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Abstract

Hevea brasiliensis Muell. Arg, a rubber tree, is a highly heterozygous perennial plant
usually grown from seed (seedlings). The tree exposed the disadvantage of no genetic
uniformity. Unlike a clone, it was propagated by bud grafting from a single tree, possessing
an identical genetic constitution and exhibiting uniformity among them. The leaf shape of
seedlings is highly variable, while the leaf shape of clones is slightly variable. It also
appears in similar characteristics to other clones. Therefore, the variation of leaf shape
becomes the critical concern to distinguish them. The common cultivation clone RRIM 600
was considered for experiments, the dataset of RRIM 600 clones and seedlings was used
for training the model. The objective of the research was to compare the performance of
deep neural networks for H. brasiliensis clone identification, including VGG16, ResNet50,
InceptionV3, MobileNet, Xception, DenseNet201, NASNetLarge, MobileNetV2,
EfficientNetB7, RegNetX064, RegNetY064, ResNetRS50 and ConvNeXtBase. The
appropriate hyperparameters were found through k-fold cross validation. The models were
trained using transfer learning technique with FEA. Various augmentation techniques were
applied in order to improve the performance. The results revealed that improved retraining
the model on low resolution images by implementing ConvNeXtBase as feature extractor
with S1 achieved the highest accuracy of 97.82% on a quarter of dataset (E3) and
outperformed classification performance across all thresholds. This research suggests the
potential for developing this Hevea clone identification application as a tool to overcome
the lack of experienced Hevea clone inspectors.
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1. Introduction

Hevea brasiliensis Muell. Arg is one of the important economic trees. It produces natural
rubber, which is an essential raw material broadly used in many products such as aircraft
and car tires, automotive parts, medical devices, surgical gloves, condoms, baby pacifiers,
shoes, elastic and adhesives, toys, etc. Thailand has been the world’s largest producer
and exporter of natural rubber (Arias & van Dijk, 2019). In 2024, Thailand produced 4.79
million tons of natural rubber (Office of Agricultural Economics, 2024a), 3.91 million tons
for export (valued at 270,706 million baht), and 1.25 million tons for domestic consumption.
Currently, the cultivated area has grown to exceed 3.81 million hectares throughout the
country (Office of Agricultural Economics, 2024b). Traditionally, rubber was grown only in
the southern and eastern regions of Thailand where environmental conditions were
favorable. However, the rubber plantations rapidly expanded to the northern and
northeastern regions between 2004 and 2006 because the government supported and
promoted rubber as a new cash crop that would increase income and stabilize the economy
of small landholders (Poungchompu & Chantanop, 2015).

The rubber tree is a highly heterozygous perennial plant with a harvest lifespan of
more than 20 years. The yield is largely dependent on the rubber clone planted and the
agro-management. Rubber clones developed through genetic improvement with consistent
yield potential and cultivation adaptability are recommended for commercial cultivation.
Clone inspection can help cultivators to ensure that the right clones are used for planting
because it can guarantee that recommended rubber clones produce the maximum yield in
the future. Commonly, rubber clones are identified by recognizing its specific organs such
as leaf storey, leaf, petiole, bark, axillary bud, or combinations thereof (Liyanage, 2021).
These visual observations of the morphological parts of the trees are likely to be influenced
by personal skill and environmental conditions (Saraswathyamma, 2000). Accurate clone
identification requires experts with adequate experience. In fact, molecular markers are
more reliable for clone identification than morphology, but they are often time and cost
consuming.

The right clone of rubber planting materials has been inspected on immature stage;
some feature cannot be considered in the identification process. The propagation of H.
brasiliensis is implemented by seed and bud graft. Trees raised from seeds are referred to
as seedling trees, which are not genetically uniform. Since rubber is a cross-pollinated plant
and its genetics are heterozygous, each seedling tree has a distinct genotype. On the
contrary, a population of budded trees from a single tree is known as a “clone”. All such
trees possess identical genetic constitutions and existing uniformity among them. The leaf
shapes of seedlings are highly variable, while the leaf shapes of clones are slightly variable.
In addition, advances in genetic improvement produce new clones, but the genetic base of
the existing population is very narrow. Therefore, it appears in similar characteristics to
former clones. Variation of leaf shape is one of the critical concerns to distinguish them.
Since the limitation of morphological characteristics makes accurate identification more
difficult, Pratomo et al. (2021) and Pasaribu et al. (2022) suggested that the characteristics
presentin H. brasiliensis leaves were suitable for consideration as a useful variable in clone
classification. Thus, leaves are the only suitable morphological features considered for
identification.

Recently, the characteristics of H. brasiliensis leaves were studied using traditional
feature extraction techniques (Anjomshoae et al., 2015; Anjomshoae & Rahim, 2018) and
machine learning algorithms such as Logistic Regression, Naive Bayes, K-Nearest
Neighbors (KNN), Random Forest and Artificial Neural Network (ANN) (Thurachon &



Romruensukharom & Nonsiri Curr. Appl. Sci. Technol. , Vol. ... (No...), 0264760

Sumethawatthanaphong, 2014; Pongsomsong & Ratanaworabhan, 2021; Yaiprasert,
2021). These were utilized in attempts to overcome the challenges in classifying the
complicated traits. An impressive type of ANN is Convolutional Neural Network (CNN)
which is specifically designed for image recognition (Zeiler & Fergus, 2014; O’Shea &
Nash, 2015). The algorithm can find the best patterns through feature extraction. This
process can be done automatically through CNN with less preprocessing and provided
better classification performance than using hand-crafted features (Huang et al., 2019;
Tiwari, 2020; Kanda et al.,, 2021). Furthermore, CNN also achieved satisfactory
performance on various tasks related to H. brasiliensis leaves (Hassan et al., 2022; Zeng
et al.,, 2022; Kaewboonna et al.,, 2023; Balaga & Patayon, 2024;) and other plant
classification (Chang & Lai, 2024; Li et al., 2024; Ngugi et al., 2024; Nibret et al., 2025).

The challenges in computer vision that required highly experienced specialist led
to the development of a more complex architecture (Bengio et al., 2021) called “Deep
Neural Network”. This architecture was built up based on ANN and CNN with the ability to
classify new unseen data more accurately. The advantages of this technology may result
in a more efficient H. brasiliensis classification process. Therefore, the objective of this
research was to compare the performance of a deep neural network that was suitable for
H. brasiliensis clone identification from leaf characteristics.

2. Materials and Methods

This research was conducted using a deep learning approach. The experiment was
performed based on related theory and research.

2.1 Artificial neural network

Artificial neural network (ANN) is a computational model inspired by biological neural
network in the human brain (Rosenblatt, 1958; Kelleher, 2019). It consists of several
interconnected artificial neurons. Data from an input layer is processed through hidden
layers. In an artificial neuron, weights, biases and activation functions are applied. The data
is fed forward to the next hidden layer and flows to the output layer for decision making.
This procedure allows the network to learn complex relationships between data.

2.2 Convolutional neural network

Convolutional neural network (CNN), a scalable approach that is an extension of ANN, was
specifically designed for image recognition and was inspired by human visual systems
(Fukushima, 1980; LeCun & Bengio, 1995). It leverages mathematical principles and
contains a set of convolutional and pooling layers. In the CNN, multiple filters are applied
to recognize specific pattern and allow the computer to derive meaningful information from
the images, called convolutional operations. The feature extraction process in
convolutional layer (Dumoulin & Visin, 2018), in which useful features of the image are
extracted by sliding filters over the image and feeding to a convolutional function. This
process is performed by matrix multiplication and storing them as a multidimensional array
(width, depth and height) corresponding to RGB in an image. The product between each
element (pixels) of the overlapped input element is computed and the results are summed
up to obtain the output in the current location. The procedure can be repeated using various
filters to generate multiple feature maps as desired. The produced feature maps consist of
different type of features such as curves, edges, texture and other patterns (Figure 1).
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Figure 1. Convolutional operation

One of the key success in convolution is the simple process of removing pixels
while maintaining important information (Dumoulin & Visin, 2018), called pooling operations.
The feature maps obtained from convolutional operation are pooled with max pooling, in
which the highest values in each filter are pooled, or average pooling, in which the average
of all values in the filter is calculated and pooled to the new reduced feature maps (Figure
2). These operations enables the models to focus on high-level features more efficiently.

Input Filter Pooled Feature Input Filter Pooled Feature

Figure 2. Max pooling (a) and Average pooling (b)
2.3 Pre-trained model

Pre-trained model is deep neural network (DNN) available on Keras (Chollet, 2015) with
weight initialization that represents features of thousand different classes traind on
ImageNet (Deng et al., 2009) dataset. These models were designed and developed in
different architecture with high potential of feature extraction in multiple level of abstraction
(LeCun et al., 2015). Their use as feature extractors can address the lack of data in DNN
and reduce time consuming on training phase. Moreover, this pre-trained model also
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improves robustness and uncertainty (Hendrycks et al., 2019). The success on ImageNet
challenge in advancing computer vision and deep learning research can be achieved by
high performance on image classification and object detection (Krizhevsky et al., 2012). It
is established that DNN has become one of the mainstream developments in the field of
Artificial Intelligence (Al). The models appear in various families as follows:

2.3.1VGG

VGG (Visual Geometry Group) is an early generation of DNN architecture proposed by
Simonyan and Zisserman (2014), which was based on the simple concept of enhancing
the performance of feature extraction by increasing the depth of CNN in sequential form
with very small convolutional filters to 16-19 weight layers. The architecture is beneficial
for more complex classification task and achived state-of-the-art performance.

2.3.2 ResNet

The development of deeper sequential neural network exposed a degradation problem
called “vanishing gradients” that leads to higher training error. ResNet (Residual Network)
was introduced by He et al. (2016) to address this problem by introducing shortcut
connections that can skip a few layers. The connections perform identity mapping
referenced to the input layer followed by residual function. Preserved useful information
flows directly from the initial layer to deeper layers resulting in easier weight updating for
network training. This concept enabled CNN to be of greater depth and become the
foundation of new architectures. Moreover, the model was developed into a new version
(Xie et al., 2017). The training strategy and architecture ratio were improved (Bello et al.,
2021). Some ResNet architectures proved superior to state-of-the-art architectures.

2.3.3 Inception

A complex DNN called “GooglLeNet” built up from Inception module was presented by
Szegedy et al. (2015) to improved utilization of the computing resources. The module was
inspired by the ability of the biological visual cortex to identify patterns at different scales.
The Inception network was heavily constructed based on the network in network approach
(Linetal., 2014). The network consists of different sub-modules that are multi-scale feature
extractors that work in parallel and outperform conventional deep neural network.
According to complex architecture, this module was improved in later version (Szegedy et
al., 2016; Szegedy et al., 2017) with higher efficiency.

2.3.4 MobileNet

The light weight DNN called MobileNet was presented by Howard et al. (2017). This
network was designed and developed under limitations of memory and latency. It was built
from depthwise separable convolutions. In the module, depthwise convolutions were
performed by applying a single filter to each input channel followed by pointwise
convolution to combine the outputs. This concept drastically affected reduced
computational power and model size. Although MobileNet did not achieve new record
accuracy, the model was smaller and faster than before and was highly efficient for mobile
and embedded vision applications. The model in this family was also improved by applying
the concept of residual function (Sandler et al., 2018) and network architecture search
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(Howard et al., 2019) to the next generation achieved state-of-the-art performance on
mobiles.

2.3.5 Xception

Xception is an extreme version of Inception proposed by Chollet (2017). The standard
convolutional layers (Inception module) were replaced by modified depthwise separable
convolutions with residual connections. The module performs cross - channel correlation
mapping (pointwise convolution) then separates one spatial correlation for every output
channel (depthwise convolution). The network outperformed the new version of Inception
on large datasets.

2.3.6 DenseNet

The concept of shorter connections results in deeper CNN with higher efficiency training.
DenseNet (Dense Convolutional Network) was introduced by Huang et al. (2017) with
dense connectivity in a block of network. The connection performs reusable feature by
connecting each layer to every other layers for improving information flow. Each layer
receives feature maps of all preceding layers for concatenation. This architecture not only
acheives high performance but also improves the efficiency of the network.

2.3.7 NASNet

A new technique for automating design of CNN architecture without human expertise,
called Neural Architecture Search (NAS) was presented by Zoph et al. (2018). The proper
architecture was discovered in search space with reinforcement learning on a dataset of
interest and consisted of two types of repeated blocks or cells. The first type is
convolutional cells that return a feature map of the same dimension (Normal Cell) and the
second type (Reduction Cell) return a feature map where the dimension is reduced. This
technique provided scalable architecture that required less computation than human
designed and achieved accurate result.

2.3.8 EfficientNet

An efficient technique for scaling up CNN was introduced by Tan and Le (2019) based on
observation of deep neural network development. This is commonly acheived under limited
resource then scaled up for better performance. This network balancing technique
uniformly scales up the width, depth and resolution at all dimensions at constant ratio,
initializing from a new baseline model designed by NAS, resulting in various size of models
in the family. A CNN can be scaled up effectively and set up new standard of CNN design.

2.3.9 RegNet

A new network design paradigm was presented by Radosavovic et al. (2020) to discover
efficient design principles across all setting. It combining the adventages of manual design
and NAS. The simple and fast DNN call RegNet was achieved through (AnyNet) network
design spaces. This network outperformed some state-of-the-art DNN, and especially
overcoming EfficientNet in term of training speed on GPU.
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2.3.10 ConvNeXt

A new architecture ConvNeXt, inspired by the design of vision transformers (ViTs)
(Dosovitskiy et al., 2021), was proposed by Liu et al. (2022) to improve the performance of
CNN. The network modernized the concept of ResNet and resulted in architecture and
training procedure being redesigned to be closer to ViTs. In the design process, the stage
compute ratio was adjusted. Input preprocessing was changed from standard convolution
(Stem) to non-overlapping convolution (Patch) (Liu et al., 2021), the idea of new version of
ResNet was adopted to ResNeXtify (a deep convolutional network) which is the operation
similar to self-attention (Cordonnier et al., 2020) in ViTs. Inverted bottle neck was created
in a block of depthwise with larger filter and utilized state-of-the-art parameter in each layer.
With these improvements, ConvNeXt surpassed ViTs and outperformed state-of-the-art
CNN.

Even though these DNNs have evolved into more advanced networks, they are
not suitable for all specific tasks. Therefore, the experiment with target task is required.
This research employed thirteen pre-trained models from aforementioned families to
compare the performance of the models in order to discover the optimal architecture.
Included were VGG16, ResNet50, InceptionV3, MobileNet, Xception, DenseNet201,
NASNetLarge, MobileNetV2, EfficientNetB7, RegNetX064, RegNetY064, ResNetRS50
and ConvNeXtBase.

2.4 Data acquisition

Fresh Hevea leaves were collected from the budwood and rootstock nursery in
Chachoengsao Rubber Regulartory Center. Healthy middle leaflets were taken from the
upper mature whorls and images were captured using a digital camera (Nikon COOLPIX
B700 and Fujifilm FINEPIX F300EXR). There were 36 images per leaf taken from various
viewpoints and orientations on a white background under controlled environment (Figure
3). The balanced dataset contains 28,800 images of 2 classes: the RRIM 600 Clone and
the RRIM 600 seedling. The RRIM 600 clone contains images of plants propagated by
budding while the RRIM 600 seedling contains images of plants grown from seeds. Clones,
unlike seedlings, do not exhibit highly distinct variations. Most of them possess more stable
morphological features, which can be used for identification.
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Figure 3. Sample images from leaf rotation and camera angle adjustment
2.5 Data understanding
The shape of the leaves is one of the characteristics commonly used to classify Hevea

clones. The middle leaflet of mature leaves is the ideal leaf for characterization. They often
appear in three basic forms (Table 1): elliptical, obovate and diamond, as shown in Figure 4.
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Table 1. Leaf shape characteristics of H. brasiliensis

Forms Characteristics
Elliotical The maximum width is on the middle and
P tapers equally towards base and apex.
The maximum width is found between the
Obovate .
middle of leaflet and apex.
Both sides of the leaf blade that divides
. along the midrib are not symmetrical. The
Diamond

widest part of the leaf on both sides is not
in the same position.

Elliptical Obovate

Elliptical Obovate

Diamond

Diamond

Figure 4. Leaf shapes of H. brasiliensis

The middle leaflet of RRIM 600 clone was considered as obovate form. However,
the heterozygous nature of the rubber tree affects the leaf shapes of RRIM 600 seedlings,
which appear in various forms. Therefore, leaf shape of RRIM 600 seedlings is highly
variable compared to RRIM 600 clone as shown in Figure 5.

2.6 Data preparation

Data quality and quantity directly affect the performance of a DNN. During the training
process, DNN learns from relationship between features of the dataset. The reliability of
model performance often relies on the quality of a given data. Therefore, data preparation
becomes a crucial process to make the model more robust. The data preparation process

can be describe as follows:
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Figure 5. Leaf shape variation of RRIM 600 seedlings
2.6.1 Image resizing

Training with high-resolution images requires high computational power and is time
consuming. It was also difficult to find a suitable architecture for H. brasiliensis. For faster
training, the dimension of images was carefully resized while maintaining their image
aspect ratio, as shown in Table 2.

2.6.2 Image augmentation

DNN requires a vast amount of comprehensive data. The number of images in data sets
was increased using two data augmentation techniques (Lei et al., 2019; Fonseka &
Chrysoulas, 2020) as detailed below.
1) Geometric augmentation: In this research, it consists of two methods:

- Traditional method: This is a simple and high efficiency method that involves
manual leaf rotation and flpping when taking a photo (Figures 6 and 7) (Zheng et al., 2016).

- Specific method: In H. brasiliensis clone identification, the leaves are captured
from various viewpoints. The camera angle is adjusted around 60 degrees from left to right
per every 45 degrees of leaf rotation (Figures 8 and 9).
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Table 2. Images resizing

Image Resizing

. Orginal Resized
Digital Camera - : - -
Width Height Width Height
Nikon COPLPIX 5184 pixe 3888 pixel 324 pixel 243 pixel
Fujifilm FINEPIX . . . :
F300EXR 2816 pixel 2112 pixel 352 pixel 264 pixel

a

Rotation
Vertical Flip

&

Horizontal Flip

Figure 6. Geometric augmentation (Traditional method)
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Figure 7. Sample images from geometric augmentation (Traditional method)

10
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Tilt View  Front View  Tilt View

Tilt View Front View Tilt View

Figure 9. Sample images from geometric augmentation (Specific method)

2) Photometric augmentation: This technique is artificially generated on a
computer. Guassian noise and radial distortion (Figure 10) are used to improve model
performance and prevent distortion effects from wide-angle lenses (Buquet et al., 2021),
illumination and temperature (Zhou et al., 2017) to accommodate environmental changes
(Dodge & Karam, 2016; Xiao et al., 2020) in real situations.

2.7 Modeling

The models were trained by using transfer learning from pre-trained models due to the
different resource constraints of each architecture (Bianco et al., 2018). The technique can
address the data shortage problem in DNN and reduce time consuming on training phase.
The concept of transfer learning is a training process by initializing weights from a pre-
trained model (Yosinski et al., 2014; Yin et al., 2017). There are two approaches:

1) Feature extraction approach (FEA): The pre-trained models were used as a
feature extractor. Related generic features were transferred and the specific features were
extract to train the custom classifier. This approach requires a similar domain problem and
a large amount of data.

2) Fine-tuning approach (FTA): The custom classifier was trained for introducing
to the specific task, then a few top layers of a frozen (convolutional layers) in the pre-trained
model were unfrozen and fine-tuned the higher order feature representation. This approach
takes more time than FEA.

This research explores suitable architecture using transfer learning techniques
based on experimental study. Hyperparameter tuning and the sufficient amount of data
were the key factors. Therefore, FEA was implemented for more efficient.

11
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Figure 10. Sample images from photometric augmentation
2.8 Evaluation metrics

A confusion matrix is a table displaying the number of predictions of a model and
it was utilized for the performance evaluations. Table 3 describes the performance of
classifiers in four terms:

- True positive (TP): the model correctly predicted the positive class. RRIM 600
clones were identified.

- True negative (TN): the model correctly predicted the negative class. RRIM 600
seedlings were identified.

- False positive (FP): the model incorrectly predicted the negative class. RRIM 600
seedlings were misidentified.

- False negative (FN): the model incorrectly predicted the negative class. RRIM
600 clones were misidentified.

Table 3. Confusion matrix

P’ (Predicted) N’(Predicted)
P (Actual) True Positive False Negative
N (Actual) False Positive True Negative

12
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The evaluation metrics used were accuracy, precision, recall, and F1-score. The
calculation of these evaluation metrics according to the values in the confusion matrix was
made by equations (1)-(4).

True Positive + True Negative

A —
ceuracy True Positive + True Negative + False Positive + False Negative (1)
Precision — True Positive )
rectston = True Positive + False Positive
True Positive
Recall =
eca True Positive + False Negative (3)
2 x True Positive
F1— Score = 4)

2 x True Positive + False Positive + False Negative

A receiver operating characteristics (ROC) curve was computed by plotting the
true positive rate (TPR) and false positive rate (FPR). The area under the ROC curve (AUC)
was constructed from this plot and denoted as the ability of the model to seperate classes
at different thresholds ranging from 0 to 1.

P PR(Sensitivity) — True Positive 5
(Sensitivity) = True Positive + False Negative ©)

False Positive
FPR(1 — Specificity) =

(6)

True Negative + False Positive

AUC = 1 ( True Positive ) + ( True Negative ) 7
" 2\\True Positive + False Negative True Negative + False Positive (7)

2.9 Experimental setup

The experiments were conducted on Intel Xeon E3-1270 v5 3.6 GHz desktop with 16 GB
RAM programmed in python 3.11.5 and modeling based on Keras and TensorFlow 2.15.

2.9.1 Dataset splitting
The dataset was devided into training and testing sets in ratio of 85 : 15 for three training
experiments : full dataset (800 leaves), half of the dataset (400 leaves), and one-quarter of

the dataset (200 leaves), respectively. The quantity of data and optimal size of the dataset
are shown in Table 4 and Table 5.

13
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Table 4. Data splitting of main dataset

Main Dataset (Original + Geometric Augmented))

Experiment Class Training Set Testing Set
RRIM 600 Clone 12,240 2,160
Full (E1)
RRIM 600 Seedling 12,240 2,160
RRIM 600 Clone 6,120 1,080
Half (E2)
RRIM 600 Seedling 6,120 1,080
RRIM 600 Clone 3,060 540
Quarter (E3)
RRIM 600 Seedling 3,060 540

Table 5. Data splitting for K-fold cross validation experiment

K-Fold Cross Validation Dataset (Original + Geometric Augmented)

Experiment Class Training Set Testing Set
RRIM 600 Clone 10,080 2,160
Full (E1)
RRIM 600 Seedling 10,080 2,160
RRIM 600 Clone 5,040 1,080
Half (E2)
RRIM 600 Seedling 5,040 1,080
RRIM 600 Clone 2,520 540
Quarter (E3)
RRIM 600 Seedling 2,520 540

2.9.2 Architecture design

The architecture of our models (Table 6) were designed as follows:

1) Feature extractor: Thirteen selected pre-trained models were used as feature
extractors.

2) Classifier: The custom classifer (Fully-connected layer) was added for H.
brasiliensis clone identification. Initially, the input data was transformed into one
dimensional vector via Flatten. For the hidden layer, Dense was added with a standard
activation function named RelLU to achieve lower traning loss (Ding et al., 2018; Javid et
al., 2021) followed by BatchNormalization. Each training batch was normalized for speedup
in training (loffe & Szegedy, 2015). Some units in the networks were randomly dropped by
dropout with probability 0.5 to prevent overfitting (Srivastava et al., 2014). After that, dense
output was added for the prediction according to the number of classes. Sigmoid was
applied to normalize the range of output into a probability value between 0-1 and the
threshold was set to 0.5 for binary classification.

14
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Table 6. Model architecture and hyperparameter setup

Hyperparameters Setting
$1 S2 S3 S4 S5 S6
64 x 64
Input Shape 71 x 71 (Inception)
75 x 75 (Xception)
Batch Size 32
Optimizer Adam Nadam RMSProp
Learning Rate 0.0001
Patience 10
(Early Stopping)
Model Architecture
Type Structure
VGG16, ResNet50, InceptionV3, MobileNet,
Layers Pre- Xception, DenseNet201, NASNetLarge,
trained MobileNetV2, EfficientNetB7, RegNetX064,
RegNetY064, ResNetRS50, ConvNeXtBase
Flatten

512 1024 512 1024 512 1024
256 512 256 512 256 512

256 256 256
Classifier RelLU

BatchNormalization
Dropout (0.5)
1
Sigmoid

Dense

Dense

2.9.3 K-fold cross validation

K-fold cross validation was applied to tune the models (Yadav & Shukla, 2016) during
training. The training set was equally splitted into ten folds. In each iteration, one of the ten
folds was held out for testing and the remaining folds were used for training. This process
was repeated until every fold had been used as testing set. After that, the results of all
iterations were averaged to estimate the model’s performance.

2.9.4 Hyperparameters

Finally, all images were scaled to the default minimum size of each model. The model
weights were updated after feeding each batch of 32 samples for training using Adam,
Nadam and RMSProp optimizer (Kingma & Ba, 2017; Dogo et al., 2022) with an effective
initial learning rate of 10* (Jepkoech et al., 2021). The patience of EarlyStopping was set
to ten epochs for loss monitoring. Training was forced to stop when a model’s performance
was not significantly improved for ten epochs.

15
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3. Results and Discussion
3.1 Experimental results

The models were trained with three different sizes of the dataset through k-fold cross
validation to find the appropriate hyperparameter and dataset. The results showed that the
models trained with S2 on full dataset (E1) achieved highest average accuracy of 96.12%
with 126h 21m 35s of training time while the models trained with S1 on half of dataset (E2)
and a quarter of dataset (E3) achieved the highest average accuracies of 93.76% with 32h
42m 40s of training time and 95.06% with 15h 14m 24s of training time, respectively (Table
7).

Table 7. The average performance of k-fold cross validation experiments

K-Fold Cross Validation Experiments

. Setting
Dataset Metrics S1 s2 s3 sa S5 S6
'X)% 0.9565 0.9612 0.9512 0.9499 0.9464 0.9482
Avg. 0.3164 0.2633 0.2973 0.4006 0.3593 0.5332
E1 Loss
Avg.
TT 65:15:09 126:21:35 82:32:31 117:47:39 49:41:42 99:01:12
(hh:mm:ss)
'AA\::% 0.9376 0.9370 0.9337 0.9292 0.9313 0.9280
Avg. 0.3822 0.5623 0.6856 0.5298 0.7145 0.6981
E2 Loss
Avg.
TT 32:42:40 63:14:12 39:25:20 83:18:13 23:13:32 49:38:21
(hh:mm:ss)
'AA\::% 0.9506 0.9471 0.9518 0.9439 0.9415 0.9387
Avg. 0.3457 0.3509 0.2619 0.6609 0.5272 0.8778
E3 Loss
Avg.
TT 15:14:24 30:36:48 19:51:.04 40:32:32  11:43:37 23:49:10
(hh:mm:ss)

Abbreviation: Avg. (Average), Acc (Accuracy), TT (Training Time)

Considering the trade-off between accuracy and training time, it seems training
with 81 on E2 and E3 datasets was an effective approach for retraining with train-test
splitting because it consumed less training time and smaller dataset size. Thus, in the
retraining phase, the models were trained with hyperparameters settings based on these
findings.

Retraining the models with S1 on E2 dataset, it was found that MobileNetV2
achieved the highest accuracy of 89.12% with 21m 04s of training time followed by
ConvNeXtBase and DenseNet201 with accuracies of 87.96% and 87.82% with 55m 22s
and 21m 46s of training time, respectively. NASNetLarge gave the lowest accuracy of
80.05% with 57m 22s of training time (Table 8). However, retraining the models with S1 on
the E3 dataset revealed that ConvNeXtBase achieved the highest accuracy of 98.61% at
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27m 57s of training time followed by RegNetY064 and ResNetRS50 at accuracies of
95.83% and 94.91%, respectively, at the same 6m 54s of training time. EfficientNetB7 gave
the lowest accuracy of 60.74% at 17m 41s of training time (Table 9).

Interestingly, the model that built up based on a simple DNN, VGG16, achieved
satisfactory performance that was the same as a complex DNN. Moreover, it performed
better than some state-of-the-art architecture with only a few minutes of training time.

With sufficient amount of data, ConvNeXtBase achieved the highest accuracy and
performed significantly better overall. NASNetLarge consumed the longest training time
but it was not the best model in any experiments, while MobileNet and MobileNetV2
achieved satisfactory performance under shorter training times compared to larger models.

Most of the trained models were able to learn this task but displayed varying
performance due to their architectures. In each experiment, most models performed slightly
lower than the best model. On the other hand, NASNetLarge and EfficientNetB7 were
relatively poor models, showing significant accuracy drop in some experiments, and it
seemed that NASNetLarge and EfficientNetB7 could not generalize well on this dataset.

The ROC curve (Figure 11) of retrained models with S1 on E2 dataset (a) showed
that ConvNeXtBase achieved the highest AUROC at 0.9762 followed by VGG16 and
MobileNetV2 at 0.9726 and 0.9704, respectively. The lowest curve was NASNetLarge at
0.8815.

For the retrained model with S1 on E3 dataset (b), ConvNeXtBase outperformed
classification performance with AUROC at 0.9993, resulting ROC curve approaches the
ideal top-left corner demonstrating the model's effectiveness, followed by ResNet50 and
RegNetY064 at 0.9927 and 0.9923, respectively. The lowest curve was NASNetLarge at
0.8992.

Table 8. The performance of the retrained models with half dataset (E2)

Retrained : Half (E2)

F1 - Training Time

Model Accuracy Loss Precision Recall Score (hh:mm:ss)
VGG16 0.8648 0.8286 0.8862 0.8648 0.8754 00:08:29
ResNet50 0.8745 0.7093 0.8885 0.8745 0.8314 00:22:02
InceptionV3 0.8495 0.8782 0.8596 0.8495 0.8545 00:06:07
MobileNet 0.8745 0.7804 0.8949 0.8745 0.8846 00:13:06
Xception 0.8287  0.9201 0.8626  0.8287 0.8433 00:33:55

DenseNet201 0.8782 0.6825 0.8844 0.8782 0.8813 00:21:46
NASNetLarge 0.8005 0.7999  0.8031 0.8005 0.8018 00:57:22
MobileNetV2 0.8912 0.7173  0.8963  0.8912 0.8937 00:21:04
EfficientNetB7 0.8333 0.6107  0.8641 0.8333 0.8484 00:38:52
RegNetX064 0.8287 09860 0.8570 0.8287 0.8426 00:18:35
RegNetY064 0.8333 0.8914  0.8457 0.8333 0.8395 00:16:10
ResNetRS50 0.8708 0.8478 0.8924 0.8708 0.8815 00:24:01
ConvNeXtBase  0.8796 0.6632 0.8934 0.8796 0.8864 00:55:22

17



Romruensukharom & Nonsiri Curr. Appl. Sci. Technol. , Vol. ... (No...), 0264760

Table 9. The performance of the retrained models with quarter dataset (E3)
Retrained : Quarter (E3)

o F1 - Training

Model Accuracy Loss Precision Recall Score Time
(hh:mm:ss)
VGG16 0.9361 0.2271 0.9365 0.9361 0.9363 00:03:18
ResNet50 0.9398 0.2486 0.9438 0.9398 0.9418 00:13:14
InceptionV3 0.9037 0.4736 0.9037 0.9037  0.9037 00:03:30
MobileNet 0.9315 0.2330 0.9322 0.9315 0.9319 00:03:14
Xception 0.9213 0.2901 0.9227 0.9213  0.9220 00:13:32

DenseNet201 0.9296 0.3406 0.9298 0.9296 0.9297  00:10:05
NASNetLarge 0.8231 0.6686 0.8276 0.8231 0.8253  00:30:02
MobileNetV2 0.9204 0.3000 0.9206 0.9204 0.9205  00:04:53
EfficientNetB7 0.6074 2.6170 0.7801 0.6074 0.6830  00:17:41
RegNetX064 0.8685 0.4488 0.8919 0.8685 0.8800  00:08:25
RegNetY064 0.9583 0.1863 0.9588 0.9583 0.9586  00:06:54
ResNetRS50 0.9491 0.1869 0.9491 0.9491  0.9491 00:06:54
ConvNeXtBase  0.9861 0.0416 0.9862 0.9861 0.9862  00:27:57
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Figure 11. ROC Curve of S1 on E2 (a) and E3 (b) datasets

The model built up by implementing ConvNeXtBase as feature extractor needed
longer training time than the other models except for NASNetLarge. Although
ConvNeXtBase did not achieve the highest accuracy on the E2 dataset, the model
outperformed others in identifying Hevea clones at different thresholds. For this reason,
ConvNeXtBase was considered to improve the performance by photometric augmentation.
Noise and radial distortion were applied to the dataset, so the quantity of data was
increased from the original dataset, as shown in Table 10. After improved retraining on the
E2 dataset, the accuracy of ConvNeXtBase increased from 87.96% to 89.19% and the loss
dropped from 0.6632 to 0.4941 at 1h 10m 15s of training time, as shown in Table 11. The
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learning curves (Figure 12) showed that the model was able to generalize well. The training
process steadily improved and eventually converged. The curve of training accuracy
fluctuated close to 1.00 while the curve of training loss fluctuated close to 0.00 before early
cut off. For the improved retraining on the E3 dataset, the accuracy of ConvNeXtBase
slightly dropped from 98.61% to 97.82% and the loss slighlty increased from 0.0416 to
0.0950 at 54m 20s of training time due to applying photometric augmentation (Table 12),
the dataset was more complex than the original dataset. The learning curves (Figure 13)
showed behavior similar to the E2 dataset with more epochs of training.

Table 10. The quantity of data for improving the experiment

Dataset
Training Set Testing Set
. Original + . Original + .
Experiment Class . Photometric . Photometric
Geometric Augmented Geometric Augmented
Augmented 9 Augmented 9
RRIM 600 6,120 1,530 1,080 270
E2 RRIM600 g 199 1,530 1,080 270
Seedling
RRIM 600 3,060 3,060 540 540
E3 RRIM 600
Seedling 3,060 3,060 540 540

Table 11. The performance of the improved retrained models with half dataset (E2)

Improved Retrained : E2

F1 - Training

Model Accuracy Loss Precision Recall s Time
core

(hh:mm:ss)

ConvNeXtBase  0.8919 0.4941 0.9058 0.8919  0.8988 01:10:15

(@ (b)

Training Accuracy Training Loss
(ConvNeXtBase) (ConvNeXtBase)

—— Training Loss

Accuracy

—— Training Accuracy

0 10 20 30 40 50 60 0 10 20 30 40 50 60
Epochs Epochs

Figure 12. Training accuracy (a) and loss (b)
of improved ConvNeXtBase on E2 dataset
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Table 12. The performance of the improved retrained models with quarter dataset (E3)

Improved Retrained : E3

F1 - Training

Model Accuracy Loss Precision Recall s Time
core

(hh:mm:ss)

ConvNeXtBase 0.9782 0.0950 0.9786 0.9782 0.9784 00:54:20

Training Accuracy Training Loss
(ConvNeXtBase) (ConvNeXtBase)
1.00 —— Training Loss
0.25
0.98
0.20
0.96
>
g %015
5094 v 0.
S
o
<
0.92 0.10
0.90 0.05
0.88 —— Training Accuracy 0.00
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
Epochs Epochs

Figure 13. Training accuracy (a) and loss (b) of improved ConvNeXtBase on E3 dataset

The confusion matrix (Figure 14) clearly explained that most of the unseen testing
images were correctly identified. The performance of improved ConvNeXtBase on the E3
dataset (b) was better than the E2 dataset (a). RRIM 600 seedlings were misidentified
more than RRIM 600 clones due to the leaf shape variation, and some leaves were closely
similar to RRIM 600 clones.

(a) (b)

Confusion Matrix
(ConvNeXtBase)

Confusion Matrix
(ConvNeXtBase)

1000

RRIM 600 Clone
=
o
S
5]
RRIM 600 Clone

Actual Class
Actual Class

400

200

RRIM 600 Seedling
RRIM 600 Seedling

RRIM 600 Clone RRIM 600 Seedling RRIM 600 Clone RRIM 600 Seedling
Predicted Class Predicted Class

Figure 14. Confusion matrix of improved ConvNeXtBase on E2 (a) and E3 (b) datasets
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3.2 Discussion

Numerous deep neural networks have been applied for target image recognition and have
good accuracy. However, it is still necessary to compare the models to find the highest
performance model for our dataset. Our results indicated that ConvNeXtBase was the most
suitable architecture for the feature extraction process. This success in feature extraction
is likely attributed to its design, which features the CNN integrated with transformer
architecture. The quantity of the E3 dataset was sufficient for training the high performance
Hevea clone identification model. The dataset that contained various forms of data from
applying image augmentation techniques both performed in manual and computer, when
it was automatically extracted by deep neural network. The useful features were
comparable to those obtained from traditional feature extraction techniques but required
less preprocessing (Anjomshoae et al., 2015; Anjomshoae & Rahim, 2018). After the
models were trained, they provided better classification performance than using hand-
crafted features as described by Huang et al. (2019), Tiwari (2020) and Kanda et al. (2021)
and outperformed traditional algorithms (Thurachon & Sumethawatthanaphong, 2014;
Pongsomsong & Ratanaworabhan, 2021). The results revealed that high performance
Hevea clone identification model could be achieved under short duration even though it
was trained on low resolution images and with less preprocessing. However, the dataset
in this research was collected under controlled environment. The model cannot perform on
unseen data that is very different from the training set effectively. Therefore, the diversity
of the dataset is a key factor for enhancing the model to be more robust and usable in
various situations.

4. Conclusions

This research proposed an approach of deep learning for Hevea clone identification to
overcome the challenges of heterozygous traits that result in high variation in the dataset.
The models were trained by transfer learning technique with FEA on different sizes of the
datasets. The appropriate hyperparameters were found through k-fold cross validation.
Considering the trade-off between accuracy and training time, the model setup with S1 was
the most effective approach. Training the model on half of the dataset (E2) and a quarter
of the dataset (E3) gave similar results to training on the full dataset (E1), but required less
training time. In the retraining phase, MobileNetV2 achieved the highest accuracy of
89.12% at 21m 4s of training time on the E2 dataset and ConvNeXtBase achieved the
highest accuracy of 98.61% at 27m 57s of training time on the E3 dataset. ConvNeXtBase
outperformed classification performance at different thresholds, and it was selected to
improve the performance by photometric augmentation. The accuracy was improved from
87.96% to 89.19% on the E2 dataset and slightly dropped from 98.61% to 97.82% on E3
dataset due to the larger quantity and higher complexity of the dataset. Moreover, most of
unseen testing images were correctly identified. The performance of ConvNeXtBase on
the E3 dataset was better than the E2 dataset in overall terms.

In conclusion, using transfer learning technique with FEA can overcome the
challenge in identifying between clones and seedlings, and especially the implementation
of ConvNeXtBase as feature extractor. Although ConvNeXtBase consumed a large amount
of training time, it significantly outperformed other models. However, the proposed method
is only an attempt to classify between RRIM600 clones and RRIM600 seedlings on a white
background under controlled environment. It can further be improved by adding the
environmental background and additional Hevea clones along with expanding the age
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range of the leaves used for training. Finally, a deep learninig approach, namely the
transfer learning (FEA) technique, is recommended for futher studies on specific tasks with
high variation.
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