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Metabolic engineering in the shikimate pathway and secondary metabolites

production
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ABSTRACT
Chorismic acid, an end product of the
shikimate pathway, is a precursor for the production

of essential amino acids and secondary metabolites

such as folate, ubiquinone, coenzyme Q10 and
antibiotics. Intermediates of this pathway such as
shikimic acid was used as a precursor for the
production of neuraminidase inhibitor for treatment of
influenza. Thus, this paper summarized or reviewed
the research studies of metabolic engineering in
shikimate pathway of bacteria to improve the
accumulation of important intermediates or by product
such as chloramphenicol. Furthermore, the study of

enzymes in the shikimate pathway were reviewed as

potential drug targets for antipathogenic bacteria.
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A0TALG (shikimate pathway) Usznauaae 7
Ugnsen (gﬂ'ﬁ 1) diail UfATewInie nmsamdiu
i:ﬁﬁﬁﬂ\laﬂwauaﬂwgnm (phosphoenolpyruvate,
PEP) uaz 83Ina-4-Waawa (erythrose-4-phosphate,
E4P) 1iaans 3-foand-G-aznilu-iadylalaoiue-7-
wWartWa (3-deoxy-D-arabino-heptulosonate-7-
phosphate, DAHP) dutewlysd DAHP Tulsa (DAHP
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synthase) (8% aroG, aroF uaz aroH MW&1aL) UA3eN
fgadfia NIF319 3-0 1alasaue (3-dehydroguinate,
DHQ)

synthase) (B4 aroB) e 1wl 3eNisuda n1sdin

90 DAHP  édautau ol DHQ Suwiss (DHQ
2an9n DHQ  arstanladd lalasediuad laaning
(dehydroquinate dehydratase) ('E'Ju aroD) Lﬁ@ﬁ%ﬁd 3-@
lalesBfiua (3-dehydroshikimate, DHS) UfATenfidda
mafAaUjAToianiu DHS  esriniadatanio
TAWa (shikimic acid w38 shikimate, SA) faLawlasd
TAawwadlalasdiua (shikimate dehydrogenase) (B4
aroE) el ndFaiwalaiug (shikimate  kinase)
(B aroK  uaz/M3e arol) Liaﬂﬁﬁ%m'ﬁﬁw Ao iny
Wamwan ATP @uadluluianavainiadaia 1434
Wa-3-WarLWe (shikimate-3-phosphate, S3P) U738
fivnfia Mok s-ﬁuaa"l,wfm-%ﬁLm-s-WamWGI
(5-enolpyruvyl-shikimate-3-phosphate, EPSP) a8
ou bl EPSP $ui5& (EPSP  synthase) (B4 aroA)

AN INengadIng uazaSuiing sITuTaRLILA

nniulJiTengarefe nsdienziniaaaaiaia
HI0ARDITLNA (chorismic acid %38 chorismate, CHA)
eotaulminaasauaduisa (chorismate synthase)
(B aroC) AfiTAwa Anuldluiy Usda 98unid 1o
A a v W aa A & v ¢
wuaflie 31 udu udldwuiidlunysduasdad
Lﬁﬂagﬂﬁwuu (Herrmann et al., 1999)
nsanaesadaluasasdulunsaaazy
nsnazdludndu laun Adaazaniin, nSUlawu uas
a Fo & & o @ &
nls%u wenanitdaluamsasdulunmssauasishans
meuavlaﬁnaﬁgﬁ (secondary metabolite) 8nwans
ofia (Herrmann, 1995) laun Tnaa (folate) gﬁﬂﬂuu
(ubiquinone) Tataulaaidianu (coenzyme Q10) unu
A (tannin) andiu (lignin) wazaTiRFluaanld 1o
Warliuasd (flavonoid) was waulslos1fin
. & ag a A '
(anthocyanin) 32NM981IUTIUcaNUUATISY 1T
ARaLINLWIABA (chloramphenicol) (Chang et al.,
2001)

ngiﬂﬁ-ﬁ—%lamwgl (Glc-6-P) ==ss¥ Afimulnawoaina (Pentose phosphate pathway)

\4 \ 4
Waalnduanlniiae (PEP)

NuFalaas (transketolase 1) (ﬁu tktA)

Slna-d-namula (E4P)

¢ ¢ t DAHP &ul5a (DAHP synthase) (ﬁu aroG, aroF \\ax aroH)

3-faand-f-armilu-aylalaua-7-Wasvla (DAHP)

* DHQ TuLsa (DHQ synthase) (B aroB)

3-flalasniue (DHQ)

¢ flalasaiuadlaaTung (dehydroquinate dehydratase) (E'.lu aroD)

3-flalasifiua (DHS)

¢ Feunalalasdua (shikimate dehydrogenase) (84 aroE)

nIaTaNe (SA)

2

TALua-3-Waswa (S3P)

Faua laua (shikimate kinase) (8% arok uaz/w3a arol)

& EPSP 4uL5& (EPSP synthase) (ﬁu aroA)

5-§uaa‘lwﬁa-%ﬁmﬂ-s-wamwm (EPSP)

J ARDIRWATWITA (chorismate synthase) (8% aroC)

niaaaaiIaia (CHA)

;U7 1 38%Aa (shikimate pathway)
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L% DHS ﬁauﬁaﬁwuaggaﬁmz (antioxidant)
(Richman et al., 1996) s llFlunsnuanuaziinany
01113 11Ka1M13099 NN (Chang et al., 2003)
niagddaniadaiwanuazasfslungu
Hlicium \T% licium anisatum %8837 W71 star anise
(Dot mmz‘ﬁﬂwﬁfﬂﬂdw shikimi no ki N1®13%
138n91 mang-tsao (Eykman, 1881) Qﬂﬁwﬂﬁﬂumi
aad lumssaassdansiiignagusinmsrinanues
Ll iifias (neuraminidase inhibitor) 1L uen
duhialsania (oseltamivir %30 Tamiflu®) (Kim et
al., 1997; 1998; Karpf and Trussardi, 2001; Bradley,
2005) MIFNA SA INNNAVBIGW Micium A baUTu 4
annigawafihanangin dasldnalSunann &
%u@]auﬁgjamn wazidunulumantags F9insana
SA MNIUAATDING sweetgum (Liquidambar styraciflua)
(Enrich et al, 2008) u@asndlsiau dsasdaald
YSunawadiuda sweetgum LHutSunmunngunule
AIMEa Tamiflu® eflumrfaWamuazliulyime
v‘i’ufl,mﬂﬁﬁmﬁawam sA TwlatSanmgs lanlddunu
§ni1 (Kramer et al., 2003)
‘mqmmfﬁﬂuuwmmagﬂﬁaﬂumums
Anw1iey fifedesivimnssuwunuedaluiiza
wazasuuafise WalwuuefiGeszaumsanailu
SafRuunTn niaiarhlwuuefiGeing mwunsn
aheelfFaue 19w ansusundaes diAndu
wananieslanuniwnmsanwawladluiai 4
Asadasiunmsmeimanefsuguaiizeialse

RAUTRA TINNIONUNUITNDY

FEINIINNUNLDAA I DBAIAVRILLATIS Y
Escherichia coli {lwuuafizonfiausn Ans
aaudasnuznysy lasnsassmonuinany dau3%
FUSanMIuaaInenvasduda3T aasuTw (distuption)
wazliunsugasaanvasiiu (overexpression) w3
FAUA 62087917 % NMSTUGINITUEAIeENY DI TN
aroK sz arol  UAzIMAELABIRRALRIMIURAIaEN
2838% aroF, aroB was aroE N lUee ¥il# E. coli
SP/1.1pKD12.112 13130&9LAT12H SA uaz DHS ¢
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- & .
lutSunaanniu (Draths et al., 1999) dasnimsdnm
Wadulassin E coli SP/1.1pKD12.112 3Ny
a A o & &
ugadeanTadbn tktd Asaeunlminuddlawas
(transketolase 1) tHuanladnisslfAsonnmssaamzi
E4P  annalasdisitiwulnanasine (pentose
phosphate VLGTLflum&lﬁuf E. coli

SP/1.1pKD12.138 B9sunIn&aa s SA uas DHS

pathway)

mﬂﬂQIﬂavl@Tmﬂ%u (Knop et al,, 2001) eaaglua1d
1

@1597 1 usealiiindn Bu arol uay arok
Fsansiionlaidawalows Wuduihwans lu
msvhiudastu SnsansufatiRumIszauas SA
T E. coli W3100.shik1 firndain aroL aan wdavinan
weslugnzfisniaunasnsuenuazWaanass
(Johansson et al., 2005) WU a’lﬂlﬁuf W3100.shik1
fimia$hs sA wnndmewuind wa100 Alaigms
AaLURINUTNITY WONIMNEHEIH ar0A  NAILATIZR
awlmsl EPSP uisa Alusndudivnlitiiansnans
BN IFZRNVDY SA (@15797 1)

i aroF, aroG, aroB Wa: aroE MWADTALNG
VL@TQﬂﬁmeﬁ'ummamaaﬂmaaﬁu WalmdAuns
FEENVAI SA (@m’mﬁl 1) @198719LT% wust E. coli
soiusundlinglaalunaaiydule Jium E4P
waz PEP liiiganefiazinuniuansanidunesinsa
wa 1asanUSunmnandensuon (carbon flux) ez
LﬂTﬂgﬁﬁLwﬂﬂﬁwaaLWM'} LRz MeL@8IN® PEP N
aninldldluszuunisadsdenywomna 1uid
wiunuadduvasanslulaiasa (phosphoenolpyruvate:
PTS)
mﬂmfw:gﬂﬁﬂﬂ’[ﬁﬂumsé&aﬁumaﬁﬁ%ﬁmm It
E. coli PB12 (PTS™ glc+) (Lu et al., 1997) 39tTuane

carbohydrate  phosphotransferase  system,

ﬁuﬁ:ﬁgnﬁmmm Fnlrnaduwlumsssiewloinle
luszuunisdsdangWamna luitiwunuedduas
milulaasa uddimunsnwialdluemsniingles
WaiuUSunmn1sseauTas SA Fhaunus PB12
Afsalin arol uazmndain arol uaz aroK 19Fed
Bu I dumonuinany PB12.SA1  uaz PB12.SA2
AN mnﬁ?uﬁmmﬁ'uﬁjﬁtmmﬁ YRS

LEAIDENURIL aroF, aroG, aroH, tktA W8 aroB 1o
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L“ﬂumﬂﬁuf PB12.SA11 uaz PB12.SA21 anu&au
uanmnﬁ?ﬁ'sa%omsﬁufﬂmmﬁmﬁm’mamﬁuﬁ:
PB12.SA2 lagifiunIIuaniaanvaddn aroF, aroG,
aroH, tktA, aroB uaz arok ldiusuwus PB12.5A22
uwazaimsRuina1y PB12 T ssusansrinem
2938u pykF ﬁé’amm:ﬁmuiwﬂwgnﬂﬂLua |
(pyruvate kinase 1) uaziwn pykA figoresreiionlss
Iwguialawa il (pyruvate kinase 1) leidusonug
PB12.SA3 uaz PB12.SA4 @1u&1aU ﬁy'amﬂﬁuﬁj
PB12.SA3 Uuas PB12.SA4 fitiluan ﬂﬁuﬁ:ﬁvlajﬁl,auvlﬁnﬁ
Bedfzenaon PP lilulwgnald anduime
ﬂ'uﬁ‘:ﬁy'maaf: VLRI ILEAIeanUadbin aroF, aroG,

aroH, tktA, aroB uaz arok liumuWug PB12.SA31

AN INengadIng uazaSuiing sITuTaRLILA

ez PB12.SA41  @N&1QLU Lﬁaﬁwmﬂﬁuﬁ:ﬁwm
@ ' A g A v '
aanaMBias iNalwimIszauva9 SA WU Y
Wu§ PB12.5A22
(Escalante et al., 2010)
a
A137499 1

FINITORII SA Vl@i’mﬂﬁé;m
FIuRAILALARIN NIAENBINNT
[ v a & WV ¥ o ' . . &
83719 SA Tiinaan ldlevinanzudlu E. coli winn
FINNTITUUANLT AN Y LTW Bacillus  subtilis
(lomantas et al., 2002) SuNANMALTWALINLN
2 - = A o A A o &
dnwlu E. coli fa In13Gasutiu arol NRILAIITR
Wb TANe lAWE  LazINITIRNAITLEAID BNV
% aroD WAz aroA Na LTI TALNAA balaTILE

ey DAHP TULTE aMNA1AL

A13197 1 NMIFILATIERNIATATALAZNIAG balasTANA mﬂmsﬁ@LLﬂaaﬁuqﬂ‘i‘sﬂuLLmﬁﬁﬂ

S A
LUANLIE

E. coli SP/1.1pKD12.112 @&3UThE % aroK Waz arol
WA RNMIUERID8NUBIE W aroF, aroB uas aroE

E. coli SP/1.1pKD12.138 A& LT hel1h aroK Waz aroL
WSLRAUMILERIEaNIBIEW aroF, aroB, aroE uax
tktA

E. coli PB.12SA22 fiw arol uaz aroK lvinanuaz
\RUMIUEaI8aN8sEuof aroG, tki, aroB uss aroE
B. subtilis Arol116 2@t arol

B. subtilis Arol116 281 arol Las L‘ﬁuﬂ’mm@daaﬂ
2898 aroD(E) Ued Bacillus amyloliquefaciens

B. subtilis Arol116 11@5% arol wae HRNSUEAsaan
2898% aroA(G)

B. subtilis ID36 2NaEw arol iumIuaasaonuasin
aroD(E) ann B. amyloliquefaciens W8z aroA(G)

B. subtilis SB130 U108 aroE

B. subtilis DEI M3¥inauvadtan tos] EPSP $uLs
FUNWIaILas LRNMIUEAIaanaasln  aroD(E)

31N B. amyloliquefaciens

SA DHS o A
> 1 a (% 1 a a’]da\‘]

(NSNADAMYT) (NSNADANT)
27.2 4.4 Draths et al., 1999
28 11 Knop et al., 2001
7.0 0.29 Escalante et al., 2010
8.5 9.5 lomantas et al., 2002
14 6.8 lomantas et al., 2002
7.2 20 lomantas et al., 2002
19.7 9.8 lomantas et al., 2002
1.1 0.20 lomantas et al., 2002
2.8 1.1 lomantas et al., 2002
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(2
A o A

uanandt gaimsaaulaiduluingdiua v
Iuuafi3omansiuaunsoazan SA wie DHS ¢
Lﬁu"ful,ﬁal,ﬁyuﬁ'mmﬂﬁﬁﬂmﬂﬁuﬁjﬂﬂ?\ MIAALLAY
Buignameiiewledluwifsauaves E coli fain
nsafrensaezdludndu Inlsdn iRuduindae
(Juminaga et al., 2012)

WarRunisuansasnaasBuiigoinses
wou bl DAHP $wisa luAiTAwavad E. coli f18
ﬁufﬂmymmma%aﬂﬁaazmﬁﬂﬁﬁlumﬂ"fuﬂ'jw
muWusUNG (Dell et al, 1993) uazillafimsiiunis
uEAIaanVaddu arokK Wuin E. coli au1aaieinls
Fuldifinanniueas (Litke-Eversloh et al., 2008)

1w Pseudomonas Wae Streptomyces
snsnaemawunualadnfogl  gu Rudu
(phenazine) Faflugshdautiaduuuafide Wes
Ta$s wazdugonzi3s nudtnisafrefurduain
Pseudomonas fluorescens 13nsaaaaIainaninza
waduansasdn (McDonald et al., 2001)

Tu Amycolatopsis balhimycina mmim‘ﬁlu
IRl TIurTagiudu (balhimycin) Wauia
MILEAIaaNaIbn dahp wae pdh NastaTziiow s
DAHP  Gulsa  uaz LawlodwiNiuad lalasdiua
(prephenate dehydrogenase) @MuU&1aU (Thykaer et
al, 2010) fmsdnsgwdeaiuitlu Streptomyces
hygroscopicus var. ascomyceticus WU auan
sndenuanluinsawalilmeas SA anniw il
UFATenn sa ldidlunsaasssafiafinanniv lag
NN uvasianlod DAHP  Swiss  uas
wnuzdrnufivda lildiowlsd DAHP Swisa gn sy
WULMSEUSIfaunay (feedback inhibition) WaZN3
WM Iuaasaanuasdn kbo tHuMRANNIIFEIH
W89 FkbO ¥nlwufAsenannsaaaadaiia il 4,5-
la'laasandlalaaian-1-Buansuanddaieda (4,5
dihydroxycyclohex-1-enecarboxylic acid) Lﬁlml’m%uv[,ﬂ
¢ iesnastiluansnsdulunsssenzvuesala
% (ascomycin) GarHsIlMsFLATEnaslale

Fu loRuannTwlleas (Qi et al., 2014)
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FAINIINLNUNUDRAIRIDBANAN VNS
#5vaaausaiiianaa

10712
(Vining et al., 1995) 319810 JTuzAnanINNTAas

Streptomyces venezuelae ATCC

(chloramphenicol, CHL) lfduqaunidnalsa Lﬁaﬁu
FUBIONLAY (meningitis) aRnanlia uazlnwesd
lag CHL 3zt ldsudiwznunsinssgey 508 vadls
Tyl Lﬂuﬂﬁﬁuﬂgamiﬁam‘mﬂﬂs@waagﬁuﬂ%ﬁ
falsnfiating

M3§9AT29H CHL i S. venezuelae n3aAaa
%aﬁﬂgmﬂﬁlﬂmﬂum‘iﬁaﬂma 4-0:51% 4-faandnae
IRUALTA (4-amino-4-deoxychorismic acid, ADC) @28
wau ol ADC Suisa ﬁé’amﬁ:ﬁmnnﬁjuﬁu pabAB
(Brown et al., 1996; He et al., 2001) %38 CmiB (sven0920,
Fernandez-Martinez et al., 2014) Lfia pabA en) pabB
Qﬂﬂ‘uﬂv’amiﬁwmu MIR319 CHL 228aad (Brown et al.,
1996; He et al., 2001)

Ja9ulinewin S venezuelae  {nn3
Fa51e% CHL  ldSunmanndu iatiunns
LEAIaanTadItn sven0913 (transcriptional activator)
%aﬁmﬁhﬁmzﬁummamaamlaamjuﬁuﬁ'lﬂumi
FILATIZH CHL (Fernandez-Martinez et al., 2014)
wanaNERTINLIN 1aiunsuaasaenvasin 7
stawlmiTuimuasai (rate limiting step) 134
TALA Ao aroB 1138 aroK JHAGaNNIFILATIZA CHL
Wuunaw lagunsusasaanvesiin pabB W niu
@28 (Vitayakritsirikul et al., in press)

azAnladn misaudasduiiiandasnums
gaanziowlmiluifiugund (primary metabolism)
lu streptomyces finadaniaismauunualadn@s
nf dedrnsu nsaaudasduluiflnalalada
(glycolysis pathway) ﬁwa@iaﬂ'ﬁa%'mni@ﬂmga'\ﬁﬂ
(clavulanic acid) waa®@luls@n (actinorhodin) was
pandianszlwadn (oxytetracycline)  tfindulu s.
clavuligerus (Li et al., 2006) S. coelicolor (Ryu et al.,

2006) Waz S. rimosus (Tang et al., 2011) @u&1AU
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gnilnargdmsSudgudgtan ol lnIasaw
auasnuanisanalsa

adaa

FINNAITIIGUIN ’Jﬂ“ﬁﬂLN@leliW‘Uslu&ni:Hfj

A o e @ v €& 8 a =<
wiadaTlRIgnanuy danuiatinafnsowlmily
F0FANe iNaltlunswietinune (drug  target)

'
A

efiardussanladnariiluuuefi3ornalse 1ou
Helicobacter pylori AaNZLTINTZLNIZDINIT WAL
Mycobacterium tuberculosis Aoioulya 1Judu lasen
mﬁhﬁu‘lajﬁwa%\nﬁmﬁamguﬁ @208719LT% NTRIEN
Whwansfisunsagusaewloddawalawma (Cheng
et al., 2005) uazian loddauadlalasdiua (Han et

al., 2006) LNBSUEIN AWV H. pylori

Do

o a A o 6
ANINITNRANYYBIYW aroK  NRILATIENR
caa v adda o o 1A 1
La%ﬂ‘ﬁu’ﬁﬂm@ﬂﬂma AIYUITARIUDUY WUNUNIABDNT
Lﬁrymadl,%a M. tuberculosis (Parish et al., 2002)

1 adaa

ugasliAuwiIfgawe Janudragdonisiaigves

2 A

= & = a o
toan aIiﬂ% i]\‘i1]ﬂ']iﬂﬂB’lIﬂi@]%LLﬂZﬂ’]‘S‘YﬁG’]%m 23

woulod EPSP dulss Lo loidaiuna balasduua
waztaubord DHQ Suwwna laolaawuiu aroA, aroE
W8z aroB 31N M. tuberculosis AMN&1AU L’fl”];j E. coli
{enia3fiazfusanisineuuastowlodnasy
(Garbe et al., 1990; Fonseca et al., 2006; de Mendonca
ot al., 2007) wenanuuIdnshasivnauia
{ugu1fineanis (docking) Lﬁia@miﬁu&imi
YN uUadLaw luNTALNaG lalasdiua (Rodrigues et
al, 2009) T@Lualalua (Simithy et al, 2014) WAz
DAHP Gulsa (Nirmal et al., 2015) 984 M. tuberculosis
iowa iluensnenTalsadely

d1a19813 (6S)-6-WalalsGdfiaiada ((6S)-
6-fluoroshikimic acid) fi§9AT12%aN SA Fanidn
wwefidy wemunsagusaenloiaaesmuaduss
(Davies et al., 1994) ua=uUsINIFsLATIEH 4-0x5iTn
wiladalada (4-aminobenzoic acid) (Bornemann et
al, 1995) wanani (6S)6-valaladddiaiada 3
ﬁ'uﬁv'amim'%tyﬂu 041380 Plasmodium falciparum firia
Tsaunan3ele snindsimsdnunansiiiowann
813181 15ANNAS8 (McConkey, 1999)

mIeregsBnTReflEiuuninaaLiaiga

N whe Tnalwiaa (glyphosate (N-(phosphonomethyl)

AN INengadIng uazaSuiing sITuTaRLILA

glycine)) Ll usnsaasunlunaawaTa (organophosphorous)
Augstanlas] EPSP Suisa luiy 0an19n136130
317268%W (Roundup) dninelasuSunuanaula
(Monsanto) (Franz, 1974)

AW IEINTAINTINNNURA WA DTALN A
= =1 d‘ o v 1 Y a k3
fims@nsudathundeyndld delwifadszlomile
RADEIU NIULITDINI TN YT I NIHEAN TR

o & A & A Ada &
ludulu viasswunvaladnaoninfidszlond uas

o o o ' v a 4 A
pdwhiialiania amaliiagduldluniindass
@ \ & a . A X a & adan v m aa
aanannuiiyadufuanndu snnaaisawadaduid
WnuoNauI ez VUUINIINAI U NONRA N G%

dq’ 1 1 a = I v
Lﬁﬂﬂ@I‘iﬂ LT ’Jﬂ,ﬂ:iﬂ LazN1aNIe LUua

LONA1ID19D9
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