors (LCSs) for PM2.5 exposure 
assessment to supplement the reference-grade monitoring network. LCSs can be installed 
in large numbers, enabling the construction of a high spatial and temporal resolution PM2.5 
network (Neal et al., 2014; Lyu et al., 2017; Hong et al., 2021; Hua et al., 2021; McFarlane 
et al., 2021). LCSs are typically based on optical particle counters (OPCs), which use light 
scattering to estimate the concentration of particulate matter. As air passes through the 
sensor, particles scatter light, the intensity of which is proportional to the size and number 
of particles present. This enables the measurement of PM2.5 concentrations in real-time 
with minute-level resolution (Salimifard et al., 2019; Hagan & Kroll, 2020; Giordano et al., 
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2021). While LCS monitoring is not as precise as that using reference-grade monitors, 
advancements in sensor technology and calibration methods have improved the accuracy 
and reliability of the former. Moreover, they are much cheaper than reference-grade 
monitors and their compactness, lightness, portability and low maintenance requirements 
allow for their dense deployment, significantly improving the coverage for PM2.5 monitoring 
(Salimifard et al., 2019; Chu et al., 2020; Hagan & Kroll, 2020; Giordano et al., 2021; Hua 
et al., 2021; McFarlane et al., 2021). This approach is especially beneficial for low and 
middle-income countries where few, if any, reference-grade measurement devices have 
been deployed and in areas where the concentration fields of air pollutants have significant 
spatial gradients (McFarlane et al., 2021). For instance, a study conducted in Accra, Ghana 
highlights the challenges of quantifying air pollution exposure and its impacts due to limited 
access to air quality monitoring. By collocating data from a PurpleAir PM2.5 LCS with those 
from a Met One Beta Attenuation Monitor 1020, this initiative represents a crucial step 
towards developing methods that provide high-quality, affordable, and accessible air 
pollution data. This is vital for communities in areas with limited access to reference-grade 
air pollution monitors, and thereby enabling a better understanding of and timely response 
to air quality issues (McFarlane et al., 2021). In Thailand, entities such as The National 
Astronomical Research Institute (NARIT) have exploited LCSs as part of the Air Quality 
Awareness Raising under the American-Thai Collaboration (AQAAT) initiative. However, 
the affordability and simplicity of LCSs come with a trade-off, particularly due to their 
reliance on light-scattering (nephelometric) principles. LCSs are inherently sensitive to the 
microphysical properties of aerosols; environmental factors such as aerosol size 
distribution, temperature, and relative humidity (RH); as well as emission sources all of 
which can introduce bias in the measurements (Chu et al., 2020; Hua et al., 2021; 
McFarlane et al., 2021, Srishti et al., 2022; Lavanyaa et al., 2022). For instance, a high RH 
level can cause particles to swell, leading to overestimation of the PM concentration. 
Moreover, the performance of LCSs also varies based on the emission source and particle 
characteristics such as size, shape, and refractive index (Noti et al., 2013). This variability, 
combined with differences in sensor model designs and the geometry of the measurement 
cell, can result in inconsistent readings among different sensors (Weisserta et al., 2019); 
this can lead to sensitivity issues that need to be addressed through careful calibration and 
correction strategies. Numerous researchers have pointed out the inconsistency between 
LCSs and high-quality regulatory instruments, with the former being relatively poor in terms 
of accuracy and reliability (Neal et al., 2014; Lyu et al., 2017; Hong et al., 2021; Hua et al., 
2021; McFarlane et al., 2021). To provide high-quality data, the raw data need to be 
calibrated, and correction factors need to be developed. 

Several methods have been applied to perform in-field calibrations for a variety of 
LCSs. The most widely used model is linear regression, in which it is assumed that there 
is a linear relationship between the LCS data and the reference-grade PM2.5 measurements 
(McFarlane et al., 2021). Nevertheless, given the intricate nature of atmospheric chemistry, 
it has become imperative to employ calibration methods that can deal with nonlinear 
relationships (Hua et al., 2021; McFarlane et al., 2021; Lavanyaa et al., 2022; Srishti et al., 
2022). For instance, RH causes particles to grow through moisture absorption as well as 
the formation of water droplets that can be detected as aerosols, which can cause a 
nonlinear relationship. Meanwhile, a secondary source of particulate matter is via 
photochemical reactions from precursor gases under high solar radiation, which can cause 
a nonlinear increase in PM2.5 concentration (McFarlane et al., 2021; Lavanyaa et al., 2022; 
Srishti et al., 2022). In addition, meteorological conditions such as wind speed and direction 
can disperse or concentrate pollutants, thereby adding another layer of nonlinearity (Yang 
et al., 2021). To address these challenges, advanced calibration techniques such as 
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nonlinear regression models and machine-learning techniques have been adopted to 
better account for these variations in LCS PM2.5 data. However, the calibration process 
remains complicated due to environmental factors such as RH and temperature that can 
affect sensor performance in unpredictable ways. Collinearity between these variables can 
further complicate the development of robust calibration models that perform consistently 
across diverse field conditions. Moreover, sensor aging causes sensitivity to drift over time, 
which requires frequent recalibration to maintain accuracy (Anik et al., 2021). Despite these 
limitations, LCSs, when effectively calibrated, remain a cost-effective and valuable tool for 
air quality monitoring, especially in resource-limited settings. Their ability to enhance 
spatial and temporal resolution makes them crucial in improving air quality surveillance 
where reference-grade monitoring networks are insufficient. 

In the present study, we utilized two nonlinear regression approaches, a 
generalized additive model (GAM) and random forest (RF) and linear regression (LR) as a 
baseline model, to calibrate hourly PM2.5 measurements potentially confounded by factors 
such as %RH and temperature with those from a standard pollution monitoring station 
(35T) in Chiang Mai, northern Thailand, during both the dry and rainy seasons. We sought 
to reduce the systematic error by elucidating the error patterns to calibrate the LCS-based 
PM2.5 data.  This PM2.5 data supplementation approach may provide better support for 
dynamic air quality management practices. 
 

2. Materials and Methods 
 
2.1 Data sources 
 
The LCSs used in this research employing a light-scattering technique to measure real-
time PM concentrations were acquired under the AQAAT project. LCS PM2.5 data collection 
was carried out during the dry and rainy seasons in Chiang Mai, Thailand. The dry season 
is marked by high PM2.5 concentrations due to both domestic sources, particularly forest 
fires and agricultural waste burning, and transboundary sources from neighboring 
countries. In contrast, the rainy season is characterized by high humidity, which can affect 
the accuracy of LCS readings. Details about the low-cost LCSs used in this research can 
be found at https://aqaat.narit.or.th/aqaat/index.php.  

The PM2.5 data from LCSs located approximately 4 km away from a reference PCD 
monitoring station, located at 18.85296 N latitude and 98.95763 W longitude, in Chiang 
Mai (PCD station#35T/CM) were acquired from February 14, 2022, to July 31, 2022. Hourly 
aggregated PM2.5 data from both the reference and LCS sensors, as well as the RH and 
temperature levels, were used in the analysis. To justify the acceptability of the 4 km 
distance between the LCS and the reference monitoring station, we conducted an 
additional analysis comparing PM2.5 concentrations between two standard PCD monitoring 
stations in Chiang Mai (Stations 35T and 36T), which are approximately 6-7 km apart. The 
comparison showed that the PM2.5 concentrations at these two stations were highly 
consistent, with minimal differences (Table 1 and Figures 1 and 2). This suggests that PM2.5 
concentrations are relatively uniform over distances up to 7 km in our study area, 
supporting the acceptability of the 4 km separation between our LCS and PCD Station 35T. 
Similar to the EPA's Air Sensor Guidebook, it indicated that this proximity was sufficient for 
comparative monitoring while reflecting local microenvironmental conditions. Moreover, 
distances of between 1 and 5 km have been employed in similar studies (Wang et al., 
2020; Margaritis et al., 2021; Jon et al., 2023), which the author posited ensured spatial  
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Table 1. Statistical summary of the PM2.5 of two reference-grade monitoring from February 
14, 2022 to July 31, 2022 

Reference 
Measurements 

Mean ± SD  
(µg/m3) 

Range  
(µg/m3) 

Mean 
Difference 
(µg/m3) 

95% Limits of 
Agreement 
(µg/m3) 

PCD Station 35T 27.03±16.47  7.52 – 73.65 0.0067 -0.6436 – 0.6570 

PCD Station 36T 27.02±16.44 7.45 – 72.21   

 

 
 

Figure 1. Bland-Altman analysis 

 
Figure 2. Scatter plot between two reference-grade monitoring (PCD Station 35T and 

36T) 
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representativeness and could account for variability in pollution sources. Thus, the distance  
between the sensors in our study ensures that the LCS readings encompass local 
atmospheric conditions while still allowing for effective comparison with the reference 
station, thus providing a more comprehensive assessment of PM2.5 levels in the region. 
 
2.2 Variables selection 
 
In developing the calibration equations for the LCS, we employed a forward stepwise 
regression approach for variable selection. This method was chosen due to its efficiency 
in identifying a subset of predictors that significantly contribute to the model while 
minimizing multicollinearity and overfitting. The process begins with an empty model and 
sequentially adds predictors by adding one variable at a time based on its contribution to 
the model’s performance. This is specifically assessed through improvements in the 
coefficient of determination (R²) (McFarlane et al., 2021). Their statistical significance is 
also assessed using p-values and Akaike Information Criterion (AIC) results for model 
evaluation. Table 2 illustrates the variable selection for each calibration method. Several 
studies have demonstrated the efficacy of forward stepwise regression in the calibration of 
air quality models. For instance, in the work of McFarlane et al. (2021) on calibrating low-
cost air quality sensors, forward selection was used to enhance model accuracy by 
systematically including significant predictors while avoiding overfitting. Furthermore, the 
process of selecting variables was conducted iteratively. Although increasing the number 
of input variables can improve the R² value for the model, adding redundant variables with 
minimal contributions to R² can result in collinearity issues. Thereby, we sought the optimal 
balance between predictive accuracy and model simplicity. 
 
Table 2. The LR, GAM and RF models used to calibrate the LCS-derived PM2.5 
concentration data 

Model Type Equations 
1 LR PM2.5, ref = f(PM2.5, LCS) 
2 LR PM2.5, ref = f(PM2.5, LCS + TempLCS) 
3 LR PM2.5, ref = f(PM2.5, LCS + TempLCS + RHLCS) 
4 LR PM2.5, ref = f(PM2.5, LCS + TempLCS + RHLCS + Month) 
5 LR PM2.5, ref = f(PM2.5, LCS + TempLCS + RHLCS + Month + Time) 
6 GAM PM2.5, ref = s(PM2.5, LCS) 
7 GAM PM2.5, ref = s(PM2.5, LCS) + s(TempLCS) 
8 GAM PM2.5, ref = s(PM2.5, LCS) + s(TempLCS) + s(RHLCS) 
9 GAM PM2.5, ref = s(PM2.5, LCS) + s(TempLCS) + s(RHLCS) + f(Month) 
10 GAM PM2.5, ref = s(PM2.5, LCS) + s(TempLCS) + s(RHLCS) + f(Month) + 

f(Time) 
11 RF RF model with PM2.5,LCS 
12 RF RF model with multiplicative terms PM2.5,LCS, and TempLCS 
13 RF RF model with multiplicative terms PM2.5,LCS, TempLCS, and RHLCS 
14 RF RF model with multiplicative terms PM2.5,LCS, TempLCS, RHLCS, and 

month 
15 RF RF model with multiplicative terms PM2.5,LCS, RHLCS, TempLCS, and 

time 
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2.3 Calibration models 
 
Hourly PM2.5 concentration data from LCSs were constrained between 0 μg/m3, and 1000 
μg/m3, with RH level restricted to greater than 0%. Three different models were tested for 
their ability to correct low-cost sensor data: linear regression, generalized additive model, 
and random forest. Following the feature selection process, each calibration model utilized 
three primary parameters from the LCS as explanatory variables: the LCS-derived PM2.5 
concentration, temperature (T, °C), and RH (%), and two temporal features (month and 
time of day). The calibrated models used PM2.5 concentration from PCD station#35T/CM 
as the dependent variable, represented as follows: 
 
PM2.5[Ref] =𝑓𝑓(PM2.5[LCS], T[LCS], RH[LCS], Month[Derived], Time[Derived]) (1) 

 
where PM2.5[Ref] is PM2.5 concentration from PCD station#35T/CM, PM2.5[LCS] represent 
the LCS PM2.5 concentration, T is the temperature recorded by LCS PM2.5 monitor, and RH 
is the relative humidity recorded by LCS PM2.5 monitor. The month was derived was derived 
from the timestamp of the collected data, and time of day was categorized into four groups: 
morning (6:00 AM – 10:00 AM), noon (11:00 AM – 4:00 PM), evening (5:00 PM – 8:00 PM), 
and night (9:00 PM – 5:00 AM). 
 
2.3.1 LR 
 
LR was employed as the baseline model to optimize the best fit by minimizing the distance 
between the observed values (i.e., reference-grade PM2.5 concentrations) and the 
predicted values (LCS PM2.5 corrected). LR is advantageous due to its simplicity, ease of 
interpretation, and ability to facilitate using a standard equation. Linear and higher-order 
polynomial fits are among the least computationally demanding methods and are easy to 
implement, making them the most commonly utilized correction techniques in the 
calibration of low-cost sensors (Wang et al., 2020). The linear regression approach 
followed the structure outlined in equation (2). 
 

 
 𝑃𝑃𝑃𝑃2.5,𝑟𝑟𝑟𝑟𝑟𝑟 = 𝛽𝛽0 + ∑ 𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖) + 𝜀𝜀𝑛𝑛

𝑖𝑖=1 , (2) 

 
where 𝛽𝛽0 represents the intercept, 𝑥𝑥𝑖𝑖 denotes a set of predictors (LCS PM2.5, temperature, 
RH, month, and time of day), 𝑛𝑛 is the number of selected predictors, and 𝜀𝜀 represents the 
residual.   
 
2.3.2 GAM 
 
GAM was employed as a nonlinear regression method between predictors and the 
response variable, the framework for which is 
 

 
 𝑃𝑃𝑃𝑃2.5,𝑟𝑟𝑟𝑟𝑟𝑟 = 𝛽𝛽0 + ∑ 𝑠𝑠𝑖𝑖(𝑥𝑥𝑖𝑖) + 𝜀𝜀𝑛𝑛

𝑖𝑖=1 , (3) 

 
where 𝛽𝛽0 represents the intercept for GAM, and 𝑥𝑥𝑖𝑖 denotes a set of predictors (LCS PM2.5, 
temperature, RH, month, and time). 𝑠𝑠(∙)  refers to the P-spline smoothing functions, which 
optimize the model fit and control the smoothness through a penalty term (Hastie & 
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Tibshirani, 1986; Eilers & Marx, 1996), the smoothers of 𝑠𝑠𝑖𝑖(𝑥𝑥𝑖𝑖) characterize the effects of 
the predictors on the reference PM2.5 concentrations, 𝑛𝑛  is the number of selected 
predictors, and 𝜀𝜀 represents the residual.   
 
2.3.3 RF 
 
This is a machine-learning algorithm designed to address regression or classification tasks 
(Raheja et al., 2023). It operates by constructing a supervised ensemble of decision trees 
that individually isolate errors within a training dataset. The collective prediction from this 
ensemble (typically the mean value across the decision trees) is subsequently utilized for 
predicting outcomes based on new input data (Raheja et al., 2023). In the context of LCS 
PM2.5 concentration analysis, calibrating the RF model necessitates adjusting its 
hyperparameters. To optimize the model performance, a grid search was conducted using 
the 10-fold cross-validation technique and employing the coefficient of determination (R2) 
metric for evaluation. 
 
2.4 Performance metrics 
 
We conducted both 10-fold cross-validation and holdout validation tests to evaluate the 
robustness of the models and to mitigate overfitting, thereby ensuring that the method 
performed reliably on unseen data. We also applied residual diagnostics using the Durbin-
Watson statistic to assess autocorrelation: values near 2 indicate minimal autocorrelation, 
thus supporting the independence assumption for residuals. When significant 
autocorrelation was observed, adjustments were made using lagged variables to enhance 
the model performance. The performance of the calibration models were assessed using 
several metrics: R2, the root-mean-square error (RMSE), the mean absolute error (MAE), 
and the mean absolute percentage error (MAPE). The R2 metric, with values ranging 
between 0 and 1, was used to quantify the degree of correlation between the calibrated 
LCS and reference PM2.5 values: the value closest to 1 indicates the best fit. RMSE 
measures the average magnitude of the errors between the calibrated LCS and reference 
PM2.5 values, with the lowest value indicating the best performance. MAE and MAPE were 
used to assess any discrepancies between the LCS and reference PM2.5 values (Wang et 
al., 2020; Srishti et al., 2022). These metrics are defined as follows: 
 

 𝑅𝑅2 = 1 − ∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖)2
𝑛𝑛
𝑖𝑖=1
∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�)2𝑛𝑛
𝑖𝑖=1

, (4) 

   

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
, (5) 

   
 𝑀𝑀𝑀𝑀𝑀𝑀 =  1

𝑛𝑛
∑ |𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖|𝑛𝑛
𝑖𝑖=1 , (6) 

   
 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  1

𝑛𝑛
∑ �𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖

𝑦𝑦𝑖𝑖
� × 100𝑛𝑛

𝑖𝑖=1 , (7) 
 
where  𝑦𝑦�𝑖𝑖 represents the calibrated values of LCS PM2.5, 𝑦𝑦𝑖𝑖 denotes the reference PM2.5 
values, 𝑦𝑦�  is the average concentration of reference PM2.5, and 𝑛𝑛  is the number of 
measurements. Data preprocessing, data analysis, LR, GAM and RF calculation, and 
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model validation process were conducted using the R environment (Version 4.3.3) 
leveraging packages including “gam,” “ggplot2,” “mgcv,” “tidyr”, “plotly”, “dplyr”, “caret”, 
“randomForest” and “car”. 
 

3. Results and Discussion 
 
3.1 Measurements of LCS and reference-grade monitoring 
 
The hourly averaged LCS and reference PM2.5 concentration, RH, and temperature data 
from February 14, 2022, to July 31, 2022, obtained at NARIT site Chiang Mai-35T are 
summarized in Table 3. During the dry season, the PM2.5 concentration reached 96 µg/m3 

(based on the reference data) and 148 µg/m3 (based on the LCS data). The overall-
averaged PM2.5 concentration during the dry season using the LCS measurements was 
43.4±21.8 µg/m3, approximately three times higher than the overall-averaged PM2.5 
concentration during the rainy season (11.3±8.4 µg/m3). Contrastively, these were 
37.7±16.7 and 14.6±6.2 µg/m3, respectively, using the reference data. Our findings align 
with those from a previous study (Jainontee et al., 2023). The primary contributors to air 
pollution in Chiang Mai are domestic activities such as forest fires and agricultural waste 
burning during the dry season. This is due to Chiang Mai's geography, featuring high 
mountains along the north-south corridor with significant forest and agricultural coverage 
(Dejchanchaiwong et al., 2023). In addition, aerosol transport from biomass burning in 
parts of Myanmar and Laos also impacts the air quality in northern Thailand (Chantara et 
al., 2019). From the LCS measurements, the average RH and temperature during the dry 
season ranged from 25-86% and 20.8-35.7°C, respectively, and the RH was 5-25% higher 
and the temperature was slightly higher during the rainy season. Increased RH levels may 
cause particle swelling, leading to an overestimation of PM concentrations. 
 
Table 3. Statistical summary of the PM2.5 measurement parameters by season from 
February 14, 2022, to July 31, 2022 

Season Parameter Unit Reference 
Measurements 

LCS Measurements 

Mean±SD Range Mean±SD Range 
Dry        

  PM2.5 µg/m3 37.7±16.7 3.0 – 96.0 43.4±21.8 1.0 – 148.0 
  T C 27.6±4.4 17.0 – 39.1 28.6±2.9 20.8 – 35.7 
  RH  % 60.8±18.7  18.0 – 99.0 58.6±12.2 25.0 – 86.0 
        

Rainy        
  PM2.5 µg/m3 14.6±6.2 3.0 – 58.0 11.3±8.4 0.0 – 24.8 
  T C 27.3±3.2 21.7 – 37.6 28.0±1.9 24.8 – 34.2 
  RH  % 76.1±16.3 37.0 – 99.0 75.1±9.2 47.0 – 91.0 

 
Figure 3 illustrates the seasonal variation in the 24-hour-average PM2.5 

concentration measured using the LCS and reference monitor. Overall, the uncalibrated 
LCS measurements generally followed the trend observed in the reference measurements.  
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Figure 3. Twenty-four-hour average PM2.5 concentrations measured using the reference 
monitor (PCD) and the LCS from February 14, 2022, to July 31, 2022, in Chiang Mai, 

Thailand 
 

Notably, during the hottest month of the year in Thailand (April), the uncalibrated LCS PM2.5 
concentrations were approximately 1.5 times higher than those recorded using the 
reference-grade monitor. Many low-cost sensors tend to saturate at high PM2.5  
concentrations, typically above 100 µg/m³, leading to overestimated readings. This  
limitation in sensor design prevents accurate measurement during severe pollution 
episodes, resulting in inflated concentration values (Dejchanchaiwong et al., 2023). This 
finding is consistent with a previous study in Wenshang County, Shandong Province, China 
(Hua et al., 2021), the authors of which reported that LCSs overestimated PM2.5 
concentrations by approximately 1.4 times in dry conditions and 2.0 times in humid 
conditions compared to a reference monitor. In contrast, our findings showed that LCS 
PM2.5 concentrations were consistently underestimated by approximately 2 times during 
the rainy season, particularly in June and July, when heavy rainfall occurred in Chiang Mai. 
This result contradicts the expected behavior of LCSs, which generally overestimate 
concentrations at high RH levels due to particle swelling. The unexpected underestimation 
observed in our study could be attributed to limitations in the sensor's response mechanism 
under high humidity conditions, which may have caused interference in the sensor's ability 
to accurately detect PM concentrations. Another possible explanation for this 
underestimation is the condensation effect, where the accumulation of moisture on the 
sensor surface might have reduced the efficiency of particle detection, leading to lower 
readings (Park et al., 2021). In our study, PM2.5 concentrations measured using LCSs were 
found to be 75.8% higher than those measured by reference instruments during the dry 
season. This finding aligns with (Dejchanchaiwong et al., 2023), who reported that the 
Plantower LCS overestimated PM2.5 concentrations in Chiang Mai, which reached 246 
µg/m3/d during the dry season. However, we also observed that RH significantly influenced 
LCS particulate matter measurements performance. Under high RH conditions, the LCS 
tended to underestimate the actual values from May to August (the rainy season) (79.3% 
lower). LCS devices are known to be highly sensitive to RH, and numerous studies have 
shown that LCS performance deteriorates with low PM2.5 concentrations and high RH (Hua 
et al., 2021). Similarly, Jayaratne et al. (2018) found that PM2.5 concentrations reported by 
an LCS increased exponentially with RH up to 75%. These findings highlight the 
importance of calibrating LCSs for different environmental conditions, such as high-
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humidity conditions during the rainy season in tropical regions. In addition, our results align 
with findings from other countries, such as the United States (Sousan et al., 2016), where 
it was observed that LCS devices respond differently depending on the climate conditions. 
It has been recommended that calibration is performed under specific conditions to 
minimize errors (Nalakurthi et al., 2024). Thus, RH can significantly impact the accuracy of 
PM2.5 concentration measurements using LCSs. 

The linear regression R2 value used for comparing the PM2.5 concentration data 
from the LCS and reference monitor was notably high (0.947) (Figure 4). A slope value 
significantly deviating from 1 indicates that potential systematic bias or inconsistency in 
measurements caused by variations in humidity and temperature and/or interference from 
other particulate matter such as dust or pollen can skew the results, particularly during 
high-concentration events (Jayaratne et al., 2018). Notably, some extreme values were 
observed when the PM2.5 concentration exceeded 70 µg/m3, resulting in an unstructured 
pattern. This anomaly can be attributed to the significant air pollution contribution from 
biomass burning during the dry season (Chantara et al., 2019; Pani et al., 2019; Thepnuan 
et al., 2019; Dejchanchaiwong et al., 2023). However, the source contribution is not the 
only factor affecting measurement error. The performance of the LCS can also vary at 
lower PM2.5 concentration levels. For instance, measurements below 15 µg/m³ may exhibit 
greater relative error due to the sensors’ inherent limitations in sensitivity and accuracy at 
lower concentrations. In addition, the response time of the LCS can lead to discrepancies 
during rapid changes in PM2.5 levels, particularly during episodes of high pollution 
(Jayaratne et al., 2020). A previous study on calibrated LCS PM2.5 data from three different 
locations in Thailand revealed that the LCS response varied depending on the type of 
aerosols (Dejchanchaiwong et al., 2023). Specifically, LCSs were more responsive to 
emissions from open biomass burning than to traffic emissions in large cities such as 
Bangkok. Moreover, the particle size from biomass burning predominantly ranges from 0.5-
2.5 µm (Samae et al., 2021) or 0.5-1.0 µm in accumulation mode (Hata et al., 2014). Thus, 
the overestimation of PM2.5 concentration by the LCS could be due to its heightened 
sensitivity to biomass burning emissions.  

 
3.2 Feature selection for the correction models 
 
Table 4 demonstrates the feature selection process to determine the optimal calibration 
models for LR, GAM, and RF. This process involved evaluating five different sets of 
predictors for each method. For LR, the model with the lowest AIC and the highest 
performance metrics was LR5, which included the following predictors: LCS PM2.5, 
temperature, relative humidity, month, and time. Therefore, LR5 was selected as the final 
model for multiple linear regression (MLR) calibration. Similarly, for GAM, the model with 
the lowest AIC, highest R², and lowest RMSE was GAM5, which also included all five 
predictors (LCS PM2.5, temperature, relative humidity, month, and time), making it the best 
choice for calibration. In contrast, for RF, the model with three predictors (LCS PM2.5, 
temperature, and relative humidity) exhibited the most favorable performance metrics, as 
RF4 and RF5 showed slightly increased AIC and RMSE values. Consequently, RF3 was 
selected as the final calibration model for the random forest method. These selected 
models, LR5, GAM5, and RF3, provided the best balance between predictive accuracy and 
model complexity. Moreover, a significant interaction between the factors was not found 
(Table 5). 
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Figure 4. Hourly PM2.5 concentration measurements by the LCS and reference monitor 
from the PCD. The solid line is for slope = 1 while the dashed circle highlights the 

extreme values. 
 
Table 4. Feature selection for calibration models (LR, GAM, RF) 

Model Predictor(s) AIC R2 
LR1 LCS PM2.5 24136.75 0.886 
LR2 LCS PM2.5; Temperature 23871.02 0.894 
LR3 LCS PM2.5; Temperature; Relative humidity  23713.99 0.898 
LR4 LCS PM2.5; Temperature; Relative humidity; Month 23664.64 0.899 
LR5 LCS PM2.5; Temperature; Relative humidity; Month; 

Time 
23591.78 0.901 

GAM1 LCS PM2.5 23235.34 0.910 
GAM2 LCS PM2.5; Temperature 22961.99 0.917 
GAM3 LCS PM2.5; Temperature; Relative humidity  22899.46 0.918 
GAM4 LCS PM2.5; Temperature; Relative humidity; Month 22873.51 0.919 
GAM5 LCS PM2.5; Temperature; Relative humidity; Month; 

Time 
22809.23 0.920 

RF1 LCS PM2.5 13652.13 0.906 
RF2 LCS PM2.5; Temperature 13531.94 0.909 
RF3 LCS PM2.5; Temperature; Relative humidity  13420.21 0.911 
RF4 LCS PM2.5; Temperature; Relative humidity; Month 13503.25 0.910 
RF5 LCS PM2.5; Temperature; Relative humidity; Time 14191.42 0.891 
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Table 5. Assessment of potential interaction between factors  

Variables p Conclusiona 
LCS PM2.5 x Temperature  No interaction 

LCS PM2.5 <0.001  
Temperature 0.379  
Interaction <0.001  

LCS PM2.5 x Relative humidity  No interaction 
LCS PM2.5 <0.001  
Relative humidity 0.232  
Interaction <0.001  

Temperature x Relative humidity  No interaction 
Temperature 0.023  
Relative humidity 0.181  
Interaction 0.116  

aInteraction was considered significant when p-values of all terms were significant 
 
3.3 Performance evaluation of the correction models 
 
The robustness of the selected calibration models was evaluated through 10-fold cross-
validation and holdout validation. The results of the 10-fold cross-validation for the selected 
MLR, GAM, and RF models were derived from the same training-validation datasets. The 
average RMSE and R² values for the three models obtained from the 10-fold cross-
validation were 5.494 µg/m³ and 0.900 for MLR, 5.084 µg/m³ and 0.915 for GAM, and 5.742 
µg/m³ and 0.892 for RF, respectively (Table 6). 
 
Table 6. Comparison of model fitting and 10-fold cross-validation for hourly PM2.5 
concentrations calibrated using selected LR, GAM, and RF models 

Model R2 RMSE (µg/m3) MAE (µg/m3) MAPE (%) 
LR5  0.900 5.494 3.960 18.29 
GAM5 0.915 5.084 3.701 17.13 
RF3 0.892 5.742 4.223 20.78 

 
The results of the holdout validation are presented in Figure 5. The differences in 

RMSE between the 10-fold cross-validation and the holdout validation were approximately 
0.136, 0.257, and 0.317 µg/m³ for MLR, GAM, and RF, respectively. Figure 5a-f illustrates 
the relationships between the reference PM2.5 measurements and the calibrated LCS 
output for the training and validation sets using the three correction models. 

The R² values for the models trained using 2044 data points from the training set 
ranged from 0.970 to 0.976, thus indicating strong explanatory power for all three models. 
In terms of RMSE, GAM exhibited the lowest value (5.011 µg/m³) with the training set 
(Figures 5a, 5c, and 5e). A validation set of 1052 data points was used to further assess 
the performance of these models on new data (Figures 5b, 5d, and 5f) This time, the R² 
values for all three models ranged from 0.963 to 0.972 (thus once again indicating strong 
explanatory power), and the lowest RMSE value (5.341 µg/m³) was attained with GAM. In 
conclusion, the RMSE values for GAM were found to be 9% and 11% lower than those for 
MLR and RF in the training sets, and 6% and 15% in validation sets, respectively, thus 
indicating that GAM outperformed the other two models in terms of predictive accuracy. 
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Figure 5. Model performance of (a) multiple linear regression (MLR) with training 

data, (b) MLR with validation data, (c) generalized additive model (GAM) with training 
data, (d) GAM with validation data, (e) random forest (RF) with training data, and (f) RF 

with validation data. The RMSE, R², and n are listed in the graphs. 
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Overall, the uncalibrated LCS PM2.5 measurements exhibited good agreement with 
the corresponding measurements from the reference monitor (R2 = 0.947) (Figure 3). Both 
the MLR and GAM approaches outperformed the RF model, likely due to the inclusion of 
environmental and temporal variables in the former two. The RF approach appears to be 
limited when applied to data beyond the range of the training set, which is a common 
limitation of tree-based algorithms (Dejchanchaiwong et al., 2023). Moreover, the R² values 
for the GAM model improved significantly with the inclusion of environmental factors such 
as RH and temperature, and temporal factors (monthly in this case). The integration of both 
meteorological and chemical parameters resulted in calibrated LCS PM2.5 concentrations  
that more closely matched the reference PM2.5 measurements (Hua et al., 2021). This is 
consistent with the findings of Jain et al. (2023), who reported daily-averaged PM2.5 
concentrations ranging from 4-75 µg/m³ (mean = 12.0 µg/m³), with weekend concentrations 
being approximately 10% higher than weekday concentrations. These results indicate that 
including temporal valuation, such as the time of day, can further enhance model 
performance. In contrast to previous studies where RF demonstrated superior performance 
to MLR and supported vector regression (SVR). Compared to SVR, the RMSE values of 
RF were 35% and 85% lower for both the training and validation sets, respectively (Wang 
et al., 2020). Notably, unlike our model, a temporal factor was not included in the 
aforementioned study. This discrepancy could be due to the larger datasets utilized in 
previous studies, which could have facilitated better model training and enhanced 
prediction accuracy compared to the present study. Among the few in-field correction 
studies, one research group employed a similar GAM model to correct LCS data from three 
Taiwan EPA stations in December 2017, and after applying the correction, the RMSE 
values decreased from 15.55-31.34 µg/m³ to 4.88-9.66 µg/m³ (Lee et al., 2019). These 
findings are comparable to our studies, which was a reduction in RMSE from 7.398 µg/m³ 
to 5.084 µg/m³ (Table 6).  

 
3.4 PM2.5 corrections 
 
Figure 6 illustrates the reduction in the percentage of overestimated PM2.5 values 
(exceeding 10 µg/m³) by the LCS after applying the LR, GAM, and RF models, decreasing 
from 12.3% to 3.7%, 1.7%, and 1.8%, respectively. Similarly, the percentage of 
underestimated PM2.5 values (exceeding 10 µg/m³) decreased from 5.2% to 2.2%, 3.3%, 
and increased to 5.5%, respectively. These results suggest that the GAM model is 
particularly effective in mitigating overestimation at high PM2.5 levels, while the RF model 
performs well in addressing underestimation at low PM2.5 levels. These findings contrast 
with previous research (Hua et al., 2021), which indicated that the GAM model performed 
well in conditions of high RH and low PM2.5 concentrations. In addition, it is possible that 
the types and characteristics of aerosols present in the study area influenced the calibration 
performance (Dejchanchaiwong et al., 2023). Figure 7 presents a time series plot 
comparing raw LCS PM2.5 values with the model-corrected PM2.5 values using MLR, GAM, 
and RF for the first half of 2022. Following calibration using observations from nearby PCD 
stations (35T/CM), the GAM-corrected PM2.5 levels closely aligned with those from 
reference-grade monitors, significantly reducing the overestimation observed in the raw 
PM2.5 measurements.  However, discrepancies persisted during periods of very high PM2.5 
concentrations (April), and corrections during the rainy season exhibited greater variability, 
which may be attributed to the influence of RH. Similarly, the MLR model demonstrated 
performance comparable to GAM but exhibited higher errors during extreme PM2.5 events.  
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Figure 6. Error distributions of the LCS PM2.5 data: (a) uncalibrated, (b) after MLR 
calibration, (c) after GAM calibration, and (d) after RF calibration 

 
 

 
 

Figure 7. Time-Series of raw PM2.5, reference-grade monitoring, and model-corrected 
PM2.5 using the MLR, GAM, and RF models 

 
In contrast, the RF model performed effectively during lower PM2.5 levels (range 10-40  
µg/m³). Normal Q-Q plots showed that residuals deviated from normality, suggesting that 
parametric models like MLR may not adequately capture extreme PM2.5 events. Non-linear 
regression or machine learning models are recommended to improve model accuracy 
(Figure 8). In addition, the Durbin-Watson test results (Table 7) indicate positive 
autocorrelation in MLR residuals, violating the independence assumption, whereas GAM 
showed better adherence. These findings support exploring non-linear or machine learning 
approaches to improve model robustness and accuracy. 
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a) Linear Regression 

 

b) Generalized Additive Model 

 
 

c) Random Forest 
 

 
 

 
Figure 8. Normal Q-Q Plot 
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Table 7. Durbin-Watson test result 

Model Iteration D-W Statistic 
LR 1 1.58 
LR 2 1.83 
LR 3 1.61 
LR 4 1.55 
LR 5 1.52 
LR 6 1.69 
LR 7 1.78 
LR 8 1.77 
LR 9 1.70 
LR 10 1.69 

GAM 1 1.84 
GAM 2 1.92 
GAM 3 1.85 
GAM 4 1.66 
GAM 5 1.90 
GAM 6 1.88 
GAM 7 1.91 
GAM 8 1.91 
GAM 9 2.13 
GAM 10 1.75 

Abbreviations: LR, linear regression; GAM, generalized additive model 
 
3.5 Limitations of this work 
 
This study has several limitations that should be acknowledged. A more comprehensive 
understanding of the correction factors and their respective characteristics is necessary. 
Specifically, stratifying the data by season to examine the influence of each factor on the 
model could provide valuable insights. However, our attempt at seasonal analysis resulted 
in decreased model performance, which can be attributed to the relatively small dataset 
and data being collected from a single station over 6-months. This likely affected the 
model's capacity and made generalization of the findings over a longer time period 
impossible. Therefore, we will consider incorporating data spanning multiple years 
collected from multiple LCS stations to develop a more robust calibration model that can 
deal with temporospatial variability in the future.  

Although the calibrated models significantly improved data accuracy, potential 
deviations could still arise from the inherent differences between ambient and street-level 
PM2.5 concentrations. Street-level PM2.5 monitoring can be influenced by various local 
emission sources, such as from vehicles and agricultural burning, while reference-grade 
monitoring stations are designed to measure well-mixed ambient PM2.5 concentrations free 
from direct local emission interference. In this study, the LCS station was located within a 
4 km radius of the reference-grade monitoring station and we assumed that PM2.5 particles 
were uniformly distributed within this distance. However, spatial variability in the emissions 
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data could have made this assumption moot. In scenarios where LCS co-location with 
reference-grade monitoring is not feasible, alternative approaches such as employing 
spatial interpolation methods, such as kriging or inverse distance weighting, could be 
considered to estimate PM2.5 concentrations at unsampled locations, accounting for spatial 
variability. In our study, we provide a practical and resource-efficient approach for 
calibrating LCS data without the need for exact co-location or extensive spatial 
interpolation, by demonstrating that PM2.5 concentrations are relatively uniform over 
distances up to 7 km. This is particularly beneficial in areas where resources for 
establishing extensive monitoring networks are limited. 

These findings underscore the importance of establishing a more extensive 
network of LCS stations to assess local ambient air quality comprehensively. Future 
research should consider co-locating LCSs with reference-grade stations when possible to 
facilitate direct comparisons under identical environmental conditions, thereby improving 
calibration accuracy and reducing potential bias. In addition, a systematic sensitivity 
analysis could be conducted to assess the influence of various factors, such as local 
emission source intensity, topographic conditions, prevailing meteorological parameters 
(e.g., wind speed and direction), and background pollution levels, on the spatial distribution 
of PM2.5 and the reliability of assumptions about uniform pollutant dispersion. This would 
help identify conditions under which co-location or advanced spatial interpolation methods 
are essential, thereby informing the design and implementation of more effective LCS-
based air quality monitoring programs. Ultimately, this approach would enhance the 
representativeness of the calibration process and improve the overall reliability of LCS-
based air quality monitoring. 
 

4. Conclusions 
 
In the present study, hourly PM2.5 measurements from LCSs installed at NARIT in Chiang 
Mai, Thailand, showed good agreement with those from reference-grade air quality monitor 
(PCD at 35T station) located 4 km away. The LCS PM2.5 concentrations were likely 
overestimated during the dry season and underestimated during the rainy season. The 
effects of key environmental factors such as RH and temperature on the performance of 
LCS PM2.5 concentration monitoring were investigated.  

RH had significant nonlinear relationships with both the properties of the particles 
and the response of the LCSs. To address this, nonlinear regression approaches, 
specifically GAM and RF, were employed to calibrate the LCS PM2.5 concentrations. Our 
study underscores the importance of including environmental and temporal factors in the 
GAM approach to enhance the accuracy of LCS PM2.5 measurements. However, the GAM 
model in this study faced limitations in handling extremely high RH levels. Therefore, 
stratifying the dataset by season may offer a viable alternative to developing a more 
effective calibration algorithm for LCS PM2.5 measurements. Extending the observation 
period will be essential to comprehensively understand the characteristics of seasonal 
PM2.5 variation. The performance of the RF model was lower during extreme PM2.5 events, 
suggesting its applicability could be compromised during periods of elevated PM2.5 levels, 
such as those caused by agricultural burning during the dry season from February to April 
in Thailand. Despite this, we successfully demonstrated the value of employing a 
calibration method and confirmed that nonlinear regression approaches were more 
effective than conventional linear regression. 

As LCSs hold promise for supporting regulatory air quality monitoring, especially 
for tracking 24-hour average PM2.5 levels, further improvements in sensor accuracy, 
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environmental robustness, and validation will make them more fit for the task. Providing 
strong calibration methods to address environmental sensitivity could enable LCS networks 
to become valuable tools for air quality management; high-coverage real-time pollution 
monitoring could help public health policies provide timely interventions to protect 
community health. 

In the future, we will assess LCS PM2.5 concentrations across different locations 
over extended periods to capture the full seasonal cycle of PM2.5 pollution throughout 
Thailand. Moreover, further exploration of diverse calibration methods is needed to 
determine optimal solutions for calibrating LCS PM2.5 concentrations under varying 
conditions, which should enhance the reliability and effectiveness of LCS-based monitoring 
in Thailand. 
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