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Abstract 
 
Honey is a natural sweetener created by honeybees from the nectar of flowers. Honey's 
extensive health benefits have led to its widespread use across multiple industries. Honey 
adulteration with inferior substances undermines its quality, reducing natural nutrients and 
antioxidants, and diminishing its health benefits. This study aimed to study the possibility 
of detection of honey adulteration with a low-cost multispectral device coupled with 
machine learning. The adulterated honey came from deliberate adulteration with cane 
syrup in the 1 to 90% range. Spectral data was collected for pure honey and the adulterated 
honey samples at the wavelengths of 610, 680, 730, 760, 810, and 860 nm. The detection 
models for distinguishing pure and adulterated honey were developed by Linear 
Discriminant Analysis (LDA), Partial Least Squares Discriminant Analysis (PLS-DA), C-
Support Vector Machine (C-SVM), and K-Nearest Neighbors (KNN). All models achieved 
high accuracy between 0.91 and 0.98 and maintained balanced precision and recall 
metrics. This study serves as a guideline for developing a low-cost portable honey 
authentication device that is practical for real-world applications. 
 
Keywords: low-cost multispectral device; machine learning; honey; adulteration 
 

1. Introduction 
 
Honey is a naturally sweet substance made by honeybees as they process nectar collected 
from flowers. Primarily, chemical components of honey consist of fructose, glucose, 
maltose, sucrose, higher sugars, minerals, vitamins, antioxidants, etc. (Valinger et al., 
2021). Due to its numerous health benefits, honey has been widely used in various fields, 
including foods, pharmaceuticals, cosmetics, and skincare products. Bee honey is 
significantly more expensive than other sweeteners like refined cane sugar and corn syrup. 
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The adulteration of honey with inferior substances to increase volume and reduce costs is 
a crucial issue in the honey industry. Adulteration negatively impacts the quality of honey 
by reducing its natural nutrients and antioxidants, thereby significantly diminishing its health 
benefits. Therefore, many countries have implemented regulations to control the quality of 
commercial honey based on specific physical characteristics and chemical composition. 
Various methods have demonstrated the capability to accurately and reliably detect honey 
authentication and adulteration, including nuclear magnetic resonance (NMR) (Song et al., 
2020), isotope ratio mass spectrometry (IRMS) (Xu et al., 2020), enzyme-linked 
immunosorbent assay (ELISA) (Naila et al., 2018), and near infrared spectroscopy (NIRS) 
(Bodor et al., 2023; Calle et al., 2023; Caredda et al., 2024). However, these techniques 
have some disadvantages such as the requirement for expert analysis and high costs per 
sample.  

One particularly interesting piece of equipment is the low-cost multispectral sensor, 
the AS7263 sensor. The AS7263 spectral sensor is a remarkable low-cost multispectral 
device designed to capture and analyze wavelengths in the range of 610 nm to 860 nm, 
effectively covering both the visible spectrum and shortwave near-infrared radiation. This 
compact device facilitates seamless integration into portable applications, making it 
especially advantageous in field scenarios that do not accommodate traditional, larger 
spectrometers. The AS7263 sensor has found extensive application across various 
research domains, particularly in agriculture and food quality control. Kapse et al. (2023) 
reported the effectiveness of this sensor in evaluating banana maturity using the Multiple 
Linear Regression (MLR) method and an Artificial Neural Network (ANN) model with R2 of 
0.768 and 0.840, respectively. Wang et al. (2023) developed a portable multi-spectral 
instrument to detect protein and fat in milk. The prediction models were developed using 
the XGBoost algorithm, which demonstrated R2 values of 0.9816 for the protein model and 
0.9978 for the fat model, respectively. Furthermore, the ripeness of berries and grapes was 
accurately monitored using the AS7263 sensor, as reported by Wang et al. (2022) and 
Pampuri et al. (2021), respectively. ANN and MLR algorithms were employed to create 
prediction models, achieving R² values ranging from 0.69 to 0.86. To detect adulteration in 
food, Sulistyo et al. (2023) investigated the sensor's effectiveness when paired with an 
ANN algorithm to identify cane sugar adulteration in granulated coconut sugar, achieving 
an accuracy exceeding 90%. Emerging research by Lapcharoensuk et al. (2024) also 
investigated the AS7263's applications in detecting adulteration of onion powder. Four 
algorithms including MLR, partial least square regression (PLS-R), nu-support vector 
regression (nu-SVR), and black propagation neural network (BPNN) were utilized to train 
the models, achieving R2values between 0.888 and 0.959. All the information presented 
above indicates that the low-cost multispectral sensor (AS7263) has potential applications 
for detecting adulteration in honey. 

However, raw spectral data cannot be directly used to detect honey adulteration 
due to several factors related to the sensor’s capabilities, measurement characteristics, 
and data collection, such as the complex patterns of reflectance signals, environmental 
variability, and high dimensionality. Therefore, chemometric and machine learning (ML) 
techniques are essential for accurately analyzing and interpreting the insights provided by 
spectral data. ML is a branch of artificial intelligence (AI) focused on developing algorithms 
that allow computers to learn from and make predictions based on data. Rather than being 
explicitly programmed with specific rules for each task, a machine learning model identifies 
patterns within data. This capability enables it to make decisions or predictions 
independently. Currently, ML algorithms have been applied to spectral data from various 
instruments including NIR spectrometers, FTIR (Fourier-transform infrared) spectrometers, 
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and Raman spectrometers, as well as the AS7263 sensor in the detection of food 
adulteration. 

Although the AS7263 sensor has been successfully applied in agricultural and food 
analysis. However, there is currently no published research specifically investigating its 
use for detecting honey adulteration. Previous research was largely focused on food items 
(e.g., milk, fruits, sugars and spices) and highlights a clear gap in the application of low-
cost spectral sensing to chemically complex substances like honey. Furthermore, existing 
research has predominantly focused on the utilization of basic regression or classification 
algorithms such as MLR and ANN. However, a comparative analysis of multiple machine 
learning algorithms optimized for classification tasks—such as LDA, PLS-DA, C-SVM, and 
KNN—has not yet been explored in this context. Thus, this study builds upon prior work by 
shifting the focus to honey and expanding the methodological scope with a systematic 
comparison of ML models tailored to classify adulterated versus pure samples using the 
low-cost multispectral acquisition device. 

To date, there have been no published reports concerning the use of the AS7263 
sensor coupled with ML algorithms in the analysis of honey adulteration. Therefore, the 
objective of this work was to study the possibility of detection of honey adulteration with a 
low-cost multispectral device (AS7263). Key contributions of this study include: 1) the 
design of an appropriate sample holder for honey spectral scanning, 2) the integration of 
spectral data with advanced machine learning algorithms such as LDA, PLS-DA, C-SVM, 
and KNN, which allows for a comparative evaluation of classification performance in 
distinguishing pure from adulterated honey, and 3) the development of models through 
careful optimization of input features and hyperparameter tuning to enhance classification 
accuracy. Moreover, the combination of a compact and affordable sensor with open-source 
ML tools demonstrates the feasibility of creating an accessible system which is portable 
and suitable for real-time and on-site quality screening. This approach is especially 
beneficial for small producers, sellers, and regulatory agencies. The successful application 
of AI-driven analysis with low-cost hardware highlights the potential for scalable solutions 
in food quality assurance and the advancement of smart agriculture. 
 

2. Materials and Methods 
 
2.1 Pure and adulterated honey sample 
 
Ten honey samples from the same brand were gathered from ten different local 
supermarkets across Bangkok, Thailand, with each supermarket providing a single sample. 
Each pure honey brand was divided into 10 samples for spectral data collection, which 
were indicated as 0% adulteration. In this study, cane syrup was used as an adulterant 
material. Twelve adulteration levels, specifically, 1%, 2%, 3%, 10%, 20%, 30%, 40%, 50%, 
60%, 70%, 80%, and 90% (w/w) were prepared by mixing various doses of cane syrup with 
every pure honey brand in a beaker. Each sample was carefully weighed to a total of 100 
g using a high-precision electronic balance with a 0.001 g resolution. The blended samples 
were thoroughly mixed using a magnetic stirrer for 30 min. Total samples for spectral data 
collection were 220 samples (i.e., 100 and 120 samples for pure honey and adulterated 
honey, respectively). After thorough mixing, all samples were kept at room temperature 
and then used for spectral data collection.  
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2.2 Multispectral acquisition device 
 
The pure honey, cane syrup and adulterated samples were separately placed in a vial after 
which spectral data was collected using the low-cost multispectral device. The spectral 
sensor (SparkFun AS7263, Sparkfun Electronics, Colorado, USA) was connected to a 
microcontroller broad (Arduino Uno R3). The Arduino board acted as an interface between 
the sensor and the computer. The absorbance value of each sample from the AS7263 
sensor was relayed to the computer. The Arduino board also powered and managed the 
sensor's functions by controlling the scanning process. The computer laptop was used to 
process and visualize the data from the sensor via the Arduino IDE software (Version 
1.8.19). Figure 1 shows a schematic diagram of components used for the low-cost spectral 
acquisition device. The sensor can collect reflectance values in the visible and near-
infrared spectrum, specifically at wavelengths of 610, 680, 730, 760, 810, and 860 nm. 
Each of these bands features a full-width half-maximum (FWHM) detection width of 20 nm. 
Each sample was poured into a glass vial, and an aluminum reflector was put in the vial. 
The vial was then inserted into the sample holder for spectral data scanning. Figure 2 
shows the design of sample socket for the low-cost spectral acquisition device. An average 
spectrum for each sample was generated by averaging the data from 10 scans. All spectral 
data was collected at a controlled room temperature of 25°C. Each spectral scanning may 
have been affected by several factors, including slight inconsistencies in sample 
placement, fluctuations in ambient conditions, and sensor noise. In addition, adulterated 
samples may not have been fully homogenized after mixing, which could have led to 
variations in spectral characteristics due to uneven component distribution. These issues 
highlighted the need for 10 scans per sample to reduce spectral data variability. 
 

 
 

Figure 1. Schematic diagram of components used for the low-cost spectral acquisition 
device 

 

 
 

Figure 2. Design of the sample holder for the low-cost spectral acquisition device 
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2.3 Precision test of the sensor 
 
The precision of the low-cost multispectral device scanning capability was assessed by 
examining its repeatability and reproducibility parameters. Repeatability and reproducibility 
were evaluated according to the method outlined by Pornchaloempong et al. (2022) with 
necessary modifications made to fit the specific conditions of this study. To analyze 
repeatability, the Vis-NIR spectral data of the pure honey sample was scanned 10 times in 
the same position, providing a measure of the reliability of the low-cost multispectral sensor 
(Williams et al., 2019). Reproducibility was assessed by repeatedly scanning the Vis-NIR 
spectral data of a 50% adulterated honey, collecting ten readings while reloading the 
sample each time. Reproducibility assesses the stability and consistency of the blended 
adulterated honey, ensuring that the spectral readings are uniform across repeated tests. 
The reliability of the measurement process was assessed by analyzing repeatability and 
reproducibility through the mean and standard deviation of absorbance values across all 
wavelengths. 
 
2.4 Data analysis 
 
The mean and standard deviation of the absorbance values at each wavelength were 
calculated to assess the overall distribution and variability of the spectral data. This step 
provided a quantitative understanding of how the absorbance values were distributed 
across the spectral range. A T-test was conducted to compare the mean absorbance 
values between the two groups: pure honey and adulterated honey. The T-test was applied 
with a 95% confidence interval to determine the statistical significance of any observed 
differences between the two groups. Evaluation of the p-value obtained from the T-test 
facilitated the determination of whether the observed differences in absorbance values 
resulted from random variation or constituted statistically significant distinctions between 
the sample groups. This approach enabled more informed conclusions to be drawn 
regarding the impact of adulteration on the spectral properties of honey. The use of the T-
test ensured that any differences observed in absorbance values were both reliable and 
meaningful in terms of their potential to differentiate between pure and adulterated honey. 
 
2.5 Principal component analysis 
 
Principal Component Analysis (PCA) is a mathematical technique used for dimensional 
reduction and cluster analysis. A dataset with numerous variables can be simplified by 
converting them into a smaller number of independent variables called principal 
components (PCs). These PCs retain the most significant variance from the original data, 
making analysis more efficient. For clustering, PCA is particularly helpful because it can 
provide clear visualizations by plotting the scores of the first few PCs (PC score plots). This 
allows similar samples to be grouped together, making it easier to identify patterns, 
clusters, and outliers within complex datasets. Additionally, the X-loading plot was 
analyzed to illustrate the contribution of each wavelength to the principal components, 
specifically pinpointing those wavelengths that most significantly impacted the clustering 
between pure and adulterated honey. The PCA function from the Scikit-learn library was 
used to compute principal component (PC) values up to the third principal component (from 
PC-1 to PC-3).  
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2.6 Machine learning modeling 
 
Spectral data was pre-processed to minimize unwanted influences, such as baseline shifts, 
light scattering, and variable noise levels before model development. Two sequential 
preprocessing techniques were applied to the raw spectra: Multiplicative Scatter Correction 
(MSC) to minimize light scattering effects, followed by Mean Normalization (MN) to 
standardize the data for consistent model training (Lapcharoensuk & Moul, 2024). The 
detection models for distinguishing pure and adulterated honey were developed by LDA, 
PLS-DA, C-SVM, and KNN. These algorithms represent both linear and non-linear 
classification approaches, allowing for a comprehensive evaluation of model performance 
under different data characteristics. LDA and PLS-DA are commonly used in chemometric 
analysis due to their efficiency in handling high-dimensional and collinear data, while C-
SVM provides the ability to model non-linear decision boundaries, which is beneficial in 
complex classification tasks. KNN was included as a widely recognized, non-parametric 
method that offers a straightforward yet effective approach for spectral classification. The 
dataset was randomly split into training and testing sets, with 176 samples used for training 
and 44 samples for testing, corresponding to 80% and 20% of the total samples, 
respectively. This split was performed using the train_test_split function in the Scikit-learn 
platform. The training set was used to develop detection models, where optimal 
hyperparameters for each algorithm were identified and fine-tuned using the GridSearchCV 
function from the Scikit-learn library (Pedregosa et al., 2011). This approach enabled 
systematic testing of various parameter combinations to improve model accuracy and 
performance. The procedure was carried out as follows: (1) Tailored value ranges for each 
classifier (LDA, PLS-DA, C-SVM, and KNN) were defined based on a literature review, 
domain expertise, and preliminary experiments as presented in Table 1. (2) GridSearchCV 
was then employed to systematically explore all combinations of these values using a 10-
fold cross-validation strategy to ensure robustness and generalizability. (3) The highest 
accuracy and shortest fitting time were used as key metrics with the configuration yielding 
the highest average accuracy across folds selected as optimal. (4) The models were 
subsequently retrained on the complete training dataset using these optimal parameters 
and evaluated on the test set to confirm performance and assess potential overfitting. This 
process involved exhaustive fine-tuning to achieve a balance between accuracy, precision, 
recall, and generalization, ensuring robust detection and classification. Model performance 
was evaluated using confusion matrix, accuracy, precision, recall and F1- score. These 
parameters are calculated as follows: 
 

accuracy=
TP+TN

TP+TN+FP+FN 
(1) 
 
 

precision =
TP

TP+FP 
(2) 
 
 

recall =
TP

TP+FN 
(3) 
 
 

F1-score =
2×precision×recall

precision+recall  
(4) 

 
where the value of TP (True Positive) indicates a sample of pure honey that was accurately 
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identified as pure, whereas TN (True Negative) represents an adulterated honey sample 
that was correctly classified as adulterated honey. Conversely, a false positive (FP) 
indicates a sample that was incorrectly classified as adulterated honey when it was pure 
honey, while a false negative (FN) denotes a pure honey sample that was mistakenly 
identified as adulterated honey. 
 
Table 1. Predefined parameters for fine and turning 
 

Algorithm  Hyperparameter Tailored value ranges 
LDA solver svd, lsqr and eigen 
PLS-DA n_components range from 1 to 20 with a step of 1 
C-SVM Kernel 

degree 
coef0 
gamma 

linear, poly, rbf and sigmoid 
range from 2 to 7 with a step of 1 
range from 0 to 0.3 with a step of 0.1 
range from 0.01 to 1.00 with a step of 0.01 

KNN n_neighbors 1, 3, 5, 7 and 9 
 

3. Results and Discussion 
 
3.1 Spectral data 
 
The raw and preprocessed spectra of pure and adulterated honey are shown in Figure 3. 
The spectral of pure honey and adulterated honey exhibited similar characteristics in both 
the raw spectra and the pre-processed spectra. This similarity emphasized the difficulty of 
distinguishing pure from adulterated honey using spectral data alone. Advanced 
computational methods, particularly machine learning, are essential for effectively 
identifying subtle variations. However, a comparison of the mean absorbance values at 
different wavelengths revealed statistically significant differences at all wavelengths except 
at 860 nm (Table 2). This finding point indicated the feasibility of pure and adulterated 
honey detection using spectral data obtained from the low-cost multispectral sensor. 
 

 
(a) 

 
(b) 

  
Figure 3. Raw (a) and preprocessed (b) spectra of pure and adulterated honey 
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3.2 Precision test of the sensor 
 
Table 3 presents the precision results of the low-cost multispectral sensor. The 
repeatability values across all wavelengths ranged from 0.001 to 0.008, while 
reproducibility values varied between 0.006 and 0.026. The repeatability values were lower 
than the reproducibility values at all wavelengths. In spectral scanning processes, 
repeatability is often lower than reproducibility due to increased variability under different 
conditions. This observation indicates that the sensor may be influenced by inherent noise 
or fluctuations, underscoring the critical need for rigorous preprocessing of spectral data to 
enhance its reliability and quality for subsequent modeling. 
 
Table 2. Absorbance of pure and adulterated honey 
 

Wavelength (nm) 610 680 730 760 810 860 
Pure honey 4.669±0.007a 0.570±0.003a 0.147±0.007a 0.092±0.009a 0.340±0.007a 0.200±0.007ns 

Adulterated honey 4.655±0.002b 0.576±0.002b 0.144±0.002b 0.092±0.007b 0.334±0.005b 0.199±0.007ns 
 

Note: Mean values that share the ns in a column are not significantly different (p > 0.05); 
mean values that show the difference letter in a column are significantly different (p ≤ 0.05). 
 
Table 3. Precision test of the low-cost multispectral sensor 
 

Wavelength (nm) 610 680 730 760 810 860 
Repeatability 0.001 0.008 0.003 0.003 0.004 0.002 
Reproducibility 0.007 0.026 0.006 0.009 0.006 0.007 

 
3.3 Principal component analysis 
 
PCA was applied to the preprocessed spectral data to effectively cluster pure and 
adulterated honey. The first three PCs collectively explained 99.99% of the total variance 
in the dataset, with PC1, PC2 and PC3 for 99.73%, 0.24%, and 0.02%, respectively. The 
first three principal components (PC1, PC2, and PC3) demonstrated the strongest 
separation, as illustrated in the 3D score plot (Figure 4). The pure honey samples were 
distinctly positioned on the left side of PC1, whereas all adulterated honey samples were 
located on the right side of PC1. This observation indicated the capability of PCA in 
clustering and distinguishing between pure and adulterated honey by visualization and 
interpretation of complex spectral variations with clarity. 
 
3.4 Performance of machine learning 
 
The performance of four machine learning algorithms including LDA, PLS, C-SVM, and 
KNN on both the training and test datasets for detecting pure and adulterated honey are 
presented in Table 4. All models demonstrated high effectiveness in detecting pure and 
adulterated honey which achieved test set accuracies ranging from 0.91 to 0.98. The KNN 
model showed the highest performance with superior generalization (test set accuracy of 
98%) and balanced precision-recall metrics. These findings emphasized the performance 
of machine learning models (LDA, PLS-DA, C-SVM and KNN) in accurately identifying 
between pure and adulterated honey with minimized classification errors. Figure 5 presents 
the confusion matrix for test sets from LDA, PLS-DA, C-SVM and KNN. 
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Figure 4. PC1, PC2 and PC3 score plots 
 
Table 4. Results of pure and adulterated honey detection with ML models 
 

Estimator Optimal 
Hyperparameter 

Training Set Test Set 

Acc Pre Rec F1 Acc Pre Rec F1 

LDA solver = svd 0.93 1.00 0.84 0.92 0.93 1.00 0.82 0.90 

PLS-DA n_components = 5 0.93 1.00 0.84 0.92 0.93 1.00 0.82 0.90 

C-SVM kernel = poly, degree = 7,  
coef0 = 0, gamma = 0.09 

0.91 1.00 0.81 0.89 0.91 1.00 0.76 0.87 

KNN n_neighbors = 1 0.96 0.95 0.96 0.96 0.98 0.94 1.00 0.97 

Note: Acc - accuracy; Pre - precision; Rec - Recall; F1 – F1-score  
 
3.5 Discussion 
 
This study demonstrated the successful integration of a low-cost multispectral sensor 
(AS7263) with ML algorithms (LDA, PLS-DA, C-SVM, and KNN) for the effective detection 
of adulterated honey. Conversely, previous studies were focused on employing more 
expensive and complex spectroscopic techniques such as NIR (Guelpa et al., 2017), FTIR 
(Cherigui et al., 2024) and Raman (Aykas & Menevseoglu, 2021) spectroscopy for 
authentication and adulterant detection of honey. These methods required advanced 
setups and specialized expertise for operation. The SparkFun AS7263 sensor is 
considered low-cost in comparison to traditional high-end instruments (e.g., NIR, FTIR and 
Raman spectrometers), which tend to be significantly more expensive. Additionally, the  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 5. Confusion matrices for test sets from LDA (a), PLS-DA (b), C-SVM (c) and 

KNN (d) 
 
 
integration of a low-cost sensor, a microcontroller board, and the use of open-source ML  
software for data analysis further contributed to reducing the overall costs. Our study 
demonstrated the feasibility of utilizing a low-cost multispectral sensor that could be 
developed into an optimal portable device, offering real world applications. However, a low-
cost multispectral sensor has lower spectral resolution, a limited wavelength range, and 
greater sensitivity to noise compared to advance spectroscopic techniques (such as NIR, 
FTIR and Raman spectroscopy), which can impact its precision and reliability. For future 
work, developing higher-performance sensors with an extended spectral range (i.e., 
multispectral sensor AS7265X covering wavelength range on 410-940 nm) is a key area 
of focus. These advancements could enhance the detection capabilities for a broader 
range of adulterant materials and enable the development of quantitative models for 
accurately estimating adulteration levels. 

Furthermore, previous studies predominantly employed chemometric methods 
such as PCA, PLS-DA, Soft Independent Model of Class Analogies (SIMCA), Hierarchical 
Cluster Analysis (HCA) and Discriminant Factor Analysis (DFA) which demonstrated high 
performance in authenticating and detecting adulteration in honey, achieving accuracy 
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levels exceeding 90%. However, these techniques are less adaptable when compared to 
advanced ML algorithms, which can better handle complex datasets and provide improved 
precision and scalability for diverse applications. In our research, the various ML algorithms 
(e.g., LDA, PLS-DA, C-SVM, and KNN) and fine-tuning hyperparameter techniques were 
engaged to establish the detection models which achieved an impressive accuracy of up 
to 98%. The integration of diverse ML algorithms and the application of fine-tuning 
hyperparameters significantly enhanced the performance and versatility of the developed 
models. Nevertheless, these models are not suitable for evaluating honey varieties or 
adulterants different from those analyzed in this study. More robust models need to be 
developed in the future to enhance the detection of diverse kinds of honey and adulterants. 
A diverse and extensive dataset capturing wide variability (honey varieties and adulterant 
substances) is essential for developing and validating more robust ML models in the future. 
 

4. Conclusions 
 
The findings of this study suggest that the integration of low-cost multispectral sensors with 
advanced ML algorithms (including, LDA, PLS-DA, C-SVM, and KNN) offers a promising 
approach for the effective detection of honey adulteration. Spectral scanning with the 
developed sample holder demonstrated repeatability and reproducibility within acceptable 
ranges. Although the raw spectral data still required preprocessing, all ML models yielded 
high classification accuracy, ranging from 91% to 98%. This point presented that the 
combination of the low-cost multispectral device with ML algorithms could establish a 
robust, fast, and reliable method for detecting adulterated honey effectively. Moreover, all 
ML models showed good fitting during the testing set validation, indicating that the models 
achieved robust generalization through systematic hyperparameter optimization using the 
GridSearchCV method. This study serves as a guideline for developing a low-cost portable 
honey authentication device that is practical for real-world applications. The successful 
application of AI-driven analysis using low-cost hardware demonstrates strong potential for 
scalable solutions in food quality assurance and supports the development of smart 
agricultural systems. 
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