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ABSTRACT

Dengue disease is transmitted to the human by biting of the infected Aedes Aegypti. It can be
found in the tropical regions of the world. There are four serotypes of dengue virus, namely
DEN-1, DEN-2, DEN-3 and DEN-4. Because the length of the extrinsic incubation period
(EIP) of the dengue virus while it is in the mosquito becomes longer as the mean daily
temperature is lowered, this should effect the transmission of dengue disease, In this study, we
use mathematical models to study the behavior of the transmission of dengue disease. We
compare the mathematical model of dengue disease (without the effect of EIP) and the
modified mathematical model of dengue disease (with the effect of EIP). We apply standard
dynamic analysis to both mathematical models. Numerical results are shown for the two
models. We found that dynamic behavior of the endemic state changes while the influence of
the scasonal variation of the EIP becomes stronger.
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1. INTRODUCTION

The most arboviral disease which is found in the tropical regions is dengue disease. This
disease is classified into three forms; dengue fever (DF), dengue hemorrhagic fever (DHF)
and dengue shock syndrome (DSS). DF is a flu-like iliness that affects infants, young children
and adults, but seldom causes death. DHF is more severe and associated with loss of appetite,
vomiting, high fever, headache and abdominal pain. Shock and circulatory failure may occur
(DSS). This disease can be transmitted from person to person by biting of the infected Aedes
Aegypti mosquito. DEN-1, DEN-2, DEN-3 and DEN-4 are four serotypes of dengue virus.
Infection by any single type of dengue virus apparently produces permanent immunity to it,
but only temporary cross immunity to the others. This disease was reported throughout the
nineteenth and early twentieth centuries in the America, southern Europe, North Aftica, the
eastern Mediterranean, Asia, Australia, and on various islands in the Indian ocean, the south,
central Pacific and the Caribbean. DF and DHF have increased in both incidence and
distribution over the past 40 years. The first confirmed epidentic of DHF was recorded in the
Philippines in 1953-1954. Since then, major outbreaks of DEF with significant mortality have
occurred in most countries of the South-East Asia Region, including India, Indonesia,
Maldives, Myanmar, Sri Lanka, and Thailand, as well as in Singapore, Cambodia, China,
Laos, Malaysia, New Caledonia, Palau, Philippines, Tahiti and Vietnam in the Western Pacific
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Region. Over the past 20 years, there was a dramatic increase in the incidence and
geographical distribution of DHF, and epidemics now occur each year in some South-East
Asian countries, In South-East Asia, 50-100 million people infected with dengue virus are
reported each year. The majority of deaths that result from dengue infection are due to DHF
and DSS. People who develop DHF have a 5% chance of death but if they go on to develop
DSS where the mortality rate can rise as high as 40%. [1].

The ambient temperature of the transmission for dengue virus is above 20° C, and it
can not be transmitted at 16 °C. In areas where seasonal changes in temperature are affected,
the transmission of dengue virus always decreases with the approach of cold temperatures. For
example, the epidemic of dengue virus in Australia ceased as the temperature dropped to
14-15 °C at the beginning of winter. Temperature may also effect the maturation of
mosquitoes, higher temperature producing smaller females which are forced to take more
blood meals to obtain the protein needed for egg production. The temperature and humidity
are thought to influence the extrinsic incubation period of the mosquitoes and is an important
variable in causing epidemic transmission [2]. The extrinsic incubation period (EIP) of the
mosquito in the low temperature is greater than EIP in the high temperature. If the climate is
too cold, the development of virus is slow then the mosquitoes can not survive long enough to
become infectious. The mosquitoes never recover from the infection since their infective
period ends with their death [3].

In this paper, we compare the behaviors of the transmission of dengue disease by
formulating the mathematical models. There is no variation of seasonal in the EIP of the
mosquitoes for the first model. The second model, we take into account the seasonal change in
the length of the extrinsic incubation period (EIP) of the dengue virus when it is in the
mosquito. EIP becomes longer as the mean daily temperature is lowered.

2. MATHEMATICAL MODELS

To compate the transmission of dengue disease for the two cases, we formulate the
mathematical models by considering the extrinsic incubation period in the mosquito. For the
first matheratical model, we assume that every infected mosquito can transmit dengue virus
to the human populations {no effect of extrinsic incubation period in mosquitoes). For the
second mathematical model, only infectious mosquitoes can transmit dengue virus to the
human populations. The effect of extrinsic incubation period in mosquitoes is considered in
this model. The human and vector populations are involved in this study. The human
populations are separated into three classes, susceptible, infected and recovered human
populations. The vector populations are separated into two classes, susceptible and infected
vector populations.. Susceptible human is the person who both not immune and not infected.
Infected human is the person who is transmitted dengue virus from fthe infected vector.
Recovered person is the infected person after the viremia stage until after they recover from
dengue virus infection.

Let

s" (t) be the number of susceptible humans at time t,

" (t) be the number of infected humans at time t,

R {t) be the number of recovered humans at time t,

SY(t) be the number of susceptible vector population at time t,

IV (t) be the number of infected vector population at time t.
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The transmission model of dengue disease with no effect of extrinsic incubation period
can be described by the following equations [4] :

iSh — mT_bﬁ]: Sth _#hSh,

dt Ny
d .n bﬁh kv h
—I1" = R st +ni”,
” Ny (bp +7)
d oh ) h
=R = Mo RY 1
= 2 1
Adgv = pbPygvpn -u,8Y,
dt Nr
i["’ — bg, Svfh—/lva
dt Np
with the conditions
Np=8% 47"+ ph and N, =8"+1I" (2)
where Nrpis the total number of human population,

A is the birth rate of the human population,

b is the biting rate of the vector population,
By, is the transmission probability of dengue virus from vector population to
human population,
B, is the transmission probability of dengue virus from human population
to vector population,

#y, is the death rate of the human population,

¥ is the recovery rate of the human population,

D is the constant recruitment rate of the vector populatlon
4, is the death rate of the vector population.

The total numbers of populations are assumed that constant for both human and
vector populations. So the rates of change for the total human and vector populations are equal
to zero, We obtain A = g, for the human population. The total number of vector population is

L] h h v
N, =D/u,. We nomalize (1) by letting$ =S— I~—£—, R=R— —S—
Nr Nr Ny N,
v

I, = A then our equations become
v

ds
— = ARSI, — S,
P Yholy — Uy
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I/

— = ST, - +r7 3
= S~ (D) G
di
and dv = 'Yv(l’Iv)]_ﬂvIw
¢
where v, = bf,
D
and Yo = bfun with n= M (4)
Nt
with the three conditions
S+I+R=1 and S,+1,=1 (5)

For the second mathematical model, we assume that only infectious mosquitoes can
transmit dengue virus to the human populations. Let ¢ is the percentage of infected mosquitoes

which are not infectious. So (I-¢)J” is the number of infectious mosquitoes. Then the
mathematical model can be described by the following differential equations

d oh bBy on v h
L8t = Ny - 5Py 1Y - p, st
dt TNy {1-c) My
d .n BBy on v B
— " = == §%(l-e) 1" - +r)I",
= Ny (=) 1" —(up +r)
d
R = AR, ©)
b
v - D—ﬂsvﬂ’—yvsv,
dt Nr
b
ijv = ﬁsvfh—}lvlv
dt Ny
with the conditions
Np=S8"+1% + R" and N, =8"+I" (7)

The variation in the extrinsic incubation period (EIP) caused by changes in the
temperature. This was the cause of the seasonality in the transmission of dengue disease [2].
In this study, the EIP enters into the model through the dependence of ‘¢’ (the fraction of the
infected mosquitoes existing in the EIP) on 1. The fraction is given by

.
c = Je ™ dt
0

1—e™ A7

Hy

where t is the length of incubation period (day) of dengue virus in mosquitoes. Substituting
this into the probability ﬁ;, = B (1—¢) and then expanding the exponential, we obtain
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, gt 4l
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As we have already pointed out, the dependence of B'h on T (temperature) appears

because the latent period depends on T. Though the dependence looks like a hyperbola, with
T =8daysat T=31"Cand 7 = 17 days at T = 21°C, we have modeled the variation as a
sinusoidal variation such that

ﬁh = ﬂh(l+asingot) (8)
where € is a measure of the influence of the seasonality on the transmission process.
Normalizing systern models (6), then the differential equations become

ds

= A-vxSI, — 45,
i Yroly — 4y
dl :
Z YuSTy - (uy + 1) )]
dr
and LA Vo (M — 0,
at
where Y = bf,
. , . D
and Yh = bfyn with "= M (10)
Nr
with the three conditions
S+I+R=1 and S,+1, =1 (11)

3. ANALYSIS OF THE MATHEMATICAL MODEL

3.1 Analytical results

The equilibrium solutions can be found by setting the right hand side of (3) equal to zero then
we have

1) P°

2) Pl = (s *,I "I : ) is the endemic disease equilibrium point

{1,0,0) is the disease free equilibrinm point and

where
st = M, (12)
B+LAY '
0 _
]* = g} (13)
B+LAO
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and o= AU - (14)

A% (B+1L)

%, L = Mt A0=M_ (15)
Hy Hy .ty (y 1)

To determine the local stability of the endemic equilibrium point, we calculate the
Jacobian matrix of the right hand side of (3). If all eigenvalues (obtained by diagonalizing the
Jacobian matrix) have negative real parts then the equilibrium solution is Iocal stability.
Diagonalizing the Jacobian for the endemic equilibrium point, the characteristic equation is

where B

given by setting det(J-nl)}=0
where J is the Jacobian matrix for the endemic equilibrium point,
7 is the eigenvalue
and I is the identity matrix.
Thus, eigenvalues are obtained by solving
T]3+€oﬂ2+€111+92 = 0 (16)

where '

+ LAY L+
@ = b + L+ A Lrp ),

L+ B B+LA40

2, [B+LA° Hy iy PL
= Li——|+ A0 (40 - S Eae— | 17

e ®, [ Lip |FHm ¢ ) Be 140 (17)
e = mu LA -1).

Using the Routh-Hurwitz criteria [5] for determine the local stability of the endemic
equilibrium point. If the coefficients €, ,€] and €, satisfy the following inequalities:

eg > 0, > 0 and ege, > e (18)
then the equilibrium point is locally stable.
o 0 o _ b2 Bupn
Thus the endemic equilibrium point is locally stable for 4¥ > 1where 4° =——— .
(i +7)

The basic reproductive number of the disease is given by 4" = \/A—O , which gives the average
number of secondary cases that one case can produce if infroduced into a susceptible human.
Thus the outbreak of dengue disease in the endemic region can be reduced when the basic
reproductive number { A" ) is greater than one [6].

3.2 Numerical results

Numerical solutions are presented for comparing the transmission of dengue disease for the
two sifuations. The program Turbo Pascal is used in this study. The values of the parameters
used in these 2 situations are s, = 0.0000391 day™ corresponding to a life expectancy of 70

years for human. The mean life of the vector is 14 days, so g, = 0.071 day!, The biting rate
of the vector is 1/3 per day, The transmission probability of dengue virus {5}, £, ) are chosen :
B, =05, B, =0.7. The recovery rate is 1/3 per day. Setting n equals to 10,
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Figure 1 Numerical solutions of (3) yield the time series solutions of the susceptible human,
infected human and infected vector populations. Values of parameters in

the model are sy =0.0000391 day™, g, =0.071 day”, b=1/3 day”, B, =0.5
By =0.7,1=10,r=1/3day", 4% = 16, 4" =4 . The solutions oscillate to the

endemic equilibrium point §”=0.018, /* =0.00012 and I, =0.00065,
respectively.  The period of oscillation is about 3 years.
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Figure 2 Numerical solutions of (9) yield the time series solutions of the susceptible human,
infected human and infected vector populations. Values of parameters are
& = 0.1 and others parameters are same as in Figure 1.
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Figure 3 Numerical solutions of (9) yield the time series solutions of the susceptible human,
infected human and infected vector populations. Values of parameters are
& =0.9 and others parameters are same as in Figure 1.
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Figure 4 Numerical solutions of (3), demonstrate the solution trajectory, projected
onto (S.1), (S.I,)and (L7} . Values of parameters are same as in Figure 1.
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Figure 5 Numerical solutions of (9), demonstrate the solution trajectory, projected
onto (S,7), (S.J,)and (L1,) . Values of parameters are same as in Figure 2.
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Figure 6 Numerical solutions of (9), demonstrate the solution trajectory, projected
onto (8,7), (S.J,)and (LI,) . Values of parameters are same as in Figure 3.
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Figure 7 Bifurcation diagram show the maximum value of susceptible, infected human and

infected vector populations for the range of values of the index parameter £ for (8).

4. DISCUSSION AND CONCLUSION

The numerical simulations for the two mathematical models have different behaviors, Figure 1
shows time series solution when there is no seasonal variation of extrinsic incubation period in
mosquitoes. Figures 2 and 3 show time series solutions when there is the seasonal variation of
extrinsic incubation period in mosquitoes. Figures 4, 5 and 6 show the solution trajectory, the
parameters are corresponded to Figures 1, 2 and 3, respectively. The values of parameters for
simulation in both models are similar. The values of parameters are satisfied Routh-Hurwitz
criterions for the endemic equilibrium point.

For the system model (3), the solutions oscillate to the endemic equilibrium point as we
can see from Figure 1. It can be seen from Figure 4 that the stable spiral behavior occurs in
this case. From Figures 2 and 3, the solution of the system model {9) oscillate to the 2 points
and limit cycle oceurs for £ = 0.1. It can be seen from Figures 3 and 6 that the chaotic
behavior occurs for & = 0.9. Thus the complex dynamic behaviors of populations oceur while
the seasonal variation of the EIP of the mosquitoes is introduced. Bifurcation diagram of each
class of the population is showed in Figure 7. It can be seen that the dynamic behavior of the
endemic state changes while the influence of the seasonal variation of the EIP becomes
stronger.
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