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Abstract 

 
Hevea brasiliensis Muell. Arg, a rubber tree, is a highly heterozygous perennial plant 
usually grown from seed (seedlings). The tree exposed the disadvantage of no genetic 
uniformity. Unlike a clone, it was propagated by bud grafting from a single tree, possessing 
an identical genetic constitution and exhibiting uniformity among them. The leaf shape of 
seedlings is highly variable, while the leaf shape of clones is slightly variable. It also 
appears in similar characteristics to other clones. Therefore, the variation of leaf shape 
becomes the critical concern to distinguish them. The common cultivation clone RRIM 600 
was considered for experiments, the dataset of RRIM 600 clones and seedlings was used 
for training the model. The objective of the research was to compare the performance of 
deep neural networks for H. brasiliensis clone identification, including VGG16, ResNet50, 
InceptionV3, MobileNet, Xception, DenseNet201, NASNetLarge, MobileNetV2, 
EfficientNetB7, RegNetX064, RegNetY064, ResNetRS50 and ConvNeXtBase. The 
appropriate hyperparameters were found through k-fold cross validation. The models were 
trained using transfer learning technique with FEA. Various augmentation techniques were 
applied in order to improve the performance. The results revealed that improved retraining 
the model on low resolution images by implementing ConvNeXtBase as feature extractor 
with S1 achieved the highest accuracy of 97.82% on a quarter of dataset (E3) and 
outperformed classification performance across all thresholds. This research suggests the 
potential for developing this Hevea clone identification application as a tool to overcome 
the lack of experienced Hevea clone inspectors. 
 
Keywords:  Hevea brasiliensis; Hevea clone identification; precision agriculture; image 
classification; deep neural network 
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1. Introduction 
 
Hevea brasiliensis Muell. Arg is one of the important economic trees. It produces natural 
rubber, which is an essential raw material broadly used in many products such as aircraft 
and car tires, automotive parts, medical devices, surgical gloves, condoms, baby pacifiers, 
shoes, elastic and adhesives, toys, etc. Thailand has been the world’s largest producer 
and exporter of natural rubber (Arias & van Dijk, 2019). In 2024, Thailand produced 4.79 
million tons of natural rubber (Office of Agricultural Economics, 2024a), 3.91 million tons 
for export (valued at 270,706 million baht), and 1.25 million tons for domestic consumption. 
Currently, the cultivated area has grown to exceed 3.81 million hectares throughout the 
country (Office of Agricultural Economics, 2024b). Traditionally, rubber was grown only in 
the southern and eastern regions of Thailand where environmental conditions were 
favorable. However, the rubber plantations rapidly expanded to the northern and 
northeastern regions between 2004 and 2006 because the government supported and 
promoted rubber as a new cash crop that would increase income and stabilize the economy 
of small landholders (Poungchompu & Chantanop, 2015).  
 The rubber tree is a highly heterozygous perennial plant with a harvest lifespan of 
more than 20 years. The yield is largely dependent on the rubber clone planted and the 
agro-management. Rubber clones developed through genetic improvement with consistent 
yield potential and cultivation adaptability are recommended for commercial cultivation. 
Clone inspection can help cultivators to ensure that the right clones are used for planting 
because it can guarantee that recommended rubber clones produce the maximum yield in 
the future. Commonly, rubber clones are identified by recognizing its specific organs such 
as leaf storey, leaf, petiole, bark, axillary bud, or combinations thereof (Liyanage, 2021). 
These visual observations of the morphological parts of the trees are likely to be influenced 
by personal skill and environmental conditions (Saraswathyamma, 2000). Accurate clone 
identification requires experts with adequate experience. In fact, molecular markers are 
more reliable for clone identification than morphology, but they are often time and cost 
consuming. 
 The right clone of rubber planting materials has been inspected on immature stage; 
some feature cannot be considered in the identification process. The propagation of H. 
brasiliensis is implemented by seed and bud graft. Trees raised from seeds are referred to 
as seedling trees, which are not genetically uniform. Since rubber is a cross-pollinated plant 
and its genetics are heterozygous, each seedling tree has a distinct genotype. On the 
contrary, a population of budded trees from a single tree is known as a “clone”. All such 
trees possess identical genetic constitutions and existing uniformity among them. The leaf 
shapes of seedlings are highly variable, while the leaf shapes of clones are slightly variable. 
In addition, advances in genetic improvement produce new clones, but the genetic base of 
the existing population is very narrow. Therefore, it appears in similar characteristics to 
former clones. Variation of leaf shape is one of the critical concerns to distinguish them. 
Since the limitation of morphological characteristics makes accurate identification more 
difficult, Pratomo et al. (2021) and Pasaribu et al. (2022) suggested that the characteristics 
present in H. brasiliensis leaves were suitable for consideration as a useful variable in clone 
classification. Thus, leaves are the only suitable morphological features considered for 
identification. 
 Recently, the characteristics of H. brasiliensis leaves were studied using traditional 
feature extraction techniques (Anjomshoae et al., 2015; Anjomshoae & Rahim, 2018) and 
machine learning algorithms such as Logistic Regression, Naïve Bayes, K-Nearest 
Neighbors (KNN), Random Forest and Artificial Neural Network (ANN) (Thurachon & 
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Sumethawatthanaphong, 2014; Pongsomsong & Ratanaworabhan, 2021; Yaiprasert, 
2021). These were utilized in attempts to overcome the challenges in classifying the 
complicated traits. An impressive type of ANN is Convolutional Neural Network (CNN) 
which is specifically designed for image recognition (Zeiler & Fergus, 2014; O’Shea & 
Nash, 2015). The algorithm can find the best patterns through feature extraction. This 
process can be done automatically through CNN with less preprocessing and provided 
better classification performance than using hand-crafted features (Huang et al., 2019; 
Tiwari, 2020; Kanda et al., 2021). Furthermore, CNN also achieved satisfactory 
performance on various tasks related to H. brasiliensis leaves (Hassan et al., 2022; Zeng 
et al., 2022; Kaewboonna et al., 2023; Balaga & Patayon, 2024;) and other plant 
classification (Chang & Lai, 2024; Li et al., 2024; Ngugi et al., 2024; Nibret et al., 2025). 
 The challenges in computer vision that required highly experienced specialist led 
to the development of a more complex architecture (Bengio et al., 2021) called “Deep 
Neural Network”. This architecture was built up based on ANN and CNN with the ability to 
classify new unseen data more accurately. The advantages of this technology may result 
in a more efficient H. brasiliensis classification process. Therefore, the objective of this 
research was to compare the performance of a deep neural network that was suitable for 
H. brasiliensis clone identification from leaf characteristics.  
 

2. Materials and Methods 
 
This research was conducted using a deep learning approach. The experiment was 
performed based on related theory and research. 
 
2.1 Artificial neural network 
 
Artificial neural network (ANN) is a computational model inspired by biological neural 
network in the human brain (Rosenblatt, 1958; Kelleher, 2019). It consists of several 
interconnected artificial neurons. Data from an input layer is processed through hidden 
layers. In an artificial neuron, weights, biases and activation functions are applied. The data 
is fed forward to the next hidden layer and flows to the output layer for decision making. 
This procedure allows the network to learn complex relationships between data. 
 
2.2 Convolutional neural network 
 
Convolutional neural network (CNN), a scalable approach that is an extension of ANN, was 
specifically designed for image recognition and was inspired by human visual systems 
(Fukushima, 1980; LeCun & Bengio, 1995). It leverages mathematical principles and 
contains a set of convolutional and pooling layers. In the CNN, multiple filters are applied 
to recognize specific pattern and allow the computer to derive meaningful information from 
the images, called convolutional operations. The feature extraction process in 
convolutional layer (Dumoulin & Visin, 2018), in which useful features of the image are 
extracted by sliding filters over the image and feeding to a convolutional function. This 
process is performed by matrix multiplication and storing them as a multidimensional array 
(width, depth and height) corresponding to RGB in an image. The product between each 
element (pixels) of the overlapped input element is computed and the results are summed 
up to obtain the output in the current location. The procedure can be repeated using various 
filters to generate multiple feature maps as desired. The produced feature maps consist of 
different type of features such as curves, edges, texture and other patterns (Figure 1). 
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Figure 1. Convolutional operation 
 

One of the key success in convolution is the simple process of removing pixels 
while maintaining important information (Dumoulin & Visin, 2018), called pooling operations. 
The feature maps obtained from convolutional operation are pooled with max pooling, in 
which the highest values in each filter are pooled, or average pooling, in which the average 
of all values in the filter is calculated and pooled to the new reduced feature maps (Figure 
2). These operations enables the models to focus on high-level features more efficiently. 
 

(a)                                                          (b) 

  

Figure 2. Max pooling (a) and Average pooling (b) 
 
2.3 Pre-trained model 
 
Pre-trained model is deep neural network (DNN) available on Keras (Chollet, 2015) with 
weight initialization that represents features of thousand different classes traind on 
ImageNet (Deng et al., 2009) dataset. These models were designed and developed in 
different architecture with high potential of feature extraction in multiple level of abstraction 
(LeCun et al., 2015). Their use as feature extractors can address the lack of data in DNN 
and reduce time consuming on training phase. Moreover, this pre-trained model also 
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improves robustness and uncertainty (Hendrycks et al., 2019). The success on ImageNet 
challenge in advancing computer vision and deep learning research can be achieved by 
high performance on image classification and object detection (Krizhevsky et al., 2012). It 
is established that DNN has become one of the mainstream developments in the field of 
Artificial Intelligence (AI). The models appear in various families as follows:  
 
2.3.1 VGG 
 
VGG (Visual Geometry Group) is an early generation of DNN architecture proposed by 
Simonyan and Zisserman (2014), which was based on the simple concept of enhancing 
the performance of feature extraction by increasing the depth of CNN in sequential form 
with very small convolutional filters to 16-19 weight layers. The architecture is beneficial 
for more complex classification task and achived state-of-the-art performance.  
 
2.3.2 ResNet 
 
The development of deeper sequential neural network exposed a degradation problem 
called “vanishing gradients” that leads to higher training error. ResNet (Residual Network) 
was introduced by He et al. (2016) to address this problem by introducing shortcut 
connections that can skip a few layers. The connections perform identity mapping 
referenced to the input layer followed by residual function. Preserved useful information 
flows directly from the initial layer to deeper layers resulting in easier weight updating for 
network training. This concept enabled CNN to be of greater depth and become the 
foundation of new architectures. Moreover, the model was developed into a new version 
(Xie et al., 2017). The training strategy and architecture ratio were improved (Bello et al., 
2021). Some ResNet architectures proved superior to state-of-the-art architectures. 
 
2.3.3 Inception 
 
A complex DNN called “GoogLeNet” built up from Inception module was presented by 
Szegedy et al. (2015) to improved utilization of the computing resources. The module was 
inspired by the ability of the biological visual cortex to identify patterns at different scales. 
The Inception network was heavily constructed based on the network in network approach 
(Lin et al., 2014).  The network consists of different sub-modules that are multi-scale feature 
extractors that work in parallel and outperform conventional deep neural network. 
According to complex architecture, this module was improved in later version (Szegedy et 
al., 2016; Szegedy et al., 2017) with higher efficiency.  
 
2.3.4 MobileNet 
 
The light weight DNN called MobileNet was presented by Howard et al. (2017). This 
network was designed and developed under limitations of memory and latency. It was built 
from depthwise separable convolutions. In the module, depthwise convolutions were 
performed by applying a single filter to each input channel followed by pointwise 
convolution to combine the outputs. This concept drastically affected reduced 
computational power and model size. Although MobileNet did not achieve new record 
accuracy, the model was smaller and faster than before and was highly efficient for mobile 
and embedded vision applications. The model in this family was also improved by applying 
the concept of residual function (Sandler et al., 2018) and network architecture search 
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(Howard et al., 2019) to the next generation achieved state-of-the-art performance on 
mobiles. 
 
2.3.5 Xception 
 
Xception is an extreme version of Inception proposed by Chollet (2017). The standard 
convolutional layers (Inception module) were replaced by modified depthwise separable 
convolutions with residual connections. The module performs cross - channel correlation 
mapping (pointwise convolution) then separates one spatial correlation for every output 
channel (depthwise convolution). The network outperformed the new version of Inception 
on large datasets.  
 
2.3.6 DenseNet 
 
The concept of shorter connections results in deeper CNN with higher efficiency training. 
DenseNet (Dense Convolutional Network) was introduced by Huang et al. (2017) with 
dense connectivity in a block of network. The connection performs reusable feature by 
connecting each layer to every other layers for improving information flow. Each layer 
receives feature maps of all preceding layers for concatenation. This architecture not only 
acheives high performance but also improves the efficiency of the network. 
 
2.3.7 NASNet 
 
A new technique for automating design of CNN architecture without human expertise, 
called Neural Architecture Search (NAS) was presented by Zoph et al. (2018). The proper 
architecture was discovered in search space with reinforcement learning on a dataset of 
interest and consisted of two types of repeated blocks or cells. The first type is 
convolutional cells that return a feature map of the same dimension (Normal Cell) and the 
second type (Reduction Cell) return a feature map where the dimension is reduced. This 
technique provided scalable architecture that required less computation than human 
designed and achieved accurate result. 
 
2.3.8 EfficientNet 
 
An efficient technique for scaling up CNN was introduced by Tan and Le (2019) based on 
observation of deep neural network development. This is commonly acheived under limited 
resource then scaled up for better performance. This network balancing technique 
uniformly scales up the width, depth and resolution at all dimensions at constant ratio, 
initializing from a new baseline model designed by NAS, resulting in various size of models 
in the family. A CNN can be scaled up effectively and set up new standard of CNN design. 
 
2.3.9 RegNet 
 
A new network design paradigm was presented by Radosavovic et al. (2020) to discover 
efficient design principles across all setting. It combining the adventages of manual design  
and NAS. The simple and fast DNN call RegNet was achieved through (AnyNet) network 
design spaces. This network outperformed some state-of-the-art DNN, and especially 
overcoming EfficientNet in term of training speed on GPU. 
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2.3.10 ConvNeXt 
 
A new architecture ConvNeXt, inspired by the design of vision transformers (ViTs) 
(Dosovitskiy et al., 2021), was proposed by Liu et al. (2022) to improve the performance of 
CNN. The network modernized the concept of ResNet and resulted in architecture and 
training procedure being redesigned to be closer to ViTs. In the design process, the stage 
compute ratio was adjusted. Input preprocessing was changed from standard convolution 
(Stem) to non-overlapping convolution (Patch) (Liu et al., 2021), the idea of new version of 
ResNet was adopted to ResNeXtify (a deep convolutional network) which is the operation 
similar to self-attention (Cordonnier et al., 2020) in ViTs. Inverted bottle neck was created 
in a block of depthwise with larger filter and utilized state-of-the-art parameter in each layer. 
With these improvements, ConvNeXt surpassed ViTs and outperformed state-of-the-art 
CNN. 

Even though these DNNs have evolved into more advanced networks, they are 
not suitable for all specific tasks. Therefore, the experiment with target task is required. 
This research employed thirteen pre-trained models from aforementioned families to 
compare the performance of the models in order to discover the optimal architecture. 
Included were VGG16, ResNet50, InceptionV3, MobileNet, Xception, DenseNet201, 
NASNetLarge, MobileNetV2, EfficientNetB7, RegNetX064, RegNetY064, ResNetRS50 
and ConvNeXtBase. 
 
2.4 Data acquisition 
 
Fresh Hevea leaves were collected from the budwood and rootstock nursery in 
Chachoengsao Rubber Regulartory Center. Healthy middle leaflets were taken from the 
upper mature whorls and images were captured using a digital camera (Nikon COOLPIX 
B700 and Fujifilm FINEPIX F300EXR). There were 36 images per leaf taken from various 
viewpoints and orientations on a white background under controlled environment (Figure 
3). The balanced dataset contains 28,800 images of 2 classes: the RRIM 600 Clone and 
the RRIM 600 seedling. The RRIM 600 clone contains images of plants propagated by 
budding while the RRIM 600 seedling contains images of plants grown from seeds. Clones, 
unlike seedlings, do not exhibit highly distinct variations. Most of them possess more stable 
morphological features, which can be used for identification. 
 

 
 

Figure 3. Sample images from leaf rotation and camera angle adjustment 
 

2.5 Data understanding 
 
The shape of the leaves is one of the characteristics commonly used to classify Hevea 
clones. The middle leaflet of mature leaves is the ideal leaf for characterization. They often 
appear in three basic forms (Table 1): elliptical, obovate and diamond, as shown in Figure 4. 
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Table 1. Leaf shape characteristics of H. brasiliensis 

Forms Characteristics 

Elliptical The maximum width is on the middle and 
tapers equally towards base and apex. 

Obovate The maximum width is found between the 
middle of leaflet and apex. 

Diamond 

Both sides of the leaf blade that divides 
along the midrib are not symmetrical. The 
widest part of the leaf on both sides is not 
in the same position. 

 
 

 
 

Figure 4. Leaf shapes of H. brasiliensis 
 

The middle leaflet of RRIM 600 clone was considered as obovate form. However, 
the heterozygous nature of the rubber tree affects the leaf shapes of RRIM 600 seedlings, 
which appear in various forms. Therefore, leaf shape of RRIM 600 seedlings is highly 
variable compared to RRIM 600 clone as shown in Figure 5. 

 
2.6 Data preparation 
 
Data quality and quantity directly affect the performance of a DNN. During the training 
process, DNN learns from relationship between features of the dataset. The reliability of 
model performance often relies on the quality of a given data. Therefore, data preparation 
becomes a crucial process to make the model more robust. The data preparation process 
can be describe as follows:  
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Figure 5. Leaf shape variation of RRIM 600 seedlings 
 

2.6.1 Image resizing 
 
Training with high-resolution images requires high computational power and is time 
consuming. It was also difficult to find a suitable architecture for H. brasiliensis. For faster 
training, the dimension of images was carefully resized while maintaining their image 
aspect ratio, as shown in Table 2. 
 
2.6.2 Image augmentation 
 
DNN requires a vast amount of comprehensive data. The number of images in data sets 
was increased using two data augmentation techniques (Lei et al., 2019; Fonseka & 
Chrysoulas, 2020) as detailed below. 

1) Geometric augmentation: In this research, it consists of two methods: 
    - Traditional method: This is a simple and high efficiency method that involves 

manual leaf rotation and flpping when taking a photo (Figures 6 and 7) (Zheng et al., 2016). 
    - Specific method: In H. brasiliensis clone identification, the leaves are captured 

from various viewpoints. The camera angle is adjusted around 60 degrees from left to right 
per every 45 degrees of leaf rotation (Figures 8 and 9). 
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Table 2. Images resizing 

Image Resizing 

Digital Camera 
Orginal Resized 

Width Height Width Height 
Nikon COOLPIX 

B700 5184 pixel 3888 pixel 324 pixel 243 pixel 

Fujifilm FINEPIX 
F300EXR 2816 pixel 2112 pixel 352 pixel 264 pixel 

 

   
 

Figure 6. Geometric augmentation (Traditional method) 
 

 
 

Figure 7. Sample images from geometric augmentation (Traditional method) 
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Figure 8. Geometric augmentation (Specific method) 
 

 
 

Figure 9. Sample images from geometric augmentation (Specific method) 
 

2) Photometric augmentation: This technique is artificially generated on a 
computer. Guassian noise and radial distortion (Figure 10) are used to improve model 
performance and prevent distortion effects from wide-angle lenses (Buquet et al., 2021), 
illumination and temperature (Zhou et al., 2017) to accommodate environmental changes 
(Dodge & Karam, 2016; Xiao et al., 2020) in real situations. 
 
2.7 Modeling 
 
The models were trained by using transfer learning from pre-trained models due to the 
different resource constraints of each architecture (Bianco et al., 2018). The technique can 
address the data shortage problem in DNN and reduce time consuming on training phase. 
The concept of transfer learning is a training process by initializing weights from a pre-
trained model (Yosinski et al., 2014; Yin et al., 2017). There are two approaches: 

1) Feature extraction approach (FEA): The pre-trained models were used as a 
feature extractor. Related generic features were transferred and the specific features were 
extract to train the custom classifier. This approach requires a similar domain problem and 
a large amount of data. 

2) Fine-tuning approach (FTA): The custom classifier was trained for introducing 
to the specific task, then a few top layers of a frozen (convolutional layers) in the pre-trained 
model were unfrozen and fine-tuned the higher order feature representation. This approach 
takes more time than FEA.  

This research explores suitable architecture using transfer learning techniques 
based on experimental study. Hyperparameter tuning and the sufficient amount of data 
were the key factors. Therefore, FEA was implemented for more efficient. 
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Techniques Input Output 

   
   

   
   

   
 

Figure 10. Sample images from photometric augmentation 
 
2.8 Evaluation metrics 
 

A confusion matrix is a table displaying the number of predictions of a model and 
it was utilized for the performance evaluations. Table 3 describes the performance of 
classifiers in four terms:  

- True positive (TP): the model correctly predicted the positive class. RRIM 600 
clones were identified. 

- True negative (TN): the model correctly predicted the negative class. RRIM 600 
seedlings were identified. 

- False positive (FP): the model incorrectly predicted the negative class. RRIM 600 
seedlings were misidentified. 

- False negative (FN): the model incorrectly predicted the negative class. RRIM 
600 clones were misidentified. 
 
Table 3. Confusion matrix 

 
 P’ (Predicted) N’(Predicted) 

P (Actual) True Positive False Negative 
N (Actual) False Positive True Negative 
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The evaluation metrics used were accuracy, precision, recall, and F1-score. The 
calculation of these evaluation metrics according to the values in the confusion matrix was 
made by equations (1)-(4). 

 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 

 
(1) 

 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 

 
(2) 

 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 

 
(3) 

 
𝐹𝐹1 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
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A receiver operating characteristics (ROC) curve was computed by plotting the 

true positive rate (TPR) and false positive rate (FPR). The area under the ROC curve (AUC) 
was constructed from this plot and denoted as the ability of the model to seperate classes 
at different thresholds ranging from 0 to 1. 
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� 

 

(7) 

2.9 Experimental setup 
 
The experiments were conducted on Intel Xeon E3-1270 v5 3.6 GHz desktop with 16 GB 
RAM programmed in python 3.11.5 and modeling based on Keras and TensorFlow 2.15. 
 
2.9.1 Dataset splitting 
 
The dataset was devided into training and testing sets in ratio of 85 : 15 for three training 
experiments : full dataset (800 leaves), half of the dataset (400 leaves), and one-quarter of 
the dataset (200 leaves), respectively. The quantity of data and optimal size of the dataset 
are shown in Table 4 and  Table 5. 
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Table 4. Data splitting of main dataset 

Main Dataset (Original + Geometric Augmented)) 

Experiment Class Training Set Testing Set 

Full (E1) 
RRIM 600 Clone 12,240 2,160 

RRIM 600 Seedling 12,240 2,160 

Half (E2) 
RRIM 600 Clone 6,120 1,080 

RRIM 600 Seedling 6,120 1,080 

Quarter (E3) 
RRIM 600 Clone 3,060 540 

RRIM 600 Seedling 3,060 540 

 
Table 5. Data splitting for K-fold cross validation experiment 

K-Fold Cross Validation Dataset (Original + Geometric Augmented) 

Experiment Class Training Set Testing Set 

Full (E1) 
RRIM 600 Clone 10,080 2,160 

RRIM 600 Seedling 10,080 2,160 

Half (E2) 
RRIM 600 Clone 5,040 1,080 

RRIM 600 Seedling 5,040 1,080 

Quarter (E3) 
RRIM 600 Clone 2,520 540 

RRIM 600 Seedling 2,520 540 

  
2.9.2 Architecture design 
 
The architecture of our models (Table 6) were designed as follows: 

1) Feature extractor: Thirteen selected pre-trained models were used as feature 
extractors. 
 2) Classifier: The custom classifer (Fully-connected layer) was added for H. 
brasiliensis clone identification. Initially, the input data was transformed into one 
dimensional vector via Flatten. For the hidden layer,  Dense was added with a standard 
activation function named ReLU to achieve lower traning loss (Ding et al., 2018; Javid et 
al., 2021) followed by BatchNormalization. Each training batch was normalized for speedup 
in training (Ioffe & Szegedy, 2015). Some units in the networks were randomly dropped by 
dropout with probability 0.5 to prevent overfitting (Srivastava et al., 2014). After that, dense  
output was added for the prediction according to the number of classes. Sigmoid was 
applied to normalize the range of output into a probability value between 0-1 and the 
threshold was set to 0.5 for binary classification.  
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Table 6. Model architecture and hyperparameter setup 

Hyperparameters  Setting 
 S1 S2 S3 S4 S5 S6 

Input Shape  
64 x 64 

71 x 71 (Inception) 
75 x 75 (Xception) 

Batch Size  32 
Optimizer  Adam Nadam RMSProp 

Learning Rate  0.0001 
Patience 

(Early Stopping)  10 

 
Model Architecture 

Layers 

Type Structure 

Pre-
trained 

VGG16, ResNet50, InceptionV3, MobileNet, 
Xception, DenseNet201, NASNetLarge, 

MobileNetV2, EfficientNetB7, RegNetX064, 
RegNetY064, ResNetRS50, ConvNeXtBase 

Classifier 

Flatten 

Dense 

512 1024 512 1024 512 1024 
256 512 256 512 256 512 

 256  256  256 
ReLU 

 BatchNormalization 
 Dropout (0.5) 

Dense 1 
Sigmoid 

 
2.9.3 K-fold cross validation 
 
K-fold cross validation was applied to tune the models (Yadav & Shukla, 2016) during 
training. The training set was equally splitted into ten folds. In each iteration, one of the ten 
folds was held out for testing and the remaining folds were used for training. This process 
was repeated until every fold had been used as testing set. After that, the results of all 
iterations were averaged to estimate the model’s performance. 
 
2.9.4 Hyperparameters 
 
Finally, all images were scaled to the default minimum size of each model. The model 
weights were updated after feeding each batch of 32 samples for training using Adam, 
Nadam and RMSProp optimizer (Kingma & Ba, 2017; Dogo et al., 2022) with an effective 
initial learning rate of 10-4 (Jepkoech et al., 2021). The patience of EarlyStopping was set 
to ten epochs for loss monitoring. Training was forced to stop when a model’s performance 
was not significantly improved for ten epochs. 
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3. Results and Discussion 
 
3.1 Experimental results 
 
The models were trained with three different sizes of the dataset through k-fold cross 
validation to find the appropriate hyperparameter and dataset. The results showed that the 
models trained with S2 on full dataset (E1) achieved highest average accuracy of 96.12% 
with 126h 21m 35s of training time while the models trained with S1 on half of dataset (E2) 
and a quarter of dataset (E3) achieved the highest average accuracies of 93.76% with 32h 
42m 40s of training time and 95.06% with 15h 14m 24s of training time, respectively (Table 
7). 
 
Table 7. The average performance of k-fold cross validation experiments 

K-Fold Cross Validation Experiments 
Dataset Metrics Setting 

S1 S2 S3 S4 S5 S6 

E1 

Avg. 
Acc 0.9565 0.9612 0.9512 0.9499 0.9464 0.9482 

Avg. 
Loss 0.3164 0.2633 0.2973 0.4006 0.3593 0.5332 

Avg. 
TT 

(hh:mm:ss) 
65:15:09 126:21:35 82:32:31 117:47:39 49:41:42 99:01:12 

E2 

Avg. 
Acc 0.9376 0.9370 0.9337 0.9292 0.9313 0.9280 

Avg. 
Loss 0.3822 0.5623 0.6856 0.5298 0.7145 0.6981 

Avg. 
TT 

(hh:mm:ss) 
32:42:40 63:14:12 39:25:20 83:18:13 23:13:32 49:38:21 

E3 

Avg. 
Acc 0.9506 0.9471 0.9518 0.9439 0.9415 0.9387 

Avg. 
Loss 0.3457 0.3509 0.2619 0.6609 0.5272 0.8778 

Avg. 
TT 

(hh:mm:ss) 
15:14:24 30:36:48 19:51:04 40:32:32 11:43:37 23:49:10 

Abbreviation: Avg. (Average), Acc (Accuracy), TT (Training Time) 
 

Considering the trade-off between accuracy and training time, it seems training 
with S1 on E2 and E3 datasets was an effective approach for retraining with train-test 
splitting because it consumed less training time and smaller dataset size. Thus, in the 
retraining phase, the models were trained with hyperparameters settings based on these 
findings. 

Retraining the models with S1 on E2 dataset, it was found that MobileNetV2 
achieved the highest accuracy of 89.12% with 21m 04s of training time followed by 
ConvNeXtBase and DenseNet201 with accuracies of 87.96% and 87.82% with 55m 22s 
and 21m 46s of training time, respectively. NASNetLarge gave the lowest accuracy of 
80.05% with 57m 22s of training time (Table 8). However, retraining the models with S1 on 
the E3 dataset revealed that ConvNeXtBase achieved the highest accuracy of 98.61% at 
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27m 57s of training time followed by RegNetY064 and ResNetRS50 at accuracies of 
95.83% and 94.91%, respectively, at the same 6m 54s of training time. EfficientNetB7 gave 
the lowest accuracy of 60.74% at 17m 41s of training time (Table 9). 

Interestingly, the model that built up based on a simple DNN, VGG16, achieved 
satisfactory performance that was the same as a complex DNN. Moreover, it performed 
better than some state-of-the-art architecture with only a few minutes of training time. 

With sufficient amount of data, ConvNeXtBase achieved the highest accuracy and 
performed significantly better overall. NASNetLarge consumed the longest training time 
but it was not the best model in any experiments, while MobileNet and MobileNetV2 
achieved satisfactory performance under shorter training times compared to larger models.  

Most of the trained models were able to learn this task but displayed varying 
performance due to their architectures. In each experiment, most models performed slightly 
lower than the best model. On the other hand, NASNetLarge and EfficientNetB7 were 
relatively poor models, showing significant accuracy drop in some experiments, and it 
seemed that NASNetLarge and EfficientNetB7 could not generalize well on this dataset.  

The ROC curve (Figure 11) of retrained models with S1 on E2 dataset (a) showed 
that ConvNeXtBase achieved the highest AUROC at 0.9762 followed by VGG16 and 
MobileNetV2 at 0.9726 and 0.9704, respectively. The lowest curve was NASNetLarge at 
0.8815.  

For the retrained model with S1 on E3 dataset (b), ConvNeXtBase outperformed 
classification performance with AUROC at 0.9993, resulting ROC curve approaches the 
ideal top-left corner demonstrating the model's effectiveness, followed by ResNet50 and 
RegNetY064 at 0.9927 and 0.9923, respectively. The lowest curve was NASNetLarge at 
0.8992. 
 
Table 8. The performance of the retrained models with half dataset (E2) 

Retrained : Half (E2) 

Model Accuracy Loss Precision Recall F1 - 
Score 

Training Time 
(hh:mm:ss) 

VGG16 0.8648 0.8286 0.8862 0.8648 0.8754 00:08:29 
ResNet50 0.8745 0.7093 0.8885 0.8745 0.8814 00:22:02 

InceptionV3 0.8495 0.8782 0.8596 0.8495 0.8545 00:06:07 
MobileNet 0.8745 0.7804 0.8949 0.8745 0.8846 00:13:06 
Xception 0.8287 0.9201 0.8626 0.8287 0.8453 00:33:55 

DenseNet201 0.8782 0.6825 0.8844 0.8782 0.8813 00:21:46 
NASNetLarge 0.8005 0.7999 0.8031 0.8005 0.8018 00:57:22 
MobileNetV2 0.8912 0.7173 0.8963 0.8912 0.8937 00:21:04 
EfficientNetB7 0.8333 0.6107 0.8641 0.8333 0.8484 00:38:52 
RegNetX064 0.8287 0.9860 0.8570 0.8287 0.8426 00:18:35 
RegNetY064 0.8333 0.8914 0.8457 0.8333 0.8395 00:16:10 
ResNetRS50 0.8708 0.8478 0.8924 0.8708 0.8815 00:24:01 

ConvNeXtBase 0.8796 0.6632 0.8934 0.8796 0.8864 00:55:22 
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Table 9. The performance of the retrained models with quarter dataset (E3) 

Retrained : Quarter (E3) 

Model Accuracy Loss Precision Recall F1 - 
Score 

Training 
Time 

(hh:mm:ss) 
VGG16 0.9361 0.2271 0.9365 0.9361 0.9363 00:03:18 

ResNet50 0.9398 0.2486 0.9438 0.9398 0.9418 00:13:14 
InceptionV3 0.9037 0.4736 0.9037 0.9037 0.9037 00:03:30 
MobileNet 0.9315 0.2330 0.9322 0.9315 0.9319 00:03:14 
Xception 0.9213 0.2901 0.9227 0.9213 0.9220 00:13:32 

DenseNet201 0.9296 0.3406 0.9298 0.9296 0.9297 00:10:05 
NASNetLarge 0.8231 0.6686 0.8276 0.8231 0.8253 00:30:02 
MobileNetV2 0.9204 0.3000 0.9206 0.9204 0.9205 00:04:53 

EfficientNetB7 0.6074 2.6170 0.7801 0.6074 0.6830 00:17:41 
RegNetX064 0.8685 0.4488 0.8919 0.8685 0.8800 00:08:25 
RegNetY064 0.9583 0.1863 0.9588 0.9583 0.9586 00:06:54 
ResNetRS50 0.9491 0.1869 0.9491 0.9491 0.9491 00:06:54 

ConvNeXtBase 0.9861 0.0416 0.9862 0.9861 0.9862 00:27:57 
 

 (a) (b) 
  

  
 

Figure 11. ROC Curve of S1 on E2 (a) and E3 (b) datasets 
 

The model built up by implementing ConvNeXtBase as feature extractor needed 
longer training time than the other models except for NASNetLarge. Although 
ConvNeXtBase did not achieve the highest accuracy on the E2 dataset, the model 
outperformed others in identifying Hevea clones at different thresholds. For this reason, 
ConvNeXtBase was considered to improve the performance by photometric augmentation. 
Noise and radial distortion were applied to the dataset, so the quantity of data was 
increased from the original dataset, as shown in Table 10. After improved retraining on the 
E2 dataset, the accuracy of ConvNeXtBase increased from 87.96% to 89.19% and the loss 
dropped from 0.6632 to 0.4941 at 1h 10m 15s of training time, as shown in Table 11. The 
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learning curves (Figure 12) showed that the model was able to generalize well. The training 
process steadily improved and eventually converged. The curve of training accuracy 
fluctuated close to 1.00 while the curve of training loss fluctuated close to 0.00 before early 
cut off. For the improved retraining on the E3 dataset, the accuracy of ConvNeXtBase 
slightly dropped from 98.61% to 97.82% and the loss slighlty increased from 0.0416 to 
0.0950 at 54m 20s of training time due to applying photometric augmentation (Table 12), 
the dataset was more complex than the original dataset. The learning curves (Figure 13) 
showed behavior similar to the E2 dataset with more epochs of training. 
 
Table 10. The quantity of data for improving the experiment 

Dataset 

Experiment Class 
Training Set Testing Set 

Original + 
Geometric 

Augmented 
Photometric 
Augmented 

Original + 
Geometric 

Augmented 
Photometric 
Augmented 

E2 
RRIM 600 6,120 1,530 1,080 270 
RRIM 600 
Seedling 6,120 1,530 1,080 270 

E3 
RRIM 600 3,060 3,060 540 540 
RRIM 600 
Seedling 3,060 3,060 540 540 

 
Table 11. The performance of the improved retrained models with half dataset (E2)  

Improved Retrained : E2 

Model Accuracy Loss Precision Recall F1 - 
Score 

Training 
Time 

(hh:mm:ss) 
ConvNeXtBase 0.8919 0.4941 0.9058 0.8919 0.8988 01:10:15 

 
(a) (b) 

  

  
 

Figure 12. Training accuracy (a) and loss (b) 
of improved ConvNeXtBase on E2 dataset 
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Table 12. The performance of the improved retrained models with quarter dataset (E3) 

Improved Retrained : E3 

Model Accuracy Loss Precision Recall F1 - 
Score 

Training 
Time 

(hh:mm:ss) 
ConvNeXtBase 0.9782 0.0950 0.9786 0.9782 0.9784 00:54:20 

 
(a) (b) 

  

  
 

Figure 13. Training accuracy (a) and loss (b) of improved ConvNeXtBase on E3 dataset 
 

 The confusion matrix (Figure 14) clearly explained that most of the unseen testing 
images were correctly identified. The performance of improved ConvNeXtBase on the E3 
dataset (b) was better than the E2 dataset (a). RRIM 600 seedlings were misidentified 
more than RRIM 600 clones due to the leaf shape variation, and some leaves were closely 
similar to RRIM 600 clones. 
 

(a) (b) 

  

  

Figure 14. Confusion matrix of improved ConvNeXtBase on E2 (a) and E3 (b) datasets 
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3.2 Discussion 
 
Numerous deep neural networks have been applied for target image recognition and have 
good accuracy. However, it is still necessary to compare the models to find the highest 
performance model for our dataset. Our results indicated that ConvNeXtBase was the most 
suitable architecture for the feature extraction process. This success in feature extraction 
is likely attributed to its design, which features the CNN integrated with transformer 
architecture. The quantity of the E3 dataset was sufficient for training the high performance 
Hevea clone identification model. The dataset that contained various forms of data from 
applying image augmentation techniques both performed in manual and computer, when 
it was automatically extracted by deep neural network. The useful features were 
comparable to those obtained from traditional feature extraction techniques but required 
less preprocessing (Anjomshoae et al., 2015; Anjomshoae & Rahim, 2018). After the 
models were trained, they provided better classification performance than using hand-
crafted features as described by Huang et al. (2019), Tiwari (2020) and Kanda et al. (2021) 
and outperformed traditional algorithms (Thurachon & Sumethawatthanaphong, 2014; 
Pongsomsong & Ratanaworabhan, 2021). The results revealed that high performance 
Hevea clone identification model could be achieved under short duration even though it 
was trained on low resolution images and with less preprocessing. However, the dataset 
in this research was collected under controlled environment. The model cannot perform on 
unseen data that is very different from the training set effectively. Therefore, the diversity 
of the dataset is a key factor for enhancing the model to be more robust and usable in 
various situations. 
 

4. Conclusions 
 
This research proposed an approach of deep learning for Hevea clone identification to 
overcome the challenges of heterozygous traits that result in high variation in the dataset. 
The models were trained by transfer learning technique with FEA on different sizes of the 
datasets. The appropriate hyperparameters were found through k-fold cross validation. 
Considering the trade-off between accuracy and training time, the model setup with S1 was 
the most effective approach. Training the model on half of the dataset (E2) and a quarter 
of the dataset (E3) gave similar results to training on the full dataset (E1), but required less 
training time. In the retraining phase, MobileNetV2 achieved the highest accuracy of 
89.12% at 21m 4s of training time on the E2 dataset and ConvNeXtBase achieved the 
highest accuracy of 98.61% at 27m 57s of training time on the E3 dataset. ConvNeXtBase 
outperformed classification performance at different thresholds, and it was selected to 
improve the performance by photometric augmentation. The accuracy was improved from 
87.96% to 89.19% on the E2 dataset and slightly dropped from 98.61% to 97.82% on E3 
dataset due to the larger quantity and higher complexity of the dataset. Moreover, most of 
unseen testing images were correctly identified. The performance of ConvNeXtBase on 
the E3 dataset was better than the E2 dataset in overall terms. 

In conclusion, using transfer learning technique with FEA can overcome the 
challenge in identifying between clones and seedlings, and especially the implementation 
of ConvNeXtBase as feature extractor. Although ConvNeXtBase consumed a large amount 
of training time, it significantly outperformed other models. However, the proposed method 
is only an attempt to classify between RRIM600 clones and RRIM600 seedlings on a white 
background under controlled environment. It can further be improved by adding the 
environmental background and additional Hevea clones along with expanding the age 
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range of the leaves used for training. Finally, a deep learninig approach, namely the 
transfer learning (FEA) technique, is recommended for futher studies on specific tasks with 
high variation. 
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