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Introduction 
 

arkinson’s disease (PD) is a motor disorder 
characterized by neurodegeneration of dopamin-

ergic neurons in the substantial nigra par compacta 
(SNc) and the presence of Lewy bodies in the brain 
region.1,2,3 Patients suffer from motor symptoms such 
as tremor, dyskinesia, and rigidity. Apart from motor 
function impairment, urinary bladder dysregulation, 
e.g., urinary frequency, urinary incontinence, and 
nocturia are common in PD patients.4,5  

Micturition is a complex function which is partly 
controlled as a sacral autonomic reflex. In addition, it 
also depends on the regulation center in the pons 
which is influenced by the higher brain areas, i.e., 
cerebral cortex, basal ganglia, thalamic nuclei and the 
anterior vermis of the cerebellum.6,7 The micturition 

reflex is under influence of dopaminergic signaling 
via inhibitory D1 dopaminergic and excitatory D2 
dopaminergic receptors.7,8 In a physiological condi-
tion, the net effect of dopaminergic signaling is 
inhibitory to micturition via D1 receptor activation. 
Loss of dopaminergic neurons in SNc in PD leads to 
a loss of a suppressive effect on the micturition 
control and results in overactive bladder symptoms, 
e.g, urinary incontinence, frequency, and urgency.9,10 

Previous studies reported that dopaminergic 
neuron lesion causing urinary bladder dysfunctions. 
Rats with 6-hydroxydopamine (6-OHDA) induced-
dopaminergic neuron lesions in the nitro-striatal 
dopaminergic pathway exhibited bladder hyper-
reflexia.11 Isolated detrusor muscles from marmoset-
treated with MPTP showed an increase in frequency 
and amplitude of contraction.12 In addition, dopamin-
ergic receptor D1 agonist prevents bladder hyper-
activity in MPTP-induced Parkinson’s disease-like in 
marmosets.13 

MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyri-
dine, is one of the most common neurotoxic model to 
induce Parkinsonism in animal models. MPTP 
specifically damages the nigrostriatal dopaminergic 
neurons with a profound decrease of dopamine level 
in the striatum and SNc.14,15 MPTP is a lipophilic 
molecule which is taken up into the brain by 
astrocytes and metabolized into MPP+. MPP+ further 
inhibits mitochondrial respiratory complex I and 
results in neuronal death.16,17 MPTP injection (30 
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mg/kg) causes a loss of DA neurons greater than 80% 
after 1 day and a loss of greater than 40% after 30 
days in striatal area in mice. In addition, subchronic 
treatment with a daily injection of MPTP (25 mg/kg) 
for 5-10 days leads to 53% loss of dopaminergic 
levels in striatal area in 30 days post-treatment and 
24-40% of dopaminergic neuron lesion in SNc.18 

However, whether this MPTP-induced Parkinsonism 
in animal model could reflect urinary bladder 
dysfunction in PD is still unclear.  

Voiding spot analysis (VSA) is the simplest and 
non-invasive method to evaluate urinary bladder 
function via determination of urine marking on filter 
paper. The urine stained filter papers are imaged by 
autofluorescence emitted from the urine under 
ultraviolet light.19,20 This method is widely used to 
physiologically investigate the urinary bladder func-
tion during awake conditions.21,22 Therefore, the 
present study aims to investigate urine voiding 
pattern in MPTP-induced PD in mice using voiding 
spot analysis. 
 

Materials and Methods 
 

Animals 
Male ICR mice (25-45 g) were obtained from 
National Laboratory Animal Center, Mahidol Univer-
sity, Bangkok, Thailand. All procedures were con-
ducted with the approval of the Animals Ethical 
Committee of Prince of Songkla University. All 
animals were maintained individually in standard 
cages of the Laboratory Animal Facility Unit, Faculty 
of Science, Prince of Songkla University, Thailand. 
All mice were maintained in a room with 22 ± 2 °C 
and 12:12 hours light:dark condition. The animals 
could freely access standard chow (S.W.T; Thailand) 
and water. The animals were allowed to acclimatize 
for at least 7 days ahead of the experiment. 
 

MPTP treatment  
The animals were divided into control and MPTP 
groups. Mice in the MPTP group were injected 
intraperitoneally with 10 mg/kg body weight MPTP 
(Sigma M0896) for 5 consecutive days to induce 
Parkinson’s disease-like symptoms. Control animals 
received 0.9% normal saline. The animals’ body 
weight was monitored daily.  
 

Voiding spot analysis (VSA) 
Urine pattern of the animals was studied after 21 days 
of the last MPTP or normal saline injection. Twenty-
four hours before testing, mice were allowed to 
habituate with a metal wire mesh (15 × 26.5 cm2, 
with grid spacing 1.2 × 1.0 cm2) fitted in the standard 
mouse cage for a 4-hour period between 1 and and 5 
pm. On the examination day, filter paper (catalog no. 
1003-917, Whatman®) was placed on the bedding 
material in the standard cage and the metal wire mesh 
was placed 1.5 cm over the filter paper. All mice 
were given access to food and water during the 
experimental period. Thereafter, the filter paper was 
dried for 24 hours and photographed under the UV 
light (BioSpectrum® Imaging system, UVP, Upland, 
California, USA). Urine stained filter was analyzed 
using Void Whizzard software, version 1.3.23 
 

Statistical analysis 
Data were expressed as mean ± standard error of the 
mean (SEM) and analyzed by Student’s t-test using 
GraphPad Prism 6 (GraphPad Software, San Diego, 
California, USA). 
 

Results 
 

There was no significant difference in body weight 
between control and MPTP groups (control, 43.92 ± 
2.46, vs MPTP, 44.12 ± 0.25 g). To investigate a cor-
relation between urine volume and urine voiding spot 
area, a mouse urine calibration curve was established. 

 
 

Figure 1  Volumetric calibration of voiding spot analysis: 
(A) Image of mouse urine with various concentrations; (B) 
scatter plot of calibration graph showing a correlation 
between urine volume and spot area. 

 
 

Figure 2  Voiding pattern of control and MPTP-treated mice groups. (A) Marking pattern of control mice showed a higher 
density of large urine spots and non-circular marking compared to MPTP-treated group (B); *indicated water dropping from 
water bottle. 
 

A B 



 
Urine voiding pattern in MPTP mouse model of Parkinson’s disease J Physiol Biomed Sci. 2019; 32(1): 19-24 
 

21 

Different mouse urine volumes (5, 10, 25, 50, 100, and 
150 µl) were pipetted on filter paper and the correlation 
between area and urine volume was determined. We 
found a strong correlation between urine spot area and 
urine volume, with R2 = 0.981 (Figure 1). 

Representative images of urine-stained filter 
paper from control mice and MPTP-treated mice are 
shown in Figure 2. Urination pattern of control mice 
showed larger markings compared with those of 
MPTP-treated mice. In addition, MPTP-treated mice 
had a significant increase in total urine spot number 
(control, 8.20 ± 3.0, vs MPTP, 20.40 ± 3.73, P < 0.05, 
Student’s unpaired t-test; n = 5 in each group). 
However, there was no significant difference in total 
urine volume (Figure 3). The number of small urine 
spots (< 0.2 cm2) was higher in MPTP compared to 
control groups (control, 4.60 ± 2.62, vs MPTP, 14.80 
± 3.09, P < 0.05, Student’s unpaired t-test; n = 5 
each; Figure 4A). There was no significant difference 
in total urine volume and the number of large urine 
spots (>0.2 cm2) (Figure 4B), number of urine spot in 
the center and corner area (Figure 5). These results 
suggest that MPTP-treated mice may exhibit urinary 
bladder dysfunction, i.e., urinary incontinence, 
frequency, and urgency. 
 

Discussion 
 

The present study aims to investigate voiding pattern 
in MPTP-induced Parkinsonism in mice. We found a 
clear difference in the pattern of urine spots between 
control and MPTP-treated animals. Urine pattern of 
control mice showed non-circular marking with 
larger volume/spot size and preferential voiding in 
the corner zone, which is considered normal in 
mice.24 This pattern was different from that observed 
in MPTP-treated group with more circular and 
smaller urine spots. Interestingly, MPTP-treated mice 
showed an increase in the number of small urine 
spots. However, there was no significant difference in 
total urine volume between control and treated 
animals. These data suggest that MPTP-treated mice 
showed signs of urinary urgency, frequency, and 
incontinence at 21 days after MPTP induction.  

We induced Parkinson’s disease-like symptoms 
by using neurotoxin MPTP (10 mg/kg) injection for 5 
consecutive days. Even though there was no 
histological confirmation of dopaminergic neuron 
lesions in the brain, a previous study reported 
dopaminergic lesions with 10 mg/kg MPTP, and the 
total dose per mouse of 40 mg/kg led to a 50% 
reduction of neurons in SNc.25 This is in line with 
another study in which Parkinsonism in rats were 
induced with 6-OHDA treatments showing detrusor 
overactivity at day 14 post-injection and the bladder 
dysfunction persisted for 28 days.26  

A previous study in isolated detrusor muscle strip 
of MPTP-treated marmoset showed that there was an 
increase in amplitude and frequency of contraction. 
This bladder overactivity sign may be derived from a 
central dopaminergic lesion leading to a change in 
neural signaling at the level of presynaptic trans-
mission between nerve and detrusor muscle.12 In 
physiological condition, dopamine from substantial 
nigra par compacta activates D1-GABAnergic direct 
pathway, which exerts an inhibitory action to micturi-
tion.7,27 Loss of dopaminergic neuron in PD patients 
may lead to detrusor overactivity, i.e., urinary incon-
tinence and frequency.10,28 However, future studies 
are still required to fully validate this hypothesis and 
the mechanism involved in bladder dysregulation of 
MPTP-induced Parkinson-like model.  

 
 
 

Figure 3  Urine spot number of MPTP-treated mice and 
control group. (A) Urine spot number was significantly 
increased in MPTP-treated animals compared to control. (B) 
Total urine volume was unchanged (*P < 0.05, Student’s 
unpaired t-test; n=5, each group). 

 
 
 

Figure 4  Small and large urine spot number of MPTP-
treated mice and control group. (A) Small urine spot (< 0.2 
cm2) number was significantly increased in MPTP-treated 
animals compared to control. (B) Large urine spot (> 0.2 
cm2) was unchanged (*P < 0.05, Student’s unpaired t-test; n 
= 5 in each group). 
 

 
 

Figure 5  Voiding area in MPTP-treated mice and control 
group. (A) Percent urine area stained in the center and (B) 
corners of filter papers of control group compared to MPTP 
group (Student’s unpaired t-test; n = 5 in each group). 
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Urinary bladder dysregulation has been reported 
in transgenic multiple system atrophy (MSA) mice, 
animals with motor impairments.29 The urinary 
bladder dysregulation in MSA is associated with the 
degeneration of nigral dopaminergic pathways and 
nondopaminergic areas, including the pontine mictu-
rition center, periaqueductal gray, locus coeruleus, 
cerebellar Purkinje cells, dorsal motor nucleus of the 
vagus, intermediolateral columns of the spinal cord, 
and Onuf’s nucleus.30 Functional cystometry revealed 
the presence of lower urinary bladder dysfunction, 
i.e., detrusor hypertrophy, in MSA animals, including 
urinary frequency, urgency, incontinence, and 
incomplete bladder emptying, resulting in an 
increased post-void residual volume.31 

The current study showed that MPTP-induced 
Parkinsonism related to urinary bladder at 21 days 
after the induction. An investigation of intestinal 
function in mice treated with 10 mg/kg MPTP, with 
the total dose of 40 mg/kg, showed decreased colonic 
motility reflected via reduced stool frequency. This 
impaired intestinal function is correlated with 
decreased neural population in the enteric plexus and 
increased pro-inflammatory markers, i.e., TNF and 
iNOS, in the intestinal wall at 18 days post-MPTP 
injection.32 However, a previous study has reported 
that non-motor symptoms are possibly found in all 
phases even at an early stage of Parkinson’s disease.33  

We think an increase in urination frequency may 
not be a direct result of MPTP injection. Previously, 
tissue accumulation levels of MPTP and MPP+ 
following either subcutaneous or oral administration 
of MPTP in mice were examined. Twenty-four hours 
following subcutaneous injection of 90 mg/kg MPTP, 
the MPTP and MPP+concentrations in kidneys were 
< 20 µg/g.34 Thus, it is unlikely that an increase in 
urination frequency observed in this study was a 
direct effect of MPTP on urinary bladder tissue. 
Besides, the urine voiding pattern was determined at 
day 21 after the last MPTP injection, when MPTP 
would have possibly been cleared from the body 
systemic circulation. 

Our study determined bladder function using 
voiding spot analysis which is one of the simplest 
methods to evaluate urinary bladder function in 
awake animals. Compared to other urinary bladder 
function test,e.g., cystometry, which is more invasive 
as it requires an operation, the voiding spot analysis 
rarely affects the animals’ physiological condition 
since they are allowed to stay in their cage during the 
test. Voiding spot analysis is a semiquantitative 
method used to analyze urine volume according to 
urine spot area on the filter papers. This technique is 
validated by generating a standard calibration curve 
of urine volume and area on filter papers. We counted 
the urine spot area of < 0.2 cm2 as a small spot or a 
small urine volume and urine spot area of > 0.2 cm2 a 
large spot or a big urine volume as previously 
described.21 In addition to urine volume, voiding spot 
analysis also determines the area of voiding e.g., 

center and corner areas which could also relate 
urinary bladder dysfunction with other symptoms as 
observed in stress-related behavior.35 

Environmental factors, e.g., housing environment, 
water bottle location, and cage types, could affect 
voiding behavior and pattern. A previous study 
reported that changing the water bottle location could 
reduce the total void. Using a standard cage seems to 
provoke more urine volume than using a metabolic 
cage. Water deprivation during 4 hours did not result 
in any significant difference in voiding pattern and 
volume.20 We minimized the variation from these 
factors since the tests were performed in their cages 
with free access to water and food. Moreover, results 
of voiding spot analysis possibly vary with sex and 
mouse strain. CAST/EiJ male mice had significantly 
greater urine spot number compared with female 
mice. The gender difference has not been found in 
some other mouse strains (129S1/SvImJ, C57BL/6J 
and NOD/ShiLtJ).36 Therefore, voiding spot analysis 
should be used with a consideration of these factors 
that may influence result and interpretation from 
VSA. Hence, the voiding pattern obtained from the 
VSA method should be combined with another 
functional method e.g., cystometry which would yield 
a deeper understanding of urinary bladder dysfunc-
tion in PD. One major draw-back of VSA is that 
when a second or third urination is superimposed on 
to the first voiding area. It might cause mistakes in 
counting urine spot numbers. Nevertheless, 
differences in the density of urine spot between 
treatments were clear. 
  

Conclusion 
 

This study is the first to report that MPTP-treated 
mice exhibited an increase in urination function at 
day 21 post lesion. This suggests that MPTP-induced 
Parkinson’s disease-like symptoms may also be used 
as a potential tool to investigate urinary bladder 
symptoms in PD. However, future research is 
required to further investigate changing bladder 
function in a different timeline of MPTP treatment 
and need to be confirmed with other methods to 
better understand the bladder pathology involved in 
this animal model. 
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